
ON THE EXISTENCE OF A NEUTRAL REGION

DANIEL REEM

Abstract. Consider a given space, e.g., the Euclidean plane, and its decompo-
sition into Voronoi regions induced by given sites. It seems intuitively clear that
each point in the space belongs to at least one of the regions, i.e., no neutral
region can exist. As simple counterexamples show this is not true in general, but
we present a simple necessary and sufficient condition ensuring the non-existence
of a neutral region. We discuss a similar phenomenon concerning recent vari-
ations of Voronoi diagrams called zone diagrams, double zone diagrams, and
(double) territory diagrams. These objects are defined in a somewhat implicit
way and they also induce a decomposition of the space into regions. In several
works it was claimed without providing a proof that some of these objects in-
duce a decomposition in which a neutral region must exist. We show that this
assertion is true in a wide class of cases but not in general. We also discuss
other properties related to the neutral region, among them a one related to the
concentration of measure phenomenon.

1. Introduction

Consider a given space, e.g., the Euclidean plane, and its decomposition into
Voronoi regions (Voronoi cells) induced by given sites. It seems intuitively clear
that the regions form a subdivision, i.e., each point in the space belongs to at least
one of the regions. As a matter of fact, this is claimed in various places, e.g., in
[7, pp. 345-6],[13, p. 513], [23, p. 47]. In these places it is assumed (explicitly
or implicitly) that the number of sites is finite, an assumption which obviously
implies the subdivision property. However, the assumption of finitely many sites
is not always satisfied, e.g., in the case of Voronoi diagrams in the context of
the lattices such as in the geometry of numbers or crystallography or stochastic
geometry (see Example 3.3). It turns out that in general a neutral cell may indeed
exist, and hence one may ask whether it is possible to formulate a simple necessary
and sufficient condition ensuring that no such a region exists. Such a condition
is formulated in Section 3, and is illustrated using various examples. To the best
of our knowledge, the possibility of the existence of a neutral Voronoi cell was
published only in [25, 26], but no systematic investigation of this issue was carried
out there.

A related phenomena, now viewed from the reverse direction, appears in connec-
tion with recent variations of Voronoi diagrams called zone diagrams [2, 19, 20, 28].
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Figure 1. Voronoi diagram of 8
point sites in a square in (R2, `2).
No neutral region exists.

Figure 2. The zone diagram [and
hence a double zone diagram and
a (double) territory diagram], of
the same sites given in Figure 1.
The (black) neutral region is clearly
seen.

As in the case of Voronoi diagrams, these geometric objects induce a decomposi-
tion of the given space into regions, but in contrast with the Voronoi diagram, in
which the region Rk associated with the site Pk is the set of all points in the space
whose distance to Pk is not greater than their distance to the other sites Pj, j 6= k,
in the case of a zone diagram the region Rk is the set of all the points in the space
whose distance to Pk is not greater to their distance to the other regions Rj, j 6= k.

This somewhat implicit definition implies, after some thinking, that a zone
diagram is a solution to a certain fixed point equation. Although its existence is
not obvious in advance, it seems clear that if a zone diagram does exist, it induces
a decomposition of the space into the regions (zones) Rk, and an additional region:
the neutral one. See Figure 2. This actually was claimed explicitly in several places
[1, 2, 12], but this claim has not been proved.

As a matter of fact, the very first works discussing the concept of a zone diagram
used the terminology “a Voronoi diagram with neutral zones” [4, p. 25] and
“Voronoi diagram with neutral zone” (pages 336-8 and 343 of the 2006 conference
version of [1], the bottom of [2, p. 1182]) for describing this concept. In Section 4
we prove that the above claim about the existence of a neutral region holds in
a wide class of spaces (geodesic metric spaces) but not in general. We discuss
similar phenomena occurring with variations of zone diagrams called double zone
diagrams [28], territory diagrams [12] (called subzone diagrams in the conference
version of [12]), and double territory diagrams which are introduced here (we also
generalize the definition of territory diagrams from the setting of the Euclidean
plane with point sites). Again, the existence of a neutral zone in the case of
territory diagrams was claimed without any proof.
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Geodesic metric spaces satisfying a certain compactness assumption were dis-
cussed in the related setting of k-sectors and k-gradations [16]. Here however no
compactness assumption is made. As shown in Section 5, at least in this setting
the neutral region can be used to justify the interpretation of zone diagram as a
certain equilibrium between mutually hostile opponents. This interpretation was
mentioned without full justification in [2, 28]. In Section 6 we show that not only
the neutral region is nonempty but it actually occupies a volume much larger than
the volume of the “interior regions”. Here one considers double zone diagrams of
separated point sites in a finite dimensional Euclidean space. This phenomenon
is related to (but definitely distinguished from) the phenomenon known as “con-
centration of measure” [14, pp. 165-166],[22, pp. 329-341]. The paper ends in
Section 7 with a few remarks about possible lines of further investigation.

2. Preliminaries

In this section we present our notation and basic definitions, as well as additional
details regarding the basic notions. Throughout the text we will make use of tuples,
the components of which are sets (which are subsets of a given set X). Every
operation or relation between such tuples, or on a single tuple, is done component-
wise. Hence, for example, if K 6= ∅ is a set of indices, and if R = (Rk)k∈K and
S = (Sk)k∈K are two tuples of subsets of X, then R ⊆ S means Rk ⊆ Sk for each
k ∈ K. When R is a tuple, the notation (R)k is the k-th component of R, i.e,
(R)k = Rk.

Definition 2.1. Given two nonempty subsets P,A ⊆ X, the dominance region
dom(P,A) of P with respect to A is the set of all x ∈ X whose distance to P is
not greater than their distance to A, i.e.,

dom(P,A) = {x ∈ X : d(x, P ) ≤ d(x,A)}. (1)

Here
d(x,A) = inf{d(x, a) : a ∈ A} (2)

and in general, for any subsets A1, A2 we denote

d(A1, A2) = inf{d(a1, a2) : a1 ∈ A1, a2 ∈ A2}.
with the agreement that d(A1, A2) =∞ if A1 = ∅ or A1 = ∅.

Definition 2.2. Let K be a set of at least 2 elements (indices), possibly infinite.
Given a tuple (Pk)k∈K of nonempty subsets Pk ⊆ X, called the generators or the
sites, the Voronoi diagram induced by this tuple is the tuple (Rk)k∈K of nonempty
subsets Rk ⊆ X, such that for all k ∈ K,

Rk = dom(Pk,
⋃
j 6=k

Pj) = {x ∈ X : d(x, Pk) ≤ d(x, Pj) ∀j 6= k, j ∈ K}. (3)

In other words, each Rk, called a Voronoi cell or a Voronoi region, is the set of all
x ∈ X whose distance to Pk is not greater than its distance to any other site Pj,
j 6= k. The set X\(

⋃
j∈K Rj) is called the neutral region.
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Remark 2.3. Voronoi diagrams can be defined in a more general context than
metric spaces, and actually we will use such a setting later (Theorem 3.1). As in
Definition 2.2, one starts with a nonempty set X and a tuple (Pk)k∈K of nonempty
subsets of X. However, now the distance function is d : X2 → [−∞,∞] and it is
not limited to satisfy the axioms of a metric (e.g., the triangle inequality, being
nonnegative and symmetric, etc.). The dominance region is defined as in (2.1), the
distance d(x,A) is defined as in (2), and Voronoi cells are defined exactly as in (3).
Voronoi diagrams based on Bregman distance [9], convex distance functions [10],
and other examples are all particular cases of this setting. Such a setting, which
seems to not has been discussed before, even generalizes the setting of m-spaces
[28] in which the only restriction on d is that d(x, x) ≤ d(x, y) for any x and y
(the previously mentioned cases are actually particular cases of m-space since in
them 0 = d(x, x) ≤ d(x, y)).

