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Abstract—We propose an approximation method to answer
point-to-point shortest path queries in undirected graphs,
based on random sampling and Voronoi duals. We compute
a simplification of the graph by selecting nodes independently
at random with probability p. Edges are generated as the
Voronoi dual of the original graph, using the selected nodes as
Voronoi sites. This overlay graph allows for fast computation
of approximate shortest paths for general, undirected graphs.
The time–quality tradeoff decision can be made at query
time. We provide bounds on the approximation ratio of the
path lengths as well as experimental results. The theoretical
worst-case approximation ratio is bounded by a logarithmic
factor. Experiments show that our approximation method
based on Voronoi duals has extremely fast preprocessing time
and efficiently computes reasonably short paths.
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I. INTRODUCTION

We wish to answer shortest path queries for large graphs
such as those stemming from transportation networks, social
networks, protein interaction networks, and the web graph.
We could use a classical algorithm such as Dijkstra’s [1],
which has worst-case running time O(m + n log n), where
n denotes the number of nodes and m the number of edges.
However, for large graphs, only a small portion of the
graph can be considered at query time. If preprocessing
is allowed, queries can be answered much more quickly.
The best algorithm for precomputing everything, that is,
for solving the All Pairs Shortest Path Problem, runs in
time O(n3/ log2 n) [2]. Shortest path queries could then be
answered in constant time. Unfortunately, for this method
the preprocessing time is prohibitive.

The goal is to mediate between these two extremes. The
desired tradeoff between preprocessing time and query time
depends on the needs of the application.

A. Related work

In the following, we give a brief overview of related work
for shortest path and distance queries.

Theoretical. Data structures allowing for shortest path
or distance queries are referred to as distance oracles. Their
construction is closely related to that of graph spanners.
For a pair of nodes (s, t), an approximate distance oracle
is said to have stretch (α, β) if it returns a distance in the
range [d(s, t), α · d(s, t) + β]. A girth conjecture by Erdős
implies that, for general undirected graphs, distance oracles
with multiplicative stretch α < 2k + 1 need Ω(n1+1/k)

space. An algorithm by Thorup and Zwick [3] constructs
such an oracle in expected time O(kmn1/k) with query
time O(k) and stretch (2k − 1, 0). For constant k, except
for the preprocessing time, all their bounds are tight. For
planar (directed) graphs with integer weights, an algorithm
by Thorup [4] constructs a (1 + ε, 0)-stretch oracle in time
O(n log3 n log(n∆)), where ∆ denotes the largest weight.
Unfortunately, for huge non-planar graphs, these results are
not practical.

Practical. The main focus of practical investigations so
far has been on large road networks. There has been con-
siderable recent progress: for the road networks of Europe
or the USA, using a high-performance computer, a speed-
up of several orders of magnitude compared to Dijkstra’s
algorithm can be achieved with a preprocessing time in
the tens of minutes [5]. Unfortunately, theoretical bounds
on both query time and preprocessing time are difficult to
obtain. Goldberg and Harrelson [6] proposed a variant of
A* search [7] in which distances are precomputed to a
small set of ‘landmark’ vertices. Hierarchical methods [8],
[9] provide an efficient framework, especially in the case
of road networks. Sanders and Schultes [5], [9], [10] de-
veloped a method to compute shortest paths in ‘almost
constant time’ with a carefully designed structure consisting
of precomputed shortest paths. Their solution is tailored to
perform exceptionally well for road networks, where graphs
are almost planar and nodes have small constant degrees.
Precomputation is time- and space-consuming; however, it
is still manageable in practice, and allows for extremely fast
query times.

However, even though road networks constitute the most
common and popular application of shortest path query
algorithms to date, other challenging applications exist.
Computer networks, social networks, protein interaction
networks, and the web graph exhibit different degree and
structural properties, and may contain hundreds of millions
or even billions of nodes. In specific cases, a user might be
willing to trade preprocessing time against exactness due to
the vast size of the data or due to restricted processing power.
These scenarios may require the use of a fast approximation
method.

B. Contribution

We propose an approximation method to answer shortest
path queries in general, undirected graphs with positive
edge weights, based on random sampling and graph Voronoi



duals [11], [12]. In preprocessing, each node is selected as a
Voronoi site independently at random with probability p, and
the Voronoi dual is computed for the selected sites (Sec. II).
For p < 1, the resulting dual graph is expected to be
smaller than the original graph. At query time, search for the
shortest path from source s to target t can potentially be done
faster in the Voronoi dual. We let the shortest path in the
Voronoi dual guide the search for an approximate shortest
path in the original graph. We prove that the expected
approximation ratio is at most logarithmic in the number
of nodes on the actual shortest path, and that this bound
is tight (Sec. III). Our experimental results show that, in
practice, the approximation is much better than the stated
theoretical bound (Sec. IV).

II. GRAPH VORONOI DUAL

In this section we present the construction of the graph
Voronoi dual, and show how a shortest path in the dual can
be used to find an approximation of the shortest path in the
original graph. In the following, unless indicated otherwise,
we consider only undirected, connected graphs. First, we
introduce the notions and terminology needed in this paper.

A. Preliminaries

A weighted graph G = (V,E, ω) consists of a graph
(V,E) together with a weight function ω : E → R. We
assume positive edge weights; that is, ω : E → R+. For
the remainder of the paper, we will refer to the number of
nodes and edges of the graph by n = |V | and m = |E|,
respectively.

