System Exploration of SystemC Designs

Christian Genz

Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{genz,drechsle} @informatik.uni-bremen.de

Abstract

Due to increasing design complexity new methodologies
for system modeling have been established in VLSI CAD.
The SystemC methodology gains a significant reduction of
design cycles by introducing an executable specification
and a top down refinement strategy. But still the size
and the complexity of SystemC models grow, making it
harder to understand the basic ideas architects and their
designs intend. This extends the familiarization phase for
coworkers and project partners. In modern design flows,
this can become a significant problem.

In this work we present an approach for interactive sys-
tem exploration of SystemC designs and its implementation.
The aim of our approach is to facilitate the orientation to-
wards complex SystemC models without the need for sim-
ulation based techniques. Our tool accomplishes system
exploration by allowing to navigate hierarchically through
SystemC designs. It uses schematic visualization at differ-
ent levels of abstraction to display the structure and the be-
havior of the design. Further support is given for differ-
ent schematic views, a source code view, crossprobing, path
fragment navigation and module exploration.

1 Introduction

The system description language SystemC has become
a standard in system level design. SystemC’s ability to
reach higher abstraction levels than hardware description
languages (HDLs), while still being able to represent HW-
structures and the pragmatic approach of implementing
executable C++ specifications make SystemC attractive
for industry and academia. The methodology introduced
by SystemC aims to close the design gap, which implies a
reduction of time to market.

Since SystemC has been introduced, the electronic
design automation (EDA) community heads for extensive
tool and library support. In conjunction with attached
libraries SystemC is capable of functional simulation,
simulation based verification [10] (SCV library), transac-
tion level modeling [2] (TLM library) and modeling of
analog and mixed-signals [18] (AMS library). Among
other tasks current tools support waveform tracing [15],
synthesis [7], co-simulation [3], bounded model checking
[8] and analysis [11, 1, 16]. In contrast to the libraries and

tools supporting SystemC verification and analysis, the
number of tools supporting system exploration of SystemC
specifications is disproportionately smaller. Caused by
this lack of tool support SystemC potentials are not fully
exploited. Related work is discussed after the presentation
of our approach in Section 6.

In this paper we introduce the tool ViSyC, that provides
functionality for system exploration of SystemC models. In
the following the term system exploration will be used as
a concept that helps architects elaborating system designs.
Simulation based attempts, as they are frequently used in
design space exploration, assume an extended knowledge of
the design for being able to interpret the results of elabora-
tion. Unlike to these techniques system exploration only re-
quires an essential understanding of VLSI CAD to explore
the design. The advantages of our approach are:

e hierarchical visualization
e crossprobing
e path fragment navigation

e module exploration

Our tool supports the understanding of large system on chip
(SoC) designs. They can be represented at different levels
of abstraction via detail hiding, that encapsulates implemen-
tation details into three different schematic views. Thus,
the internal structure, the behavior and the interface of a
module are separated to simplify the representation of each
single view. All three views preserve the hierarchy infor-
mation that is given by the structure of the SystemC model.
All elements of the schematic view are linked with a corre-
sponding position in the source code view via bidirectional
crossprobing, enabling intuitive path fragment navigation.
The path fragment navigation is a technique that enables
tracing of signals, ports, and operational elements by fol-
lowing their connected inputs or outputs. The functionality
of the tool covers SystemC analysis and the generation of a
database for visualization. Hence, the analysis is very com-
plex, it is separated into two phases. The first phase is a
transformation from an abstract syntax tree (AST) to an in-
termediate representation (IR). The second analysis phase
is an interpretation of the function sc_main. The inter-
pretation allocates internal memory images of the instanti-
ated modules and builds up connectivity between these in-
stances. We use the tool GateVision from Concept Engi-

neering! as a backend for graphical system exploration. It
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Figure 1. Overall flow within the tool

enables the designer to navigate through the database inter-
actively. The overall flow is shown in Figure 1.

The paper is structured as follows: Section 2 introduces
the reader to the standards of SystemC and its methodol-
ogy. The way we analyze SystemC models is described in
Section 3. Section 4 describes the background of visual-
ization and the bidirectional connection between the source
code and its schematic counterpart. In Section 5 our tool is
applied to evaluate a system level description by the explo-
ration of selected modules. Section 6 clarifies the alterna-
tives to our approach, and discusses related work. It gives
direct comparison to existing approaches and also discusses
limitations. In Section 7 a brief summary of the paper is
given and directions of future work are discussed.