Definition 2.4. Let K be a set of at least 2 elements (indices), possibly infinite.
Given a tuple (Pk)k∈K of nonempty subsets Pk ⊆ X, a zone diagram with respect
to that tuple is a tuple R = (Rk)k∈K of nonempty subsets Rk ⊆ X satisfying

Rk = dom(Pk,
⋃
j 6=k
Rj) ∀k ∈ K.

In other words, if we define Xk = {C : Pk ⊆ C ⊆ X}, then a zone diagram is a
fixed point of the mapping Dom :

∏
k∈K

Xk →
∏
k∈K

Xk, defined by

Dom(R) = (dom(Pk,
⋃
j 6=k
Rj))k∈K . (4)

A tuple R = (Rk)k∈K is called a double zone diagram if it is the fixed point of the
second iteration Dom ◦ Dom, i.e., R = Dom2(R). A tuple R = (Rk)k∈K is called
a territory diagram if R ⊆ Dom(R) and it is called a double territory diagram if
R ⊆ Dom2(R).

Remark 2.5. Some of the concepts mentioned in Definition 2.4 are related. Any
zone diagram is obviously a territory diagram. It is also a double zone diagram
as can be seen by applying Dom on R = Dom(R). Any double zone diagram
is obviously a double territory diagram. A double territory diagram is not nec-
essarily a territory diagram: take X = {−1, 0, 1} ⊂ R, (P1, P2) = ({−1}, {1}),
R = ({−1, 0}, {0, 1}); then Dom(R) = ({−1}, {1}) and R $ Dom(R). A territory
diagram is not necessarily a double territory diagram: take X = [−1, 1] ⊂ R,
(P1, P2) = ({−1}, {1}), R = ([−1, 0], {1}); then Dom(R) = ([−1, 0], [0.5, 1]),
Dom2(R) = ([−1,−0.25], [0.5, 1]), and hence R $ Dom2(R).

Remark 2.6. The components of any territory and double territory diagrams are
contained in the Voronoi cells of their sites. Indeed, the Voronoi cells corresponding
to the tuple P = (Pk)k∈K of sites is nothing but Dom(P ). By the definition Dom
and the space

∏
k∈K Xk of tuples we have P ⊆ R and P ⊆ Dom(R) for any tuple

R in this space. Thus the anti monotonicity of Dom (see Lemma 4.1(a)) implies
that Dom(R) ⊆ Dom(P ) and Dom2(R) ⊆ Dom(P ) and the assertion follows by
taking R to be a territory or a double territory diagram.
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Remark 2.7. Examples (illustrations) of 2-dimensional zone diagrams in various
settings can be found in [2, 16, 20, 27, 28]. Examples of double zone diagrams which
are not zone diagrams can be found in [27, 28]. Examples (including illustrations)
of territory diagrams which are not zone diagrams can be found in [12]. Additional
illustrations can be found in Figures 2, 4-7, and 9.

Existence (and sometimes uniqueness) proofs of zone diagrams in certain set-
tings can be found in [2, 19, 20, 28]. For our purposes we only need to know that
double zone diagrams always exist [28] and the same is true for territory diagrams
and double territory diagrams. As a matter of fact, it is quite easy to construct
explicit examples of territory and double territory diagrams: we can simply start
with P = (Pk)k∈K and iterate it using Dom. As explained in Remark 2.6, for
each tuple R one has P ⊆ Dom(R) and P ⊆ Dom2(R). Now, since Dom is
antimonotone and since Dom2 is monotone the inequality

P ⊆ Dom2(P ) ⊆ Dom4(P ) ⊆ . . . ⊆ . . . ⊆ Dom3(P ) ⊆ Dom(P )

follows. Hence any even power is a territory and double territory diagram [which
is usually not a (double) zone diagram].

We finish this section with the definition of geodesic metric spaces.

Definition 2.8. Let (X, d) be a metric space. Let x, y ∈ S ⊆ X. The subset S
is called a metric segment between x and y if there exists an isometry γ (i.e., γ
preserves distances) from the real line segment [0, d(y, x)] onto S such that γ(0) = x
and γ(d(y, x)) = y. We denote S = [x, y]γ, or simply S = [x, y]. If between all
points x, y ∈ X there exists a metric segment, then (X, d) is called a geodesic
metric space.

Simple and familiar examples of geodesic metric spaces are: the Euclidean plane,
any normed space, any convex subset of a normed space, spheres, complete Rie-
mannian manifolds [17, pp. 25-28], and hyperbolic spaces [29, pp. 538-9].

3. A neutral Voronoi region

As mentioned in the introduction, although it might seem somewhat surprising,
there are simple examples showing the existence of a neutral Voronoi. See Figure 3.
A quick glance at this figure shows that there are infinitely many sites. On the
other hand, it can be easily verified that a sufficient condition for the non-existence
of a neutral region is having finitely many sites. But is it a necessary condition?
The answer is no, as shown in Example 3.3. A more careful look at Figure 3 shows
that the set obtained from taking the union of the sites has an accumulation point,
while in the cases mentioned in Example 3.3 no such accumulation point exists.
Hence it is natural to guess that a neutral region does not exist if and only if no
accumulation point exists. This is indeed true whenever the dimension if finite
or the space is compact (see Proposition 3.2), but Example 3.6 presents a simple
infinite dimensional counterexample.

As a result, if one is interested in a general necessary and sufficient condition,
then a different property should be detected. It turns out that this property
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is nothing but the existence of a nearest site. This property holds in any metric
space, and, interestingly, actually even when most of the properties of the distance
function (e.g., the triangle inequality, symmetry, non-negativeness) are removed
(see Remark 2.3 for a discussion on Voronoi diagrams obtained from such distance
functions). Despite this general setting, the proof of the corresponding theorem
below is very simple.