In an edge-weighted graph G = (V,E, ω), a path from
s = u0 ∈ V to t = uh ∈ V is a node sequence
(u0, u1, . . . , uh) for which (ui, ui+1) ∈ E for all i ∈
{0, 1, . . . h−1}. The length of a path P is the sum of its edge
weights `(P ) :=

∑h−1
i=0 ω(ui, ui+1). A subpath P ′ of a path

P is a subsequence of its nodes P ′ = (ui, ui+1, . . . uj),
0 ≤ i < j ≤ h. A simple path is a path without
repeated vertices. Let PG(u, v) denote the set of paths from
u to v in a graph G. The distance d(u, v) between two
nodes u, v is the length of a shortest path from u to v;
that is, d(u, v) = minP∈P(u,v) `(P ). If P(u, v) = ∅ then
d(u, v) := ∞. Let SPG(s, t) be an arbitrary shortest path
from s to t. Analogously to the multiplicative stretch of a
distance oracle, we define the stretch of a path P from s to
t 6= s as the ratio `(P )/`(SPG(s, t)).

B. Graph Voronoi Diagram

The classical Voronoi diagram is a distance-based decom-
position of a metric space relative to a discrete set, the
Voronoi sites. Mehlhorn [11] and Erwig [12] proposed an
analogous decomposition, the Graph Voronoi Diagram, for
undirected and directed graphs respectively.

Definition 1 (Graph Voronoi Diagram [11], [12]). In a
graph G = (V,E, ω), the Voronoi diagram for a set of

nodes K = {v1, . . . , vk} ⊆ V is a disjoint partition
Vor(G,K) := {V1, . . . , Vk} of V such that for each node
u ∈ Vi, d(u, vi) ≤ d(u, vj) for all j ∈ {1, . . . , k}.

The Vi are called Voronoi regions. The graph Voronoi
diagram is not necessarily unique, as a node u may have the
same distance to more than one Voronoi node. Let vor(u)
denote the index i of the Voronoi region Vi containing u;
that is, vor(u) = i ⇔ u ∈ Vi.

Analogously to the Delaunay triangulation dual for clas-
sical Voronoi diagrams of point sets, we define the Voronoi
dual for graphs.

Definition 2. Let G = (V,E, ω) be a weighted graph and
VorG,K its Voronoi diagram. The Voronoi dual is the graph
G∗ = (K, E∗, ω∗) with edge set E∗ := {(vi, vj) : vi, vj ∈
K and ∃u ∈ Vi ∧∃w ∈ Vj : (u, w) ∈ E}, and edge weights
ω∗(vi, vj) := min

u∈Vi,w∈Vj

(u,w)∈E

{d(vi, u) + ω(u, w) + d(w, vj)}.

Figure 3 illustrates two graph Voronoi diagrams for the
same (planar) graph but with different edge weights. Al-
though the classical Voronoi dual of a non-degenerate set
of points in the plane is always a triangulation, the graph
Voronoi dual is not necessarily a triangulation, even for
planar graphs. For example, a graph Voronoi dual may have
nodes whose removal would disconnect the graph.

Erwig [12, Thm. 2] showed that the graph Voronoi dia-
gram can be constructed with a single Dijkstra search in time
O(m + n · log n). A heap is used to store the shortest path
distances from nodes to their closest Voronoi node. The heap
is initialized to store the Voronoi nodes themselves. There-
after, as long as there are nodes in the queue, the minimum
is extracted from the heap and processed (or ‘settled’) by
assigning to it a Voronoi region, storing the distance to its
Voronoi node, and adding to or updating its neighbors in the
queue. We slightly modify this construction of the Voronoi
diagram [12, Sec. 3.1] to compute the Voronoi dual — that
is, to also compute E∗ and ω∗. Whenever a node u is settled
in the Dijkstra search (and thereby assigned to a Voronoi
region Vvor(u)), for all its settled neighbors u′ of different Vo-
ronoi regions (vor(u) 6= vor(u′)), if no edge exists, we add
the edge (vvor(u), vvor(u′)) with weight ω∗(vvor(u), vvor(u′)) =
d(vvor(u), u)+ω(u, u′)+d(u′, vvor(u′)), and if there already is
an edge in G∗ representing a longer path in G from vvor(u)

to vvor(u′), we decrease its length. The final edge weight
ω∗(vvor(u), vvor(u′)) equals the length of a shortest path in G
that crosses the Voronoi border, which may be larger than
the actual distance d(vvor(u), vvor(u′)). This modification of
the construction increases the time complexity by at most a
constant factor.

Definition 3. Given a path P = (u0, u1, . . . , uh), the
Voronoi path of P is the sequence of vertices P ∗ =
(vvor(u0), vvor(u1), . . . , vvor(uh)).



Note that the Voronoi path P ∗ may not necessarily be
simple, as multiple consecutive occurrences of nodes vvor(ui)

are possible in P ∗. They are treated as a single occurrence,
and such paths are deemed to be equivalent.

Lemma 1. For any path P = (u0, . . . , uh) in an undirected
graph G = (V,E, ω), the corresponding Voronoi path P ∗

exists and is unique.

Proof: Omitted in this version.

Definition 4. For a path P ∗ in the Voronoi dual G∗ of a
graph G, the Voronoi sleeve is the subgraph of G induced
by the nodes in the union of all Voronoi regions Vi for which
vi lies on P ∗, Sleeve(G,G∗)(P ∗) := G

[⋃
vi∈P∗ Vi

]
.