2 SystemC

SystemC has been published by the Open SystemC
Initiative (OSCI). OSCI is a non-profit association that
has been formed by several industrial, academical and
individual partners. The aim of OSCI is the standardization
of SystemC as an open source standard for system level
design. Since the SystemC library is open source, various
kinds of modifications and extension libraries are publicly
available, too [2, 18, 10, 14].

The system description language SystemC provides
hardware constructs, implemented in a C++ class library.
The hardware models specified using SystemC can be
compiled on a large number of supported architectures
using a standard C++ compiler. The compiled executables
can be cycle accurate simulations as well as untimed algo-
rithmic descriptions of the given design. The executable
specifications can be used for evaluation, debugging and
refinement purposes without the usage of a commercial
simulator. Depending on the abstraction level the simu-
lation speed can be a multiple of a functional equivalent
HDL model. Because of its unrestricted C++ conformance
each SystemC model can be combined with other software
libraries. This allows system engineers to take advantage

of HW/SW Co-Design and to refine their SoC designs with
a high level of flexibility. Another benefit of SystemC,
coming with its C++ conformance, is a wide range of
abstraction levels that can be used to simplify huge system
designs. Complex communication protocols and control
logic can easily be separated from functional parts of the
specification. For this reason SystemC offers techniques
that can raise or lower the level of abstraction. The TLM
library implements such a technique to support SystemC’s
efficient refinement methodology. For more details see [12].

SystemC combines HDL typical features, like concur-
rency as it appears in hardware, with software paradigms,
like object orientation. Those features distinguish SystemC
from VHDL, Verilog and SystemVerilog and enable sys-
tem description capabilities. SystemC allows real poly-
morphism which includes the application of arbitrary mem-
ory access using pointers and dynamic memory allocation.
Even the concept of virtual functions that binds overloaded
class members to function pointers, is applicable in system
descriptions. Special benefits, like channels, make SystemC
ideal for describing complex communication protocols and
their easy reuse.

3 SystemC Analysis

SystemC analysis aims to transform a specification into
an abstract representation. Recent efforts in SystemC anal-
ysis follow two approaches to evaluation: simulation and
parsing. The simulation approach has the severe drawback
that it does not simultaneously cover all paths of the control
flow diagram (CFD). For this reason we implemented an
analyzer that is able to analyze SystemC programs without
simulation. The analyzer maps relevant information to an
IR that contains the structure and the behavior of the model.
The analyzer can be split into syntactical analysis, which
is done by the parser, and semantical analysis. Hence, the
semantical analysis is quite complex, it is split again into
AST traversal and a following interpretation phase. The
AST traversal collects the structure of the program while
the interpretation phase collects the behavior and dynamic
objects.

3.1 Extraction of Syntactical Information

The parser is realized by use of PCCTS [13]. The input
is a standard C++ source file, implementing a SystemC
model. The output of the syntactical analysis is an AST,
where an example can be seen in Figure 2. The AST is
an acyclic directed graph. Hierarchy information is stored
in the nodes of the AST. Except for root and leaf nodes,
each node in the AST has exactly one parent and one or
two children. Each down edge references a leaf, or an
adjacent node, that has further details concerning the parent
node. Each right edge also references a leaf, a following
statement or a following declaration.

Besides referencing its children, each node of the
AST refers to an appropriate token structure. The token
structure includes a token type, a token value and further
details of the read word. The advantage of the AST is
to have a datatype, that enables the analyzer to split the



EXPRESSION | = = = = = === - - mmmmmmmmmm oo -

a=5+x;

IDENTIFIER

EOUAL |
ASSIGNEQUAL
[sssonsaun | I?

l IDENTIFIER l l LITERALI

Figure 2. AST example

analysis into several passes. Each AST node holds location
information including the source file, the line of code and
the character position of the underlying token. These are
very important details in the process of visualization, that
builds connections between symbolic objects and their
corresponding source code fragments.

Most SystemC models use preprocessor directives to
preserve a clear design style and to reuse existing structures
and algorithms. Unfortunately common preprocessor fron-
tends [17] manipulate the input stream of the parser. Fre-
quently used directives like #def ine are eliminated at its
point of definition and inserted at its points of usage in the
source code. The parser and its backends have no oppor-
tunity to identify such substitutions. To avoid these prob-
lems we implemented a preprocessor frontend for recog-
nition of preprocessor directives during syntactical analy-
sis. The usage of widespread keywords like SC_MODULE
is implemented by the grammar, used in the parser, not by
preprocessor substitution. The SystemC grammar is an ad-
vantage of our approach that avoids many effects, that are
caused by C++ workarounds in the SystemC library. One
example of these workarounds in SystemC is the usage of
internal module names, which are not necessarily equal to
the declaration names. Another example is the limitation of
parameters, that can be used in named port bindings.