Theorem 3.1. Let X be a nonempty set and let d : X2 → [−∞,∞]. Given a
tuple of nonempty subsets (Pk)k∈K contained in X, there exists no neutral Voronoi
region if and only if for each x ∈ X there exists a nearest site, namely, there exists
j ∈ K such that

inf{d(x, Pk) : k ∈ K} = d(x, Pj). (5)

Equivalently, d(x,∪k∈KPk) is index attained, namely there exists j ∈ K such that

d(x,
⋃
k∈K

Pk) = d(x, Pj). (6)

Proof. If for each x ∈ X there exists j ∈ K such that (5) holds, then d(x, Pj) ≤
d(x, Pk) for any k ∈ K. Thus every x ∈ X is in the Voronoi cell of some site Pj and
hence the neutral region is empty. On the other hand, suppose that there exists
no neutral region, that is, any x ∈ X belongs to the cell of Pj for some j ∈ K.
This means that d(x, Pj) ≤ d(x, Pk) for any k ∈ K. Thus d(x, Pj) ≤ inf{d(x, Pk) :
k ∈ K}. But obviously inf{d(x, Pk) : k ∈ K} ≤ d(x, Pj) since j ∈ K. This implies
equality and proves the first part of the assertion.

The second part, namely (6), is a simple consequence of the fact that

α := d(x,
⋃
k∈K

Pk) = inf{d(x, Pk) : k ∈ K} =: β.

Indeed, α ≤ d(x, Pk) for all k ∈ K by the definition of α, so α ≤ β. If α < β, then
there is y ∈ ∪k∈KPk such that d(x, y) < β. Since y ∈ Pk for some k ∈ K we have
d(x, Pk) ≤ d(x, y) < β, a contradiction with the definition of β. �

The following proposition gives additional sufficient and necessary conditions
for the non-existence of a neutral region in a more familiar setting. The property
described in Part (b) is sometimes called finitely compactness [18] and it holds,
e.g., when the space is compact or finite dimensional.

Proposition 3.2. Let (X, d) be a metric space. Let (Pk)k∈K be a tuple of nonempty
subsets in X.

(a) If there exists no neutral region in X and the sites are closed sets, then
⋃
j∈K Pj

has no external accumulation point (an accumulation point y /∈
⋃
j∈K Pj).

(b) Suppose that (X, d) has the property that any bounded infinite subset has an
accumulation point. If

⋃
j∈K Pj has no accumulation points, then there does

not exist a neutral region in X.

Proof. We first prove (a). Suppose by way of negation that some x ∈ X is an
external accumulation point of ∪j∈KPj. We claim that x does not have any nearest



ON THE EXISTENCE OF A NEUTRAL REGION 7

neighbor. Indeed, let k ∈ K. Then r = d(x, Pk) > 0, otherwise x ∈ Pk ⊆
⋃
j∈K Pj,

a contradiction. Since x is an accumulation point of ∪j∈KPj, the open ball B(x, r)
contains a point y ∈

⋃
j∈K Pj. By the definition of r we have y ∈ Pi for some

i 6= k, i ∈ K. Hence d(x, Pi) ≤ d(x, y) < d(x, Pk). Since k ∈ K was arbitrary this
shows that no site Pk can be a nearest site of x. By Theorem 3.1 it follows that x
is in the neutral region, a contradiction.

Now consider Part (b) and suppose by way of contradiction that the neutral
region is nonempty. Let x be some point in the neutral region. Let k1 ∈ K.
Theorem 3.1 implies that Pk1 is not the nearest site of x. Therefore d(x, Pk2) <
d(x, Pk1) for some k2 6= k1, k2 ∈ K. In particular r1 = d(x, Pk1) > 0 and there
exists a point x2 ∈ Pk2 in the open ball B(x, r1). As before, Theorem 3.1 implies
that Pk2 is not the nearest site of x. Therefore d(x, Pk3) < d(x, Pk2) for some
k3 6= k2, k3 ∈ K. We continue in this way and construct an infinite sequence
(Pkn)∞n=1 of different sites having the property that d(x, Pkn+1) < d(x, Pkn) for any
n ∈ N. Hence there exists a sequence of points (xn)∞n=2 satisfying d(x, Pkn) ≤
d(x, xn) < d(x, Pkn−1) ≤ d(x, xn−1) and xn ∈ Pkn for any n ∈ N. In particular
no two points from this sequence coincide. This set of points is an infinite set
contained in the bounded ball B(x, r1). Hence it has an accumulation point,
which is obviously an accumulation point of ∪j∈KPj, a contradiction. �

Example 3.3. The nearest site condition mentioned in Theorem 3.1 obviously
holds when K is finite. A simple verification shows that the condition also holds
when for each x ∈ X there exists a ball centered at x which intersects finitely many
sites from ∪j∈KPj, since in this case the nearest site is one of the finitely many
sites intersected by the ball (the intersection may include infinitely many points,
but they belong to finitely many sites). This happens, e.g., when the sites form
a lattice, as in the case of the geometry of numbers in Rm [15], crystallography
[5] (under the names “the Brillouin zone” or “the Wigner-Seitz cell”), coding [11,
pp. 66-69, 451-477], or a somewhat random (infinite) distribution, such as Poisson
Voronoi diagrams [24, pp. 39, 291-410]. Another example: Pk = R× {k}, k ∈ N.

Example 3.4. A simple example when the nearest site condition fails: (X, d) is
the Euclidean plane, Pk = {(0, ak)} for all k ∈ N (or, alternatively, Pk = R×{ak}
for all k ∈ N) where ak > 0 and limk→∞ ak = 0. The lower halfspace H =
{(x1, x2) : x2 ≤ 0} is the neutral region. See Figure 3. A variation of this example
was mentioned in [25].

Example 3.5. An illustration of Proposition 3.2(a) was actually given in Exam-
ple 3.4: the point (0, 0) is the unique (external) accumulation point. The neutral
region is however a much larger set than the set of accumulation points of ∪k∈KPk.
As another illustration of Proposition 3.2(a), take S to be a dense set in X which
is not X, e.g., the set of all points in the plane with rational coordinates, and
let K = S. For each k ∈ K define Pk = {k}. Then the neutral region is the
complement of S.
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Figure 3. A neutral Voronoi re-
gion induced by infinitely many
point sites converging to the ori-
gin in the Euclidean plane (Exam-
ple 3.4).

Example 3.6. This example shows that a neutral region may exist if the union
∪j∈KPj does not have any accumulation point but the space is not finitely compact.
Let (X, d) to be the infinite dimensional space `2 of all sequences (xn)∞n=1 of real
numbers satisfying

∑∞
n=1 |xn|2 < ∞. Let K = N and let ek be the k-th basis

element, i.e., the sequence whose k-th component is 1 and the other components
are 0. Let Pk = {((k + 1)/k)ek}, k ∈ K be the sites. Then the point x = 0 does
not have any nearest site since d(x, Pk+1) < d(x, Pk) for any k ∈ K. Hence it in
the neutral region. However,

⋃
j∈K Pj does not have any accumulation point since

d(Pk, Pj) ≥
√

2 for any k, j ∈ K, k 6= j.

4. A neutral (double, territory) zone

In this section we discuss the existence of a neutral region (zone) in the context
of zone diagrams, double zone diagrams, and (double) territory diagrams. We need
the following lemma whose proof can be found e.g., in [28, Lemma 5.4] (Part (a))
and [27, Lemma 6.3, Lemma 6.8, Remark 6.9] (Parts (b), (c)).

Lemma 4.1. Let (X, d) be a metric space and let P = (Pk)k∈K be a tuple of
nonempty subsets in X.