With the definitions at hand we can now state the approx-
imation method.

C. Approximation Algorithm

Given a graph G and its Voronoi dual G∗ we answer
(approximate) shortest path queries between source s and
target t using the following algorithm. The algorithm first
searches for a shortest path SPG∗(vvor(s), vvor(t)) in the
smaller Voronoi dual G∗. This path determines the subgraph
S = Sleeve(SPG∗(vvor(s), vvor(t))), whose shortest path
SPS(s, t) approximates the shortest path SPG(s, t) in G.
The shortest path in the Voronoi dual ‘guides’ the Dijkstra
search in the original graph.

Algorithm 1 (Construction). Input: Graph G = (V,E, ω),
Sampling Rate p ∈ [0, 1].
Output: Voronoi dual G∗ with Voronoi nodes selected inde-
pendently at random with probability p.

1) Random sampling: Generate the set of Voronoi nodes
by selecting each node of V independently at random:
∀v ∈ V, Pr[v ∈ K] = p.

2) Compute a Voronoi dual G∗ = (K, E∗, ω∗) using the
modified version of Erwig’s algorithm [12, sec. 3.1].

3) Return G∗.

Lemma 2. For a graph G = (V,E) with n := |V | and
m := |E|, Algorithm 1 takes time O(m + n log n).

Proof: See [12, sec. 3.1].

Algorithm 2 (Query). Input: Graph G, Voronoi dual G∗,
Source s, Target t.
Output: an approximate shortest path P from s to t.

1) Find Voronoi source vvor(s) from s and Voronoi target
vvor(t) from t. If thereby a shortest path SPG(s, t) has
been found, return it.

2) Compute a shortest path from vvor(s) to vvor(t) in the
Voronoi dual G∗: SPG∗(vvor(s), vvor(t)).

3) Compute the Voronoi sleeve
S := Sleeve(SPG∗(vvor(s), vvor(t))).

4) Compute a shortest path from s to t in the Voronoi
sleeve, SPS(s, t).

5) Return P = SPS(s, t).

The running time of Algorithm 2 depends on G and p.
Let N∗ and M∗ denote the random variables measuring the
number of nodes and edges of the Voronoi dual. Clearly
E[N∗] = p ·n. The expected query time without refinement
(computing the shortest path in the Voronoi sleeve) is at
most O(N∗ log N∗+M∗). The time for the refinement step
depends on the size of the Voronoi sleeve. The analysis
will show that the refinement step is not necessary for
the approximation ratio to hold for long distance queries;
however, it makes a practical difference for the quality of
paths. For p = O(n−2/3), E[N∗] = O(n1/3), and thus we
can afford to compute all-pairs shortest path distances in the
Voronoi dual G∗ in overall linear expected time. This allows
for constant-time approximate distance queries.

In the next section, we prove that the expected path length
approximation ratio is logarithmic in the number of edges
of an exact shortest path.

Theorem 1. For shortest paths having h edges, Algorithm 2,
given a graph and its Voronoi dual with sampling rate p
(constructed by Algorithm 1), has expected approximation
ratio O(log1/(1−p) h).

III. PROOF OF THEOREM 1

The path SPS(s, t) found by the algorithm is an approx-
imation, since it is possible that no actual shortest path
SPG(s, t) lies entirely within the Voronoi sleeve S. We
explain how this is possible, and give an upper bound on
the expected length `(SPS(s, t)). For this purpose, we prove
relationships between the lengths of simple paths P and their
corresponding Voronoi paths P ∗. The stretch of a path P ∗

depends on the number and distribution of Voronoi nodes
on the path P . In particular, the stretch depends linearly on
the largest interval between two Voronoi nodes on the path.

Definition 5. For a path P = (u0, u1, . . . , uh) in a graph
G = (V,E, ω), and a set of Voronoi nodes K ⊆ V , two
Voronoi nodes vi, vj on P are called consecutive if the
subpath between vi and vj does not contain another Voronoi
node. The gap g between two consecutive Voronoi nodes on
the path is defined as the number of edges of this subpath.
The largest gap of a path is the maximum over all gaps
between two consecutive Voronoi nodes on the path.

To simplify the analysis, we initially assume that s and
t are Voronoi nodes. Later, we will relax this restriction.
We wish to prove that the stretch is at most the size
of the largest gap h̄ between two Voronoi nodes on the
path SPG(s, t). For the analysis we fix a shortest path
SPG(s, t) = (s, u1, u2, . . . , uh−1, t). If the corresponding
Voronoi path (SPG(s, t))∗ is a shortest path from s to
t in the Voronoi dual, then the Voronoi sleeve S also
contains SPG(s, t). Figure 1 gives an example for which
(SPG(s, t))∗ is not a shortest path in the dual.
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Figure 1. s, t, and vi are Voronoi nodes. The shortest path from s to t
leads through u, which is in vi’s Voronoi region (if c < a and c < b), and
paths in the Voronoi dual pass through vi. If ` < a + b + 2c, the shortest
path in the Voronoi dual SPG∗ takes the left-hand route, and the Voronoi
sleeve S does not contain u.
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Figure 2. The shortest path between two Voronoi nodes s and
t with h − 1 intermediate nodes u1, . . . , uh−1. The distance be-
tween two Voronoi nodes that are adjacent in the Voronoi dual is at
most ω∗(vvor(uk), vvor(uk+1)) ≤ d(vvor(uk), uk) + ω(uk, uk+1) +
d(uk+1, vvor(uk+1)).