3.2 Extracting Structural Information

With the completion of syntactical analysis the corre-
sponding AST is available. To come to knowledge about
the structure of the model we traverse this AST to collect
details of the types and the modules, that are used in the
design. During the AST traversal all occurrences of named
declarations like types, functions and variables are stored
in a symbol table. The symbol table is a hierarchical
container that offers efficient functionality for searching
named declarations and error checking. All elements
hold a reference to their corresponding sub-AST to enable
crossprobing later on. Initially the symbol table consists of
an empty scope, which gets filled up during AST traversal,
and common SystemC data types like sc_int<n>. To
avoid multiple declarations of the same type preprocessor
directives including the SystemC header files can be
ignored.

Hierarchy in the symbol table is given by scopes, that
emerge when traversing the AST of a function, a type
declaration (struct/class/module) or a block state-
ment. Each level of the hierarchy is associated to a private
name-space with a disjoint set of variables, types and func-
tions. A SystemC evaluation approach based on execution
is aware of everything but of declared names, since objects

are referenced by their address through compilation. To
provide object names for analysis such an approach is
forced to attach additional name information, organized in
a single namespace. Because no element of this namespace
has knowledge of the parent scope, hierarchy information
is lost. The deficit of hierarchy causes all equally named
objects of different scopes to be misleadingly identified
as the same object during evaluation. Another problem
caused by introducing a single namespace is the disability
to ensure the equivalence between declaration name and
additional name of an object, which may lead to confusing
effects. With scopes the symbol table prohibits the reuse
of equal names at the same hierarchy level and reuse is
allowed at an other level only.

The structure of the design is basically formed by
the declarations and memory allocations caused by global
variables, stack variables, or heap variables. Since SystemC
implements C++ programs, the structure of a model can
be build using dynamic memory allocation to instantiate
modules and signals. Hence, dynamic modules and other
SystemC objects that are allocated using the new operator,
are not passed to the symbol table. Because our approach
does not rely on simulation, we face this problem with an
additional phase that interprets the specification partially as
explained in Section 3.3.

3.3 Extracting Behavioral Information

The behavior of a SystemC model is given by statements
that are placed in function definitions. Each function
definition in the symbol table references an AST that holds
such a statement block. The behavioral analysis starts at
sc_main. Each statement of the function is analyzed
and interpreted. As the top level routine which defines
the starting position of the model, the sc_main function
allocates top modules, signals and builds up connectivity.

Instances of static and dynamic variables are stored to
a memory image. Each variable in the memory image has
a value that can be read or written by the operational AST
that is interpreted. Like other variables, that are typed as a
struct or a class, modules have a constructor. The module
initialization includes the interpretation of the constructor
AST. This is where the process type is set and where the
function to be executed is called. The block of this function
is traversed recursively and stored into the memory image
as a sequence of operations. At the end of this procedure all
modules and their ports are known and interconnected by a
continuous sequence of expressions.

4 SystemC Visualization

From the computed memory images the tool generates
a binary file that holds a database. The generation of this
database runs a mapping mechanism that converts SystemC
objects to viewable symbols, dependent on the class the
objects are derived from. Because SystemC follows an
object oriented paradigm it is able to define an arbitrary
number of derived types. Since the number of viewable
symbol classes is restricted by the exploration backend,



different types have to be grouped and mapped to a single
symbol. The database can be displayed with an interactive
GUI for design exploration from Concept Engineering.

Besides a schematic view, that uses the symbols of
the database, the GUI offers a source code view. Each
symbol in the schematic view corresponds to a passage
of the source code view. ViSyC implements a bijective
function that does a mapping between symbols and
their corresponding source code passages. The GUI
uses a crossprobing technique to implement arbitrary
navigation between symbols, their declaration and their
instantiation. Another technique that benefits from the
bijective map is the path fragment navigation. The path
fragment navigation uses the link between corresponding
symbols and source code passages and enables system de-
signers to follow data paths or control flow paths intuitively.