(a) Dom is antimonotone, i.e., Dom(R) ⊆ Dom(S) whenever S ⊆ R; Dom2 is
monotone, that is, R ⊆ S ⇒ Dom2(R) ⊆ Dom2(S).

(b) Dom(R) = Dom(R).
(c) Suppose that (X, d) is a geodesic metric space and that

rk := inf{d(Pk, Pj) : j 6= k} > 0 ∀k ∈ K. (7)
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Then (rk/8) + (rj/8) ≤ d((DomγP )k, (DomγP )j) for any j, k ∈ K,j 6= k and
any γ ≥ 2.

Lemma 4.2. Let (X, d) be a metric space, let P = (Pk)k∈K be a tuple of nonempty
subsets of X. Suppose that R = (Rk)k∈K satisfies Pk ⊆ Rk ⊆ X for each k ∈ K.

(a) Suppose that R ⊆ Dom(R). If Pk
⋂
Pj = ∅ whenever j 6= k, then Rk

⋂
Rj = ∅

for each j, k ∈ K, j 6= k.
(b) Suppose that (7) holds. If R ⊆ Dom(R), then the components of R satisfy

max{rk, rj}/3 ≤ d(Rk, Rj) for each j, k ∈ K, k 6= j.
(c) Suppose that R ⊆ Dom2(R), that (X, d) is a geodesic metric space, and that

(7) holds. Then the components of R satisfy (rk/8) + (rj/8) ≤ d(Rk, Rj) for
each j, k ∈ K, k 6= j.

Proof. (a) Suppose by way of contradiction that x ∈ Rk

⋂
Rj for some j, k ∈

K, j 6= k. Since x ∈ Rk ⊆ (DomR)k we have d(x, Pk) ≤ d(x,
⋃
i 6=k Ri) ≤

d(x,Rj) = 0, so x ∈ Pk. In the same way x ∈ Pj, a contradiction.
(b) Let j, k ∈ K, j 6= k and x ∈ Rk ⊆ dom(Pk,

⋃
i 6=k Ri), y ∈ Rj ⊆ dom(Pj,

⋃
i 6=j Ri).

This implies that d(x, Pk) ≤ d(x,Rj) ≤ d(x, y) and d(y, Pj) ≤ d(x, y). There-
fore

rk ≤ d(Pk, Pj) ≤ d(Pk, x) + d(x, y) + d(y, Pj) ≤ 3d(x, y).

Thus rk/3 ≤ d(Rk, Rj). Similarly, rj/3 ≤ d(Rk, Rj).
(c) From the monotonicity of Dom2 (Lemma 4.1(a)) we have R ⊆ Dom2(R) ⊆

Dom4(R). This, Lemma 4.1 parts (a)-(b), the inclusion P ⊆ R ⊆ (X)k∈K ,
and P = Dom(X)k∈K imply that R ⊆ Dom4(X)k∈K = Dom3(P ) = Dom3(P ).
From Lemma 4.1(c) we conclude that

d(Rk, Rj) ≥ d((Dom3P )k, (Dom3P )j) ≥ (rk/8) + (rj/8)

for each j, k ∈ K, k 6= j.
�

Lemma 4.3. Let B = (Bk)k∈K be a tuple of nonempty subsets in a geodesic metric
space (X, d) and suppose that

ρk := inf{d(Bk, Bj) : j ∈ K, j 6= k} > 0 ∀k ∈ K. (8)

Then N := X\
⋃
k∈K Bk 6= ∅. Moreover,

⋃
k∈K Sk ⊆ N where

Sk = {x ∈ X : d(x,Bk) < ρk, x /∈ Bk}. (9)

Proof. Let j, k ∈ K, j 6= k and let x ∈ Bk, y ∈ Bj. Since X is a geodesic
metric space there exists an isometry γ : [0, d(x, y)]→ X satisfying γ(0) = x and
γ(d(x, y)) = y. Let E be the inverse image of the part of the segment [x, y] which
does not meet Bk anymore, i.e.,

E := {t ∈ [0, d(x, y)] : [γ(s), y] ∩Bk = ∅ ∀s ∈ [t, d(x, y)]}.
Since y ∈ Bj and y /∈ Bk (by (8)) it follows that d(x, y) ∈ E. Thus E 6= ∅. Let
a = inf E. If a = 0, then γ(a) = x ∈ Bk. Otherwise a > 0. Assume by way of
contradiction that γ(a) /∈ Bk. Since Bk is closed it follows that a small ball around
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γ(a) does not intersect Bk. Because γ is continuous, for any t in a small segment
around a the point γ(t) is inside this ball and thus does not belong to Bk. This
contradicts the minimality of a. Therefore γ(a) ∈ Bk.

Consider the line segment (γ(a), y]. Its length is at least ρk by (8) (since the
distance between two sets is the distance between their closures). Since γ is an
isometry the length of [a, d(x, y)] is at least ρk. Let s ∈ (0, ρk) and let z = γ(a+s).
Then z ∈ (γ(a), y] and d(z, Bk) ≤ d(z, γ(a)) = s < ρk. From the definition of a
there exists b ∈ (a, a + s) ∩ E. Thus [γ(b), y] ∩ Bk = ∅ and in particular z /∈ Bk.
From (8) (with i instead of k) it follows that z /∈

⋃
i 6=k Bi. Therefore z ∈ N and

in particular N 6= ∅.
Finally, let Sk be the shell defined in (9) and let x ∈ Sk. From (8) we see that

x /∈ Bj for j 6= k, j ∈ K. In addition, x /∈ Bk by the definition of Sk. Hence x ∈ N
and Sk ⊆ N for each k ∈ K. �

Theorem 4.4. Let (X, d) be a geodesic metric space and let (Pk)k∈K be a tuple
of nonempty subsets of X. Assume that (7) holds. Let R = (Rk)k∈K satisfy Pk ⊆
Rk ⊆ X for each k ∈ K and suppose that either R ⊆ Dom(R) or R ⊆ Dom2(R).
Then there exists a neutral region in X, i.e., N := X\

⋃
k∈K Rk 6= ∅. In particular

this is true when R is a zone or a double zone diagram. Moreover, let

βk =

{
rk/3, if R ⊆ Dom(R),
(rk + inf{rj : j ∈ K, j 6= k})/8, ifR ⊆ Dom2(R)

for each k ∈ K. Then
⋃
k∈K Sk ⊆ N , where for each k ∈ K,

Sk = {x ∈ X : d(x,Rk) < βk, x /∈ Rk}. (10)

Proof. This is a simple consequence of Lemma 4.3 with B = R since (8) is satisfied
by Lemma 4.2(b)-(c). �

Example 4.5. An illustration of Theorem 4.4 is given in Figures 4-7 which also
show some of the difference between the various notions. In all of these figures
the setting is X = [−6, 6]2, P1 = {(2, 1), (−2,−1)}, P2 = {(−2, 1), (2,−1)}, and
the distance is the 2-dimensional `1 distance. The (black) neutral region is clearly
seen. Figures 4, 6, and 7 were produced using the method described in [27] and
Figure 5 was produced directly.