In Lemma 3, for any simple path P , we give a worst-case
bound on the length of the corresponding Voronoi path. P ∗

can have maximal stretch if there is no Voronoi node among
the intermediate nodes and the corresponding Voronoi nodes
have maximal distance (while still satisfying the Voronoi
condition).

Lemma 3. Given a simple path P = (s, u1, . . . , uh−1, t)
between two Voronoi nodes s = u0 and t = uh with h
edges and length `(P ), the corresponding Voronoi path P ∗

in the Voronoi dual G∗ has at most length `(P ∗) ≤ h ·`(P ).
This upper bound is tight.

Proof: The path contains h − 1 intermediate nodes
and h edges and therefore passes through at most h + 1
different Voronoi regions. Out of these, at most h − 1
regions are ‘interfering’ regions, meaning that the original

shortest path does not lead through the corresponding Vo-
ronoi nodes but the shortest Voronoi path does. The path
length `(P ) in the original graph is the sum of the edge
weights `(P ) := d(s, t) =

∑h−1
k=0 ω(uk, uk+1). The length

d∗(vvor(uk), vvor(uk+1)) of an edge between two Voronoi
nodes on the path P ∗ can be bounded as follows (see
Figure 2):

d∗(vvor(uk), vvor(uk+1)) ≤ d(vvor(uk), uk)
+ω(uk, uk+1) + d(uk+1, vvor(uk+1))

From the Voronoi condition, we observe that ∀j :
d(uk, vvor(uk)) ≤ d(uk, vvor(uj)). Due to the assumption that
s and t are also Voronoi nodes, this also holds for source
and target. That is,

d(uk, vvor(uk)) ≤ d(s, uk)
d(uk, vvor(uk)) ≤ d(uk, t)

This yields:

`(P ∗) ≤ d∗(s, t)
= d∗(s, vvor(u1))

+
h−2∑
k=1

[
d(vvor(uk), uk) + ω(uk, uk+1)

+d(uk+1, vvor(uk+1))
]

+ d∗(vvor(uh−1), t)

≤ ω(s, u1) + d(u1, vvor(u1))

+
h−2∑
k=1

[
d(vvor(uk), uk) + d(uk+1, vvor(uk+1))

]

+
h−2∑
k=1

ω(uk, uk+1)

+d(vvor(uh−1), uh−1) + ω(uh−1, t)

≤ d(s, t) +
h−1∑
k=1

[
d(s, uk) + d(uk, t)

]
= h · `(P )

There exist constructions for which the bound can be shown
to be tight. For example, for any choice of a > ε > 0, the
edge weights of G may be chosen such that d(uk, vvor(uk)) =
a−ε, ω(uk, uk+1) = ε, and ω(s, u1) = ω(uh−1, t) = a. Path
P has length 2a + (h − 2)ε, and the Voronoi path P ∗ has
length 2a+(h−2)ε+2(h−1) · (a− ε). As ε → 0, the ratio
`(P ∗)/`(P ) → h.

If in addition to the endpoints there are Voronoi nodes on
the shortest path, the maximum stretch is guaranteed to be
smaller than the number of edges on the shortest path. In
the following lemma, we prove that the maximum stretch
is proportional to the largest gap between Voronoi nodes on
the path. The proof is a simple composition of Lemma 3,
and is supported by the illustration in Figure 2.

Lemma 4. Let P = (vi, u1, . . . , uh−1, vj) be a simple path
of length `(P ) between two Voronoi nodes vi = u0 and vj =



uh. Let h̄ denote the largest gap of P . The corresponding
Voronoi path P ∗ in the Voronoi dual G∗ has at most length
`(P ∗) ≤ h̄ · `(P ). This upper bound is tight.

Proof: Suppose there are 2 + ν Voronoi nodes uk =
vvor(uk) on the path. The remaining h−1−ν nodes are non-
Voronoi nodes. We cut the path P into subpaths Pk between
Voronoi nodes. Let hk denote the number of edges between
two consecutive Voronoi nodes, which is the number of
edges of Pk. The Voronoi path is composed of 1 + ν
segments Pk between Voronoi nodes (

∑ν
k=0 `(Pk) = P ,∑ν

k=0 hk = h, ∀k : hk ≤ h̄). Composition of Lemma 3
leads to the following bound on the path length:

ν∑
k=0

hk`(Pk) ≤
ν∑

k=0

max
κ∈{0,...,ν}

hκ`(Pk) ≤ h̄ · `(P ).

Tightness can be shown with the same example as in the
proof of Lemma 3.

Lemma 5 gives an upper bound on the expected size of
the largest gap.

Lemma 5. In a path of length h− 1, where each node has
been selected as a Voronoi node independently at random
with probability p, the longest sequence of non-Voronoi
nodes is of expected length at most O(log1/(1−p) h).

Proof: The path can be seen as a sequence of coin
tosses, for which we want to bound the expected length of
the longest sequence of tails. This problem is known as the
Longest Success-Run [13, Ch. 8.5]. We wish to bound the
expectation of the maximum of N independent geometric
random variables with probability p and sum h− 1−N (N
itself being a random variable).

To derive a bound on the expectation, we observe that by
dropping the sum condition, and by taking the maximum
over h ≥ N random variables, the maximum value obtained
can only increase. The expectation of the maximum of h
geometric random variables with probability p is known to
be at most O(log1/(1−p) h) [14, eq. (2.12)].