In order to get a short and compact representation of
the SystemC specification, we need to extract the whole
hierarchy. Once having this hierarchy, the circuit can be
described at various levels of detail. It is important to note
that all hierarchy information is given by the design and
not generated by our tool. By using the extracted hierar-
chy without modifications ViSyC conserves the semantic
equivalence between the source model and its output,
the schematic view. The semantic equivalence again is a
premise for crossprobing, that ensures each object of the
model to have a counterpart in the symbolic view and vice
versa.

The visualization of the hierarchy follows the different
scopes of the design. Only the top level view shows
all modules connected to their signals. The black box
of a module or a channel is its most abstract symbolic
representation and can be explored. By entering the module
all members including ports and submodules are shown
including their connections. The connections between
ports are established by sequences of operational symbols,
that have been extracted from the processes behavior.
Loop statements and conditional statements are also repre-
sented by black boxes including conditional information.
Statements that consist of one or more expressions are
mapped to a sequence of symbols. This way arithmetical
expressions and logical expressions can be displayed in
a continuous flow. An expression that calls a function is
mapped to a black box that is explorable.

Mapping signals to viewable symbols is done by a mech-
anism that creates single wires or buses according to the
signal’s width. Each wire or bus can be connected to an ar-
bitrary number of ports. When a channel has been chosen
instead of a bit signal, the symbol is a black box again. The
exploration of the black box shows the implementation of
the channel. Standard C++ or SystemC data types are not
explored, because these basic types are known.

5 Evaluation of a RISC-CPU

To demonstrate the different abstraction levels of our
approach, we perform system exploration on the SystemC
source code of a RISC-CPU. The source code is part of the
OSCI SystemC package and it is freely available [12]. The

RISC-CPU consists of twenty eight source files, that define
the ten modules. The SystemC model is implemented using
register transfer level (RTL). For evaluation of the model
we navigate through three different abstraction levels that
clarify the structure and the behavior of the model.

5.1 Top View

The top view of a SystemC description assembles the
modules that are instantiated globally or in sc_main and
their connecting signals. The top level of the RISC-CPU
can be seen in Figure 3. All modules, as well as other Sys-
temC objects, are annotated with their declaration name.
The internal SystemC name, that is attached to modules,
ports and signals is not displayed. The application window
in Figure 3 is separated into two fields. The left field of
the window displays a hierarchical list that enumerates all
instantiated modules. All entries of the list give access to
a source code passage that declares the type of the corre-
sponding module. The right field of the window displays
the schematic view. The objects of this view are linked to
their instantiation in the source code.
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Figure 3. Top view of the RISC-CPU

5.2 Module View

To get a more detailed impression of the structure it is
possible to explore single modules. The exec module of
the CPU is an operational unit that keeps the instruction set.
The input ports of the module are aligned to the left whereas
the output ports are aligned to the right in alphabetic order.
Between input and output ports the behavior of the mod-
ule is displayed by schematic symbols. The process of the
exec module is expanded by the entry function that is han-
dled as an SC_CTHREAD, shown in Figure 4. Basically the
entry function implements a selection statement that is sen-
sitive to the opcode signal. The selection statement is rep-
resented by its functional blocks and a set of multiplexers.
By use of the opcode the multiplexers are able to assign
a calculated value of the respective functional block to its
corresponding output port.
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Figure 4. Module view of the RISC-CPU
5.3 Word Level View

The word level consists of a sequence of logic and algo-
rithmic operations. It represents the behavior level of the
CPU. This view can use logic and algorithmic operators
only. Because the symbolic mapping depends on the hard-
ware implementation of these operators and is not given in
the system description, they are not explorable like mod-
ules. Figure 5 shows the case 0 of the selection statement
that implements an arithmetic addition with carry-bit.
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Figure 5. Behavior of the RISC-CPU

6 Discussion

Few approaches have been presented in the field of Sys-
temC analysis and visualization. These approaches differ
from ours in the degree of detail of the visual representa-
tion and in the type of analysis. None of them accomplishes
system exploration, as it is described in Section 1. This sec-
tion discusses the related work to show the advantages and
restrictions of our approach.

6.1 Related Work

One of the first approaches that accomplishes SystemC
design visualization has been introduced in [9]. The
implementation of GrofB3e et al uses the SystemC kernel to
analyze SystemC models during execution. An interactive
graphical backend facilitates the design visualization.
Even though models can be specified using the C++
features, analysis and visualization are limited to SystemC
objects. Only the data flow can be viewed, no behavioral
information is available. Since this approach has to execute
the model without further information of declarations, it is
not aware of detailed positional information regarding the
objects. Hence, crossprobing facilities are very restricted.