Example 4.6. From the proof of Lemma 4.3 and Theorem 4.4 one obtains points
in the neutral region by looking at certain parts of line segments connecting points
located in different sites. This example shows that sometimes the neutral zone is
nothing more than such a segment. In particular this example shows that the
shells Nk located around the components of the (double) territory diagram (see
(10)) can be very small. (Compare to the discussion in Section 6.)

Indeed, let X1 = {0} × (−2, 3], X2 = {x ∈ R2 : ‖x − (0,−3)‖ ≤ 1}, and
X = X1 ∪ X2, where ‖ · ‖ is the Euclidean norm. Define a metric d on X by
d(x, y) = ‖x − y‖ if x and y belong to the same component Xi, i = 1, 2, and
d(x, y) = ‖x − (0,−2)‖ + ‖y − (0,−2)‖ otherwise. Then (X, d) is a geodesic
metric space. Now let P1 = {(0, 3)}, P2 = {(0,−3)}, R1 = {0} × [1, 3], and
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Figure 4. The neutral region in-
duced by a zone diagram of two
sites, each consists of 2 points, in
a square in (R2, `1) (Example 4.5).

Figure 5. The neutral region in-
duced by a territory diagram R of
the setting of Example 4.5. The sec-
ond component of R is P2 and R is
not a double territory diagram.

Figure 6. The neutral region in-
duced by the least double zone di-
agram R of the setting of Exam-
ple 4.5. R is not a zone diagram.

Figure 7. The neutral region in-
duced by the greatest double zone
diagram R of the setting of Exam-
ple 4.5. R is a double territory di-
agram which is not a territory dia-
gram.

R2 = X2 ∪ ({0} × (−2,−1]). Then R = (R1, R2) is a zone diagram with respect
to P = (P1, P2) and the neutral region is {0} × (−1, 1). See Figure 8.

Example 4.7. Let X = {−1, 0, 1} be a subset of R with the standard absolute
value metric. Let P1 = {−1}, P2 = {1}. Let R1 = P1, R2 = {0, 1}. Then R =
(R1, R2) is a zone diagram (and hence also a territory diagram) but R1 ∪R2 = X,
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Figure 8. The neutral region de-
scribed in Example 4.6.

violating Theorem 4.4. This is not surprising since X is not a geodesic metric
space. However, R1 ∩ R2 = ∅, as predicted by Lemma 4.2(a). This setting was
mentioned in a different context in [28, Example 2.3].

In the same way, if S1 = {−1, 0} and S2 = {0, 1}, then S = (S1, S2) is a double
zone diagram as a simple check shows (starting with observing that Dom(S) =
(P1, P2)). Now not only S1 ∪ S2 = X, but also S1 ∩ S2 6= ∅.

Example 4.8. Condition (7) is necessary. Indeed, let X = R with the standard
absolute value metric d(x, y) = |x − y|, let K = X, and let Pk = k, k ∈ K.
Let R = (Pk)k∈K . Then (X, d) is a geodesic metric space, R = Dom(R), but
X\(∪k∈KRk) = ∅.

5. Justifying the equilibrium interpretation of zone diagram

One of the interpretations of zone diagrams, first suggested in [2] and then
extended in [28], is a a certain equilibrium between mutually hostile kingdoms
competing over territory. Kingdom number k has a territory Rk which has to
be defended against attacks from the other kingdoms. Its site Pk is interpreted
as a castle, or, more generally, as a collection of army camps, castles, cities, and
so forth. The sites remain unchanged and they are assumed to be located inside
the kingdom and hence separated from each other. Due to various considerations
(resources, field conditions, etc.), the defending army is located only in (part of) the
corresponding site (unless the kingdom moves forces to attack another kingdom).

Assuming the time to move armed forces between two points is proportional to
the distance between the points, it seems intuitively clear that if R = (Rk)k∈K is a
zone diagram, then each point in each kingdom can be defended at least as fast as it
takes to attack it from any other kingdom, and no kingdom can enlarge its territory
without violating this condition. It also seems clear that the various territories are
separated by a no-man’s land: the neutral territory. This was said explicitly in [2,
p. 1183] where the setting was the Euclidean plane and each site was a point. In
[28] the setting was general and it was noted that counterexamples may exist in a
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discrete setting, but no further investigation of the whole interpretation has been
carried out.

The goal of this section is to give a more rigorous justification to the above
interpretation. It turns out that when the setting is similar to that of Theorem 4.4,
then the interpretation holds.

Proposition 5.1. Let (X, d) be a geodesic metric space and let P = (Pk)k∈K be a
tuple of nonempty subsets of X. Assume that (7) holds. Suppose that R = (Rk)k∈K
is a zone diagram corresponding to P . Then R is an equilibrium in the above
mentioned sense and there exists a neutral region separating its components.

Proof. The existence of a neutral region was proved in Theorem 4.4. The proof
actually shows that this region separates the regions Rk, k ∈ K in the sense
that any path connecting two points located in different components goes via the
neutral region.

As for the equilibrium interpretation, let x be a point in some region Rk. By
definition, d(x, Pk) ≤ d(x,

⋃
j 6=k Rj). Since the time to move armed forces between

any two points is proportional to the distance between them, this shows that armed
forces originating at Pk will arrive to x before any armed forces originating from
another kingdom will arrive to x. This last fact is true in general, even in m-spaces
[28] (in which the distance function can be negative and does not necessarily satisfy
the triangle inequality) and even if the sites are not mutually disjoint, although in
this general case the interpretation looses something from its intuitiveness.

It remains to prove that no kingdom can enlarge its territory without violat-
ing the fast defense condition. More precisely, given any index k ∈ K and any
nonempty subset Ak ⊂ X satisfying

Ak
⋂

Rk = ∅ = Ak
⋂

(
⋃
j 6=k

Pj), (11)

if we let R̃k = Rk

⋃
Ak and R̃j = Rj\Ak for any j 6= k, then there exist points

in R̃k which cannot be defended fast enough by armed forces emanating from Pk:
there is some kingdom Rj, j 6= k which can send its forces to these points and they
will arrive there before the defending forces from Pk will arrive. In other words, it

is not true that R̃k ⊆ dom(Pk,
⋃
j 6=k R̃j).

To prove this, let x ∈ Ak be arbitrary. Suppose for a contradiction that

d(x, Pk) ≤ d(x,
⋃
j 6=k

R̃j). (12)

First, by (11) it follows that x /∈ Rk. It must be that x /∈ Rj for any j 6= k. Indeed,
assume by way of negation that x ∈ Rj for some j 6= k. In particular d(x, Pj) ≤
d(x,Rk) and by Lemma 4.2 we also know that x /∈ Rk. Now observe the simple fact
that the neighborhood B(Pk, rk/4) = {y ∈ X : d(y, Pk) < rk/4} is contained in Rk

(a proof can be found in [27] and a related claim also in [19, Observation 2.2]) and
let p ∈ Pk satisfy d(x, p) < d(x, Pk) + (rk/16). The segment [p, x] starts at a point
in B(Pk, rk/4) and ends at a point outside this neighborhood and therefore the
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intermediate value theorem implies that it intersects the boundary of B(Pk, rk/4).
The point of intersection y is of distance at least rk/4 from p, otherwise it will be
strictly inside B(Pk, rk/4). The discussion above implies that

(rk/16) + d(x, Pk) > d(x, p) = d(x, y) + d(y, p) ≥ d(x,Rk) + (rk/4)

and hence, recalling that D(x,Rk) ≥ d(x, Pj), we have

d(x, Pk) > d(x,Rk) + (3rk/16) ≥ d(x, Pj) + (3rk/16) > d(x, Pj).