We now combine Lemmas 3, 4, and 5 to prove The-
orem 1. Consider first the case where s and t are both
Voronoi nodes. Let h̄ denote the largest gap of some
shortest path SPG(s, t). Lemma 4 implies that the cor-
responding Voronoi path (SPG(s, t))∗ has length at most
h̄ · `(SPG(s, t)). Trivially, the shortest path in the Voro-
noi dual is of length no more than that of the Voronoi
path; that is, `((SPG(s, t))∗) ≥ `(SPG∗(s, t)). The path
SPG∗(s, t) in the Voronoi dual corresponds to a path P ′ of
the same length in the Voronoi sleeve Sleeve(SPG∗(s, t)).
Therefore, `(SPS(s, t)) ≤ `(P ′) = `(SPG∗(s, t)) ≤
`((SPG(s, t))∗) ≤ h̄ · `(SPG(s, t)). Recall that nodes are
independently selected as Voronoi nodes with sampling rate
p. For a shortest path with h edges, the expected largest gap
h̄ is at most O(log1/(1−p) h) by Lemma 5.

For the case where either s or t (or both) are not Voronoi
nodes, if the path returned by Algorithm 2 has been found
in Step 1, it is optimal, and the result holds trivially. For the
remainder of the proof we assume that the shortest path has
not been found in Step 1. In this case, the path returned is at
most as long as the shortest path Pvor in G from s to t having
SPSleeve(SPG∗ (vvor(s),vvor(t)))(vvor(s), vvor(t)) as a subpath. In
the following, we derive an upper bound on `(Pvor) with
respect to the number of edges on the shortest path between
s and t, denoted by h′. We have that `(Pvor) ≤ d(s, vvor(s))+
d∗(vvor(s), vvor(t))+d(vvor(t), t). Since the shortest path from
s to t has not already been found directly in Step 1, it must
be true that both d(s, vvor(s)) ≤ d(s, t) and d(s, vvor(s)) ≤
d(s, t). It remains to bound the distance between vvor(s) and
vvor(t) in the dual graph.

Observe that augmenting the graph G with one edge
(u, vvor(u)) of weight d(u, vvor(u)) for each non-Voronoi
node u ∈ V \ K affects neither the Voronoi diagram nor
the Voronoi dual, since the nodes on the shortest path from
vvor(u) to u cannot be interfered with by another Voronoi
node.

In the augmented primal graph, by the triangle inequality,
we have that d(vvor(s), vvor(t)) ≤ d(vvor(s), s) + d(s, t) +
d(t, vvor(t)) ≤ 3d(s, t) using a path with at most 1 + h′ + 1
edges. Therefore, the expected distance d∗(vvor(s), vvor(t)) is
also bounded by O(log h′) · 3d(s, t). The bound for Pvor

follows directly.
This concludes the proof of Theorem 1.

IV. EXPERIMENTS

In the following, we provide an experimental evaluation
for our implementation of the Voronoi shortest path ap-
proximation method. The preprocessing and query times are
compared with those of Dijkstra’s algorithm and with those
of related but exact methods.

A. Algorithms

Benchmarking. We measure the performance of the
methods against the bidirectional version of Dijkstra’s al-
gorithm, in terms of the ratio of the number of nodes settled
by Dijkstra’s algorithm over the number of nodes settled
by the Voronoi method. This ratio, which we will refer to
as the speed-up of the method, can be used to evaluate
the performance of Steps 1, 2, and 4 of Algorithm 2. In
addition, we count the number of marked regions to account
for Step 3.

The use of the Voronoi sleeve in Steps 3 and 4 of
Algorithm 2 leads to practical improvements in accuracy;
however, the example in Figure 1 shows that for general
graphs the worst-case stretch does not improve. For all
the experiments, we evaluate the method once using the
refinement step and once with these Voronoi sleeve steps
omitted. For the second type of queries, the reported distance
is the sum of the distances from the query source to the



Voronoi source, from the Voronoi source to the Voronoi
target, and from the Voronoi target to the query target, as
computed in Steps 1 and 2 of Algorithm 2.

1) Voronoi method: Our method using the Voronoi dual
can be parameterized using the sampling probability p, the
value of which determines the trade-off between approxima-
tion quality and speed-up. For the evaluation, we consider
three values of the probability — p = 1/2, p = n−1/2,
and p = n−2/3 — that produce Voronoi nodesets of
expected sizes n/2,

√
n, and 3

√
n respectively. The variants

are referred to as VORHALF, VORROOT, and VORCUBERT.
2) Other methods: Sanders and Schultes [5, Table 1]

provide a detailed overview of methods for accelerated
point-to-point shortest path queries in road networks. Bauer
et al. [22, p.13] list another set of methods and compare
their performance on several transportation networks. We
select some of the fastest methods for comparison with our
algorithm. Unless stated otherwise, we will use the naming
conventions of [5], [22] to refer to these methods.

• Highway Hierarchies (HH) [10] are based on the ob-
servation that a certain class of edges (the ‘highway’
edges) tend to have greater representation among the
portion of the shortest paths that are not in the vicinity
of either the source or target. A recursive computation
of these edges, paired with a contraction step, leads
to a hierarchy of graphs that enables an impressive
speed-up at query time. HH+dist denotes a variant of
HH where all higher levels with at most O(

√
n) nodes

are replaced by a single distance table. HH+dist+A*
is HH combined with A* search and implemented with
distance tables [15]. Highway Node Routing (HNR) [9]
is another variant of the Highway Hierarchies strategy.