The tool gSysC [5], an extension library for SystemC,
is a recent work at the University at Liibeck. When using
gSysC instead of SystemC, the underlying application
is able to capture run time information of the executed
specification analogously to [9]. Additional functionality
of gSysC offers the graphical evaluation of state variables
and the visualization of a flat module list. Similar to [9]
this approach uses run time evaluation, but the hierarchy
information is completely lost.

ParSyC [7] is a synthesis tool that does RTL synthesis on
a SystemC subset. The subset is a combination of restricted
C++, essential SystemC data types and SystemC control
mechanisms. The output of the synthesis is unoptimized
BLIF (as used in [6]). Instead of run time evaluation this
approach uses a separate analyzer to extract structure and
behavior of the source model. To reduce the complexity
of input models ParSyC prohibits features like pointers,
polymorphism and the declaration of templates. Hence,
ParSyC does not achieve our requirements regarding
SystemC analysis.

Another approach that includes an extra SystemC parser
has been published by Snyder and is called SystemPerl
[16]. SystemPerl is a Perl library that summarizes four
major packages with SystemC support. The parser extracts
the netlist interconnectivity and other information from an
unpreprocessed file. But SystemPerl is not sufficient for
our requirement of an analyzer frontend because it does not
extract code from the body of a process. Like SystemPerl
also SystemCXML [1] is a free tool with SystemC analysis
capabilities. An interpretation of the SystemC source is
done by Doxygen [19], that generates a respective XML
representation. The XML files are used by SystemCXML
to capture structural information of the model into an IR.
Unfortunately the analysis is not detailed enough to capture
the behavioral information of the model.

Pinapa [11] implements a free SystemC analyzer built
upon a modification of the GNU C++ compiler and a modi-
fied SystemC library. Pinapa enables a fine grained analysis
by executing the model in combination with an AST traver-
sal procedure. Being based on execution, Pinapas analysis
covers only parts of the design that are accessed in execu-
tion. Thus the quality of analysis depends on the reliability
of a stimuli generator.



6.2 Discussion of our Approach

Besides reliably interpreting SystemC descriptions,
instead of simulation, our approach accepts SystemC
as a language, which enables us to ignore some of its
workarounds (see Section 3.1). The advantage of our
interpretation over simulation approaches is that we are
not dependent on a stimuli generator for an analysis that
covers the complete model. Our analysis is even able to
handle system descriptions without a stimuli generator.
The backend of our analysis decides whether a part of the
description is part of the model. With this information our
visualization backend is able to hide unnecessary details
that would only confuse the designer.

The lack of all tools listed in Section 6.1 and ours as
well is that they are bound to one single SystemC version,
or to a modification. Without the inclusion of the SystemC
library ViSyC is not aware of any changes in the future
of SystemC. To assure models to run that are build on a
future SystemC version, this version has to be compatible
to the current release (SystemC-2.1.0). But considering
the development of SystemC as a difficult process that
consumes much time and effort, this lack may be negligible.

ViSyC enables the exploration of SystemC designs. Visu-
alization is a technique for representing a complex context
in a symbolic way. The schematic view, used in our tool,
is an aid that lets the user decide which kind of abstraction
he/she wants to use for exploring the design. While pure
visualization is able to represent one abstraction level only,
our system exploration is interactive and allows GUI sup-
ported tracing of each symbol in the design. Besides the
interaction, a bidirectional correlation between source code
and symbols in schematic view is supported. This allows
the tracing of code to its connected symbols and vice versa.

7 Conclusion

In this paper we presented an approach for interactive
system exploration of SystemC models. Our approach
is implemented as the tool ViSyC[4], that generates three
schematic views from the source code of a model. The
schematic views extend the hierarchical structure as well as
the behavior of the model and enable system designers to
navigate through different abstraction levels. Each part of
a schematic view corresponds to a source code passage in
the source code view. Via bidirectional crossprobing these
connections can be traced intuitively.

Our approach does not rely on stimuli generators or a
modified SystemC library and covers the complete model.
It supports extensive information extraction from SystemC
designs. This makes ViSyC a clever extension to SystemC
and offers a platform for other development steps. Our fu-
ture research on ViSyC will concentrate on debugging fa-
cilities. In detail our next steps will include a schematic
run time evaluation that enables ViSyC to visualize selected
configurations of a running system model.
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