But this is impossible since we assumed that d(x, Pk) ≤ d(x,
⋃
i 6=k R̃i) and from

(11) we know that Pj ⊆ R̃j ⊆
⋃
i 6=k R̃i. This contradiction proves that x /∈ Rj for

any j 6= k and hence Ak ∩ (
⋃
j 6=k Rj) = ∅.

Finally x cannot be in the (original) neutral region N = X\(
⋃
j∈K Rj). Indeed,

if x is there then in particular x /∈ Rk = dom(Pk,
⋃
j 6=k Rj), i.e., d(x,Rj) < d(x, Pk)

for some j 6= k. But Rj = R̃j since Ak ∩Rj = ∅ as proved above. Thus d(x, R̃j) <
d(x, Pk), a contradiction to (12). Thus x /∈ Rk

⋃
(
⋃
j 6=k Rj)

⋃
N = X, an obvious

contradiction. Consequently (12) does not hold, i.e., d(x, Pk) > d(x,
⋃
j 6=k R̃j) as

claimed. �

Remark 5.2. When the space is no geodesic anymore a kingdom can enlarge its
territory without violating the fast defense condition: just consider for instance
Example 4.7 where X = {−1, 0, 1} (or, if we allow attacks on the sites, even the
more simple example where X = {−1, 1}, P1 = R1 = {−1}, P2 = R2 = {1}).
Here it is worthwhile to kingdom 1 to try to capture the point 0. However, one
can argue against this example that the armed forces must jump out of the space
in order to arrive to the other kingdoms and if they do manage to do this, then
they seem to appear there “out of the blue”. Hence it is implicitly assumed in the
original interpretation that the space is “continuous”, or, in more precise terms,
that it is a geodesic metric space or even a convex subset of a normed space.

6. A certain phenomenon related to measure concentration

We end this paper by showing that under simple conditions not only the neutral
region is nonempty, but actually it can be quite large. Roughly speaking, given
a double zone diagram of separated sites contained in the interior of a closed and
convex world in (the Euclidean) Rm, when the dimension of the space grows the
volume of the neutral region becomes much larger than the volume of the “interior
regions” (see the next paragraph). Hence, if the attention is restricted to these
regions and the neutral one (as in conditional probability), then the neutral region
occupies most of the volume. This property is related to the phenomena called
“concentration of measure” [14, pp. 165-166],[22, pp. 329-341]. However, as can
be seen here and there, the two phenomena are distinguished: for example, the
discussion there is restricted to the Euclidean unit sphere with the normalized
surface measure, the volume concentrates in a subset of a concrete form (near the
equilateral, or, more generally, near the inverse image of the median of a Lipschtiz
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function), and one has a somewhat different bound on the ratio between the vol-
umes of the various subsets (but there are some similarities, e.g., the dependence
on the dimension is exponential in both cases).

In what follows we are going to use the following terminology and notation.
For a measurable subset M ⊆ Rm we denote by vol(M) the volume (Lebesgue
measure) of M . Given a double zone diagram R = (Rk)k∈K induced by a tuple
(Pk)k∈K of point sites located in the interior of the world X, a component Rk is
said to be an interior region if its distance from the boundary of X is larger than
some given positive parameter. Otherwise, it is said to be a boundary region.
(It may be interesting to note that although we consider double zone diagrams,
as a matter of fact, any such an object coincides with the unique zone diagram;
this fact was not proved formally anywhere, but at least in our specific setting it
follows from the proof of a related theorem, namely [19, Theorem 2.1].)

6.1. Imported results. For the proofs in the sequel we will make use of the
following three results which are special cases of results proved in [26]. See, for
instance, Theorem 8.2, Lemma 8.6, and Theorem 9.6 in v2 of the arXiv version of
[26] and also [25, Theorem 3]. See also Remark 6.8 regarding (14).

Theorem 6.1. Let P and A be nonempty subsets of X. Then dom(P,A) is a
union of line segments starting at the points of P . More precisely, given p ∈ P
and a unit vector θ, let

T (θ, p) = sup{t ∈ [0,∞) : p+ tθ ∈ X and d(p+ tθ, p) ≤ d(p+ tθ, A)}. (13)

Then

dom(P,A) =
⋃
p∈P

⋃
|θ|=1

[p, p+ T (θ, p)θ].

In particular, if P is composed of one point p, then we denote T (θ) = T (θ, p) and
we have

dom(P,A) =
⋃
|θ|=1

[p, p+ T (θ)θ].

.

Lemma 6.2. Let A be a nonempty subset of X. Let p ∈ X. Assume that

∃ρ ∈ (0,∞) such that ∀x ∈ X the open ball B(x, ρ) intersects A. (14)

Then the mapping T (·) = T (·, p) defined in Theorem 6.1 satisfies T (θ) ∈ [0, ρ] for
each unit vector θ.

Theorem 6.3. Let A be a subset of X. Let p ∈ X be in the interior of X. Suppose
that d(p,A) > 0. Suppose that (14) holds. Then the mapping T (·) = T (·, p) defined
in Theorem 6.1 is continuous.



16 DANIEL REEM

6.2. The results. The main result of this section is Theorem 6.6. Its proof is
based on the following two lemmas.

Lemma 6.4. Let Sm−1 be the unit sphere of Rm, m ≥ 2. Let f : Sm−1 → [0,∞)
be continuous. Let V be the region defined by

V = {p+ tθ : θ ∈ Sm−1, t ∈ [0, f(θ)]}. (15)

Then V is measurable and vol(V ) = (1/m)
∫
Sm−1(f(θ))mdθ.

Proof. Let F : [0, 2π) × [0, π]m−2 → Sm−1 be the spherical transformation map-
ping in a one-to-one way the rectangle Lm−1 = [0, 2π) × [0, π]m−2 onto the unit
sphere. Let G : [0,∞)× Lm−1 → Rm be the transformation of (translated) spher-
ical coordinates defined by G(r, α) = p + rF (α). More precisely, (x1, . . . , xn) =
G(r, α1, . . . , αn−1), where

xn = pn + r cos(αn−1),
xn−1 = pn−1 + r sin(αn−1) cos(αn−2),

...
x3 = p3 + r sin(αn−1) . . . sin(α3) cos(α2),
x1 = p1 + r sin(αn−1) sin(αn−2) . . . sin(α2) cos(α1),
x2 = p2 + r sin(αn−1) sin(αn−2) . . . sin(α2) sin(α1),

and p = (p1, . . . , pn). The compactness of Sm−1 and the continuity of f im-
ply that V is compact and hence measurable. We can write V = G(W ) where
W = {(r, α) : r ∈ [0, f(F (α))], α ∈ Lm−1}. The absolute value of the Jacobian
of the smooth map G is |J | = rm−1Φ(α) for some nonnegative and continuous
function Φ : Lm−1 → R. This function is nothing but the change of variable factor
(“Jacobian”) between the rectangle Lm−1 and Sm−1. In other words, it satisfies
dθ = Φ(α)dα, namely

∫
Sm−1 u(θ)dθ =

∫
Lm−1

u(F (α))Φ(α)dα for any continuous

function u : Sm−1 → R (this follows from the discussion on spherical coordinates
in [21, pp. 243-245]). Thus, the change of variable formula and Fubini’s theorem
imply that

vol(V ) =

∫
V

dv =

∫
W

|J |(w)dw =

∫
Lm−1

Φ(α)

(∫ f(F (α))

0

rm−1dr

)
dα

=
1

m

∫
Sm−1

(f(θ))mdθ.