• In the same spirit as HH, Transit Node Routing
(TNR) [16] identifies a set of nodes (called ‘transit’
nodes) that often occur on shortest paths. A table
storing the distances between all pairs of these nodes
allows any shortest path distance to be computed with
a small number of table look-ups. Two variants are
listed: TNR-eco with economical space consumption,
and TNR-gen with generous space consumption.

• The Arc-Flag method [23] computes a partition of
the graph and then, for each component and for each
shortest path ending in that component, it labels the first
edge. A variant of this method, SHARC [24], incorpo-
rates techniques developed for Highway Hierarchies.

• Contraction Hierarchies (CHHNR) [8] is an extension
of highway hierarchies in which the graph is further
simplified using contraction operations. Many variants
have been proposed; we consider only the variant
with the fastest preprocessing time, CHHNREDS1235, and
the variant with the best speed-up, CHHNREVSQWL. The
CHASE method [22] integrates the Contraction Hierar-
chies and Arc-Flag methods.

• A method based on A* search by Goldberg and Har-

relson [6], which we will refer to as simply A*, is one
of the first methods with reasonable preprocessing time
and good speed-up.

• ALT-m16 [25] is a variant of ALT [26], which in
turn is a combination of A*, Landmarks, and speed-up
techniques based on the triangle inequality. CALT-m16
and CALT-a64 [22] are two variants of a method that
combines ALT and Contraction Hierarchies.

B. Data sets

For the sake of comparison, we consider transportation
networks that were used by Sanders and Schultes [5] and
Bauer et al. [22], [24] in their evaluations. In addition, to
demonstrate that our method is effective for more general
graphs, we run experiments with a social network, a citation
graph, a router network, and protein interaction networks as
data sets. The node degrees of these graphs seem to follow
a power-law distribution.

1) Road networks: The road network of Western Europe
has been made available for scientific use by the company
PTV AG. It covers 14 countries and, with its massive
size of 18,010,173 nodes and 42,560,279 directed edges, it
serves as an important benchmark for shortest path queries.
In order to apply the Voronoi method, we convert the
graph into an undirected form. There are two different edge
weightings, one representing geographical distances and the
other representing driving time. We conduct experiments for
both.

2) Public transportation: We also conduct experiments
for three European public transportation networks: (1) long
railway connections in Europe, with 1,586,862 nodes and
2,402,352 directed edges, (2) the bus network of the Rhein-
Main-Verkehrsverbund RMV, with 2,278,066 nodes and
3,417,084 directed edges, and (3) the bus network of the
Verkehrsverbund Berlin Brandenburg VBB, with 2,600,818
nodes and 3,901,212 directed edges. The graphs considered
by [22], [24] differ slightly from those used for experi-
mentation with the Voronoi method. The numbers of nodes
and edges of the RMV and VBB input graphs are nearly
identical; however, the long railway graph used in our
experimentation has 33% more nodes and edges than in [22],
[24]. Again, for the Voronoi experimentation, the graphs
were converted into an undirected form.

3) Social networks: We extracted the DBLP computer
science bibliography [17] co-author graph from an official
XML version downloaded on 24 August 2008. In the graph,
two authors are connected by an edge if they have at least
one joint publication. This yielded an undirected graph, from
which we selected the largest connected component. The
final graph is unweighted and consists of 511,163 nodes and
1,871,070 edges.

4) Router topology: CAIDA maintains data on the router-
level topology of a portion of the Internet [18]. After



cleaning we obtained an undirected, unweighted graph with
190,914 nodes and 607,610 edges.

5) Citation graph: The citations for 27,400 publications
in the high energy physics research literature were used as
a data set in the KDD Cup 2003 competition [19]. From
these citations, we constructed an undirected, unweighted
graph with 352,542 edges.

6) Protein interactions: The Database of Interacting Pro-
teins [20] catalogs experimentally determined interactions
among proteins. We extracted the largest connected com-
ponent, consisting of 19,928 nodes and 82,406 edges. Bio-
GRID is a general repository for interaction data sets [21]
from which we extracted the largest connected component,
consisting of 4,039 nodes and 43,854 edges.

C. Experimental setting

Our implementation is written in C++ and executed on
one core of a 2x2.66 GHz Dual-Core Intel Xeon Desktop
with 6 GB 800 MHz DDR2 FB-DIMM running Mac OS X
10.5.6.

Every graph was preprocessed 1, 000 times using dif-
ferent random seeds (250 times for the European road
networks). For these runs we report the mean value and
standard deviation of the execution time in seconds. After
preprocessing, we performed 100 shortest path queries for
random (s, t) pairs. For these queries, we provide the mean
values and standard deviations of the speed-up relative to
the bidirectional version of Dijkstra’s algorithm, and of the
multiplicative stretch relative to a shortest path.

D. Results and Interpretation

Running times, speed-ups, and approximation qualities for
the Voronoi method are listed in Table I, for all data sets.
The performances of the other methods are listed in Table II
as originally summarized in [5], [8], [22].

Preprocessing For the Voronoi method, as Lemma 2
predicts, the preprocessing cost is extremely low for all
three values of p. For the non-planar graphs, the greatest
preprocessing times were observed for the largest value,
p = 1/2. This likely reflects the logarithmic cost of the
heap operations associated with the computation of Voronoi
regions. At the start of the Dijkstra search, the heap is
initialized with all neighbors of the graph Voronoi nodes.
When p is large, the initial heap size is a large proportion
of the total number of nodes, and the cost of the heap
operations becomes significant. On the other hand, when p
and the average node degree are both small, the heap evolves
smoothly with its size remaining small.

Speed-up For road networks VORHALF achieves moder-
ate speed-ups of approximately 2, which likely reflects the
fact that the expected number of nodes of the Voronoi dual
is half that of the original graph. For the power-law graphs,
probability p = 1/2 does not lead to a significant speed-
up. One reason for this might be that the Voronoi dual for

each of these graphs is quite dense and, as a consequence,
the Dijkstra search in the dual explores many nodes until it
can find the destination. For the smaller probabilities, larger
speed-ups can be observed, but the performance gain is
significantly smaller than the speed-ups obtained for almost
planar networks. There, the speed-up seems proportional to
1/p. As expected, if for small values of p the sleeve is used
to refine the path, the speed-up decreases drastically due to
the large size of this subgraph.

Stretch The Voronoi method achieved stretch values that
were surprisingly consistent among different data sets, with
most values under 2 and very close to optimal for the
road networks. Figure 4 shows the approximate path length
versus the shortest path length, with and without the sleeve
refinement steps. The theoretical worst-case logarithmic
dependency on the number of edges cannot be observed
in the experimental results. Refinement using the sleeve
substantially improves the stretch in practice, although the
theoretical performance is not affected.

V. CONCLUSION

We have presented a simple and general method based
on Voronoi duals to efficiently support shortest path queries
in undirected graphs with very low preprocessing overheads
and competitive query times, at the cost of exactness. The
method was shown to be effective on a variety of graph types
while remaining a reasonable alternative to existing exact
methods specifically designed for transportation networks.
The results of our experiments also demonstrate that the
approximation ratio in practice is significantly better than
the tight theoretical worst-case bound proved in the main
theorem of this paper. The maximal distortion of paths in
the graph Voronoi dual depends on the distance between
nodes in the original graph, unlike Delaunay triangulations
of the Euclidean plane, which have constant distortion [27],
[28].

An interesting topic for future research would be an
expected-case analysis for weighted graphs from a variety
of distributions.

It remains open as to whether the Voronoi method pre-
sented in this paper can be extended to handle directed
graphs. The nature of the Voronoi dual within a directed
graph is inherently different from the dual within an undi-
rected graph. The need for path connectivity suggests the
construction of two Voronoi diagrams, one where reacha-
bility paths are oriented outward from Voronoi nodes and
another where reachability paths are oriented inward. As
the respective Voronoi regions may not coincide [12], it is
not straightforward to define a single dual structure whose
shortest path lengths approximate those of the original graph.

Another natural extension is the computation of a hierar-
chical structure of Voronoi duals, where the Voronoi nodes
are chosen through recursive sampling. At a given level of
the hierarchy, shortest path queries within the Voronoi dual



would be resolved by a recursive call one level higher in the
structure. This is planned for future work.
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Figure 3. Two graph Voronoi diagrams for the same planar graph but with different edge weights. Voronoi nodes are black and the remaining nodes are
white. Even though the graphs are structurally equivalent, the corresponding graph Voronoi diagrams are not.

Figure 4. Approximate path length versus actual shortest path length for VORROOT on the European road network, distance metric. Left: using sleeve.
Right: with sleeve steps omitted. The theoretical worst-case logarithmic dependency on the number of edges cannot be observed in the experimental results.
Refinement using the sleeve substantially improves the stretch in practice, although the theoretical performance is not affected.



method preprocessing [s] without sleeve with sleeve
speed-up stretch speed-up stretch

PTV European road network, driving time, 18,010,173 nodes, 42,560,279 edges
VORHALF 31.7686±4.4436 2.6061± 0.0734 1.0394±0.0131 2.5878± 0.0750 1.0111±0.0062
VORROOT 40.5296±3.6423 3,518.0645± 725.2776 1.6613±0.2078 4.9991± 4.9017 1.1291±0.0783
VORCUBERT 31.3372±2.8181 39,918.4988±14,207.5395 1.5544±0.4292 1.5863± 1.1123 1.0405±0.0597

PTV European road network, geographical distance, 18,010,173 nodes, 42,560,279 edges
VORHALF 29.8365±4.3576 2.6266± 0.0558 1.0307±0.0095 2.5800± 0.0627 1.0139±0.0057
VORROOT 34.2785±3.0609 3,672.4070± 511.1418 1.1821±0.0960 5.9212± 7.9921 1.0390±0.0249
VORCUBERT 22.5531±2.0284 42,266.6442±13,530.5983 1.2882±0.5384 1.6383± 1.4232 1.0141±0.0291

Public transportation, long distance railway, 1,586,862 nodes, 2,402,352 edges
VORHALF 2.0499±0.1998 1.9511± 0.1231 1.0180±0.0227 1.8972± 0.1367 1.0080±0.0143
VORROOT 1.9086±0.0946 363.8390± 153.4644 1.3813±0.2848 2.8527± 3.3113 1.0829±0.0971
VORCUBERT 1.7633±0.0860 2,116.0373± 1,251.1773 1.5167±0.6610 1.2599± 0.5990 1.0247±0.0658