�

Lemma 6.5. Let X be a nonempty closed and convex subset of Rm, m ≥ 2, and let
(Pk)k∈K be a tuple of point sites contained in the interior of X. Suppose that R =
(Rk)k∈K is a double zone diagram corresponding to the sites. Let N = X\(∪k∈KRk)
be the neutral region, the existence of which is guaranteed by Theorem 4.4. Suppose
that for some j ∈ K the region Rj of the site Pj is an interior region, namely there
exists ωj > 0 such that

ωj ≤ d(Rj, ∂X). (16)
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Assume that (7) is satisfied (here j and k should be interchanged). Assume also
that (14) holds with A = ∪k 6=jPk and a positive number ρj. Then there exists a
measurable subset Nj ⊆ N satisfying

vol(Nj) ≥ (cmj − 1)vol(Rj) (17)

where cj = 1+min{rj/(32ρj), ωj/ρj}. Moreover, if for some i ∈ K, i 6= j the region
Ri is an interior region (with some parameter ωi > 0) and (7) and (14) hold for
this i (with A = ∪k 6=iPk and ρ = ρi), then Ni∩Nj = ∅ for the corresponding subset
Ni ⊆ N .

Proof. Since R = Dom(Dom(R)) it follows that R = Dom(S) for some tuple S. In
particular Rj = dom(Pj, Aj) for some subset Aj of X. Thus, from Theorem 6.1,

Rj =
⋃
|θ|=1

[pj, pj + Tj(θ)θ] (18)

where Tj(θ) = Tj(θ, pj) is defined in (13) and Pj = {pj}. By Remark 2.6 we know
that Rj is contained in the Voronoi region of Pj. Since Theorem 6.1 holds for the

Voronoi cell too, with, say, a corresponding function T̃j defined in (13), we have

Tj ≤ T̃j. Because (14) holds for this T̃j (with A = ∪k 6=jPk), Lemma 6.2 implies

that T̃j ≤ ρj and thus Tj(θ) ≤ ρj for any unit vector θ.
Now fix a unit vector θ. Let aθ = pj + Tj(θ)θ, bθ = a + σjθ where σj =

min{rj/32, ωj}. Consider the segment (aθ, bθ]. We claim that any point in it
belongs to the neutral region. Indeed, the definition of Tj(θ) implies that the part
of the ray in the direction of θ beyond a is outside Rj. Any point x ∈ (aθ, bθ] is
of distance at most ωj from Rj and hence (16) implies that (aθ, bθ] ⊆ X. Finally,
since d(x,Rj) ≤ rj/8 we conclude from Theorem 4.4 and (10) that (aθ, bθ] ⊆ N .
The above discussion is true for any unit vector θ. Hence the set

Nj :=
⋃

θ∈Sm−1

(aθ, bθ] (19)

is contained in N . Let f : Sm−1 → (0,∞) be defined by f(θ) = Tj(θ) + σj. Let V
be defined as in (15). Lemma 6.4 and (18) imply that V and Rj are measurable.
Since Nj = V \Rj it follows that it is measurable too. From Lemma 6.4 we have

vol(Rj) =
1

m

∫
Sm−1

(Tj(θ))
mdθ. (20)

Since V is the disjoint union of Nj and Rj, a second application of Lemma 6.4
yields

vol(Nj) + vol(Rj) = vol(V ) =
1

m

∫
Sm−1

(f(θ))mdθ

=
1

m

∫
Sm−1

(Tj(θ) + σj)
mdθ =

1

m

∫
Sm−1

(Tj(θ))
m

(
1 +

σj
Tj(θ)

)m
dθ

≥
(

1 +
σj
ρj

)m
1

m

∫
Sm−1

(Tj(θ))
mdθ ≥ cmj vol(Rj).
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This implies (17). Note that Tj(θ) > 0 for any θ since pj is in the interior of X and
any region of a double zone diagram of positively separated sites contains a small
neighborhood around the site (see [19, Observation 2.2]). It remains to prove that
Nj ∩ Ni = ∅ whenever i 6= j. Indeed, let x ∈ Nj ∩ Ni. The definition of Nj (see
(19)) implies that d(x,Rj) ≤ σj ≤ rj/32. In the same way d(x,Ri) ≤ ri/32. Thus
d(Rj, Ri) ≤ (rj/32) + (ri/32), a contradiction with Lemma 4.2(c). �

We are now able to prove Theorem 6.6. It says something which can be stated in
a simple way intuitively (first paragraph) but, unfortunately, requires a somewhat
long formulation in order to achieve rigorousness (the remaining paragraphs).

Theorem 6.6. Given a double zone diagram of separated point sites, if one re-
stricts the attention to the part of the space occupied by the neutral region and the
interior regions, then most of this volume concentrates at the neutral region as the
dimension grows.

More precisely, let ρ > 0, r > 0, and ω > 0 be given. Let (Xm)∞m=2 be any
sequence of closed and convex subsets satisfying Xm ⊂ Rm. For each m let Pm =
(Pk,m)k∈Km be a tuple of sites in the interior of Xm. Assume that for each m

inf{d(Pk,m, Pj,m) : j, k ∈ Km} ≥ r. (21)

Assume that for each m and for each j ∈ Km the relation (14) holds with the given
ρ and with Aj,m =

⋃
k 6=j Pk,m. Let Rm = (Rk,m)k∈Km be a double zone diagram in

Xm corresponding to Pm. Let Jm = {j ∈ Km : d(Rj,m, ∂Xm) ≥ ω}. Assume that
Jm 6= ∅. Let Fm =

⋃
j∈Jm Rj,m be the union of the interior regions (with parameter

ω). Let Nm be the neutral region. Then

lim
m→∞

vol(Nm)

vol(Fm) + vol(Nm)
= 1 (22)

with the agreement that ∞/∞ = 1 if vol(Nm) = ∞. As a matter of fact, if
c = 1 + min{r/(32ρ), ω/ρ} and vol(Fm) <∞, then

vol(Fm)

vol(Fm) + vol(Nm)
= O(c−m). (23)