Public transportation, RMV, 2,278,066 nodes, 3,417,084 edges
VORHALF 3.7714±0.4064 1.9892± 0.1813 1.0290±0.0255 1.9315± 0.1766 1.0104±0.0131
VORROOT 3.7455±0.2158 789.2912± 328.2714 1.2972±0.2591 3.1802± 5.4237 1.0644±0.0864
VORCUBERT 3.4120±0.1633 5,973.7950± 3,748.1389 1.3522±0.6003 1.3089± 0.9703 1.0204±0.0583

Public transportation, VBB, 2,600,818 nodes, 3,901,212 edges
VORHALF 4.1409±0.4180 1.9881± 0.6476 1.0335±0.0248 1.9313± 0.5172 1.0075±0.0097
VORROOT 4.0242±0.2914 866.8917± 405.4821 1.4042±0.2516 3.7864± 7.6010 1.0834±0.1000
VORCUBERT 3.7145±0.2333 7,373.2971± 4,742.2783 1.4375±3.3690 1.3427± 1.2759 1.0244±0.0660

DBLP co-authorship, 511,163 nodes, 1,871,070 edges
VORHALF 0.9145±0.0431 1.3576± 1.4690 1.2093±0.1805 1.3447± 1.4364 1.1419±0.1468
VORROOT 0.8376±0.0430 37.7082± 53.2992 1.9323±0.3591 11.4432±14.8387 1.3954±0.2850
VORCUBERT 0.6041±0.0312 143.8757± 208.7946 2.0033±0.3630 9.9616±12.5412 1.2881±0.2406

CAIDA router topology, 190,914 nodes, 607,610 edges
VORHALF 0.3050±0.0154 1.3164± 1.1720 1.1810±0.1703 1.2972± 1.1074 1.1283±0.1359
VORROOT 0.1793±0.0092 42.4832± 54.6527 1.7845±0.3533 7.8865± 8.8062 1.2345±0.2175
VORCUBERT 0.1562±0.0081 135.5521± 188.9479 1.8314±0.3755 6.0451± 7.1000 1.1621±0.1837

High energy physics citations, 27,400 nodes, 352,542 edges
VORHALF 0.1764±0.0100 1.6620± 1.2240 1.3179±0.2909 1.6452± 1.1544 1.2107±0.2323
VORROOT 0.0611±0.0043 40.1114± 21.9262 1.9918±0.4695 11.5248± 7.9582 1.3390±0.3286
VORCUBERT 0.0461±0.0032 101.9210± 58.6233 2.0330±0.4852 9.0423± 7.5795 1.2325±0.2750

Database of Interacting Proteins, 19,928 nodes, 82,406 edges
VORHALF 0.0117±0.0007 2.2044± 1.0637 1.1887±0.2188 2.1248± 1.0093 1.1183±0.1778
VORROOT 0.0108±0.0007 57.7343± 45.7341 1.8214±0.4084 9.1154± 6.0720 1.3216±0.3030
VORCUBERT 0.0096±0.0006 134.4816± 106.4737 1.9277±0.4444 6.2541± 3.8117 1.2644±0.2703

BioGRID, 4,039 nodes, 43,854 edges
VORHALF 0.0035±0.0002 1.5086± 0.8003 1.2581±0.2718 1.3722± 0.6858 1.1334±0.1973
VORROOT 0.0025±0.0001 10.7295± 7.9563 1.8676±0.5737 3.0394± 1.9172 1.2753±0.3354
VORCUBERT 0.0024±0.0001 18.6805± 14.7570 1.9412±0.6250 2.7906± 1.7177 1.2308±0.3137

Table I
EXPERIMENTAL RESULTS FOR THE VORONOI METHOD.

PTV European road network, driving time
prep. [s] speed-up

CHHNREDS1235 [8] 602 ≈8,505
A* [6] 780 28
HH [10] 780 4,002
HH+dist [10] 900 8,320
HH+dist+A* [15] 1,320 11,496
HNR [9] 1,440 4,079
CHHNREVSQWL [8] 1,914 ≈10,874
TNR-eco [16] 2,760 471,881
TNR-gen [16] 9,840 1,129,143

long distance rail RMV VBB
|V | 1,192,736 2,277,812 2,599,953
|E| 1,789,088 3,416,552 3,899,807

prep. [s] speed-up prep. [s] speed-up prep. [s] speed-up
CALT-a64 [22] 87 291.84 191 267.11 123 459.30
CALT-m16 [22] 158 182.71 377 159.62 174 281.23
ALT-m16 [25] 291 20.30 556 18.91 604 23.04
CHHNR [8] 286 1,620.62 2,584 2,077.69 1,636 3,124.59
CHASE [22] 536 2,660.93 2,863 4,649.26 2,008 10,398.64
SHARC [24] 12,540 81.04 36,120 118.10

Table II
Road networks: THE TABLE ON THE LEFT IS EXCERPTED FROM SANDERS AND SCHULTES [5, TABLE 1] EXCEPT FOR CHHNR VALUES, WHICH ARE

FROM [8, TABLE 1]. PREPROCESSING TIMES ARE CONVERTED FROM MINUTES TO SECONDS TO EASE COMPARISON WITH OUR METHOD. Public
transportation networks: THE TABLE ON THE RIGHT IS EXCERPTED FROM BAUER ET AL. [22, P.13]. SHARC IS EVALUATED IN [24, P.10]. THE

SPEED-UP IS COMPUTED ACCORDING TO THE NUMBER OF SETTLED NODES. MACHINES USED (EXCEPT FOR A*): 2.0 OR 2.6 GHZ PROCESSOR, 8 OR
16 GB RAM, C++ IMPLEMENTATION.