Proof. Since Nm is the difference of two measurable sets it is measurable and hence
vol(Nm) is well defined. Given j ∈ Jm, Lemma 6.5 implies the existence of a subset
Nj,m ⊆ Nm whose volume satisfies (17) with cj = c = 1 + min{(r/(32ρ), ω/ρ}.
Since Nj,m ∩Ni,m = ∅ and Rj,m ∩Ri,m = ∅ whenever i ∈ Jm, j 6= i, it follows that

vol(Nm) ≥
∑
j∈Jm

vol(Nj,m) ≥ (cm − 1)
∑
j∈Jm

vol(Rj,m) = (cm − 1)vol(Fm). (24)

If vol(Nm) <∞, then vol(Fm) <∞ by (24) and therefore

vol(Fm)

vol(Fm) + vol(Nm)
≤ vol(Fm)

cmvol(Fm)
= c−m. (25)

Thus (23) and (22) follow. Otherwise, (22) follows trivially by our agreement.
Note that vol(Fm) ≥ vol(Rj,m) > 0 whenever j ∈ Jm because any region of a
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double zone diagram of positively separated sites contains a small neighborhood
around the site (see [19, Observation 2.2]). Hence (25) is well defined. �

Remark 6.7. In a very recent paper [8, Section IV], a similar bound between
the volume of two sets related to the ones discussed above has been established
independently. Here the discussed object was called “the forbidden zone” with
region Ri and a site Pi, namely the set

F (Ri, Pi) = {z ∈ X : d(z, y) < d(y, Pi) for some y ∈ Ri} (26)

and its volume was compared to the volume of Ri. The setting was a convex region
Ri in the Euclidean space X = Rm and Pi was a point in Ri, but actually the
same definition holds with respect to any given sets and in any metric space and
in fact in the setting of Theorem 3.1 and Remark 2.3.

Although one cannot use the results established in [8] since some of the inclusions
mentioned there are not true when X is a convex subset of Rm and not the whole
space, one can still use the idea of multiplying the region (after translating the set
so the site will be the origin) by a small enough positive constant. Similar bounds
as established in Lemma 6.5 can be obtained (the factor 1/32 can be improved
here and in Lemma 6.5). The advantage here is that there is no need to use some
of the imported results such as Theorems 6.1 and 6.3. In addition, one can avoid
some (but not all) of the proof of Lemma 6.5 and all of Lemma 6.4. However, it
seems that one cannot avoid Lemma 6.2 and Theorem 6.6. On the other hand, the
advantage of the approach mentioned in this paper is that explicit expression for
the volume of the region is given, namely (20), and this expression may be useful
in other scenarios as well.

Remark 6.8. In Theorem 6.6 it was assumed that at least one interior region
exists. Hence it is of some interest to formulate sufficient conditions on the sites and
the world which will imply this existence. It turns out that one such a condition
is simply that the underline subsets Xm are not too thin and that the sites form
a quite dense distribution in Xm.

More precisely, suppose that for each m there exists a point xm ∈ Xm satisfying
d(xm, ∂Xm) ≥ (8/3)ω. This holds, e.g., if Xm is a cube or a ball having radius at
least (8/3)ω and xm is the centre. Now suppose that the sites are distributed in
Xm is such a way that for any x ∈ Xm the open ball B(x, (2/3)ω) meets at least
one of the sites. In other words, for each x ∈ Xm we have d(x,Am) < (2/3)ω where
Am = ∪k∈KmPk,m. This is a similar condition to (14). The above statements are
our (not necessary optimal) sufficient condition.

Indeed, the above implies the existence of some k ∈ Km such that d(xm, Pk,m) <
(2/3)ω. We claim that the Voronoi cell of Pk,m has a distance at least ω from the
boundary of Xm. Once this is proved one recalls that the corresponding region
Rk,m of a double zone diagram Rm is contained in its Voronoi cell (Remark 2.6)
and hence its distance from ∂Xm is at least ω.

In order to prove the assertion about the Voronoi cell of Pk,m, let x be any point
in this cell. Assume for a contradiction that d(x, ∂Xm) < ω. By the assumption on
the distribution of the sites there exists a (point) site Pj,m satisfying d(x, Pj,m) <
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Figure 9. The setting of Re-
mark 6.9: 17 sites in a rectangle
in (R2, `2)) and their corresponding
zone diagram. The regions are inte-
rior ones. The bottom “flower” has
been obtained from the upper one
by perturbing slightly the sites and
then translating them as a whole.

(2/3)ω. Since

(8/3)ω ≤ d(xm, ∂Xm) ≤ d(xm, Pk,m) + d(Pk,m, ∂Xm) < (2/3)ω + d(Pk,m, ∂Xm),

it follows that d(Pk,m, ∂Xm) ≥ 2ω. But the definition of the Voronoi cell of Pk.m
implies that d(x, Pk,m) ≤ d(x, Pj,m) < (2/3)ω. Thus

d(Pk,m, ∂Xm) ≤ d(Pk,m, x) + d(x, ∂Xm) < (2/3)ω + ω < 2ω,

a contradiction.

Remark 6.9. There are cases where all the regions are interior ones, as shown in
Figure 9 (related examples can be found in [2, Fig. 4]). In such cases Theorem 6.6
implies that the volume of the whole world concentrates at the neutral region as
the dimension grows. It is interesting to find necessary and sufficient conditions
which enforce this situation. Another interesting and related phenomenon is a one
shown in Figure 9: if a configuration of sites induces interior regions, then a small
perturbation of the sites induce regions which are still interior ones. This property
seems to be stable. However, experiments show that sometimes even slightly larger
perturbations destroy this property.

7. Concluding remarks

We end the paper with a few remarks about possible lines of investigation.
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Regarding the neutral Voronoi region, it may be interesting to discuss appli-
cations and variations of Theorem 3.1 in the setting discussed there and also in
other settings such as order-k Voronoi diagrams [7, pp. 356-357] or settings where
there is a collection of distance functions corresponding to the site (instead of one
global distance function) as in the cases of Voronoi diagrams induced by angular
distances [3], weighted distances [24, pp. 121-126] (additive, multiplicative), power
diagrams [6], [7, pp. 380-386], and more.

Regarding the neutral zone, it may be interesting to find better estimates for the
size of this region than the ones given in Theorem 6.6. In particular, it is not clear
whether the volume of the world concentrates at the neutral region if also boundary
regions are taken into account. It is interesting to try to generalize Theorem 6.6
for this case (or to find counterexamples) and also for the case of general sites. We
believe that proving the existence of a neutral region in a context more general
than Theorem 4.4 is possible, with some caution (because of the counterexamples),
e.g., for the case where several sites intersect, but we have no explicit result in
this direction. It will also be interesting to answer the open problems mentioned
in Remark 6.9.
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IMPA - Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona
Castorina 110, Jardim Botânico, CEP 22460-320, Rio de Janeiro, RJ, Brazil.

E-mail address: dream@impa.br


	1. Introduction
	2. Preliminaries
	3. A neutral Voronoi region
	4. A neutral (double, territory) zone
	5. Justifying the equilibrium interpretation of zone diagram
	6. A certain phenomenon related to measure concentration
	6.1. Imported results
	6.2. The results

	7. Concluding remarks
	Acknowledgments
	References

