
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Uncriticality-directed Low-power Instruction
Scheduling

Watanabe, Shingo
Kyushu Institute of Technology

Sato, Toshinori
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/6794508

出版情報：IEEE Computer Society Annual Symposium on VLSI. 2008, pp.69-74, 2008-04-07
バージョン：
権利関係：

Uncriticality-directed Low-power Instruction Scheduling

Shingo Watanabe
Kyushu Institute of Technology

s-watanabe@klab.ai.kyutech.ac.jp

Toshinori Sato
Kyushu University

toshinori.sato@computer.org

Abstract

Intelligent mobile information devices require low-
power and high-performance processors. In order to
reduce energy consumption with maintaining
computing performance, we proposed to utilize
information regarding instruction criticality. Every
functional unit in our processor has different latency
and energy consumption. Only critical instructions are
executed in power-hungry units, and the total energy
consumption can be reduced. While we have studied
several techniques to identify critical instructions for
years, we have not found any technique that achieves
both simplicity and high accuracy to identify. In this
paper, we propose to exploit uncriticality rather than
criticality. Only uncritical instructions are executed in
power-efficient units, and energy consumption can be
reduced. Our simulation results show approximately
10% energy reduction.

1. Introduction

Smart mobile devices and embedded systems
require high computing capability, thus employing
high performance microprocessors. In addition,
however, they require low power consumption as well
as high performance. While there is a trade-off
between power and performance, power is the primary
design constraint in embedded applications. The
dynamic power Pactive and gate delay tpd of a CMOS
circuit are given by

2
ddloadactive VCfP ⋅⋅∝ (1)

()athdd

dd
pd VV

Vt
−

∝ (2)

where f is clock frequency, Cload is load capacitance,
Vdd is supply voltage, and Vth is the threshold voltage
of the device. a is a factor depending upon the carrier
velocity saturation and is about 1.3 in advanced
MOSFETs [11, 12]. Eq.(1) clearly shows that power
supply reduction is the most effective way to lower
power consumption. On the other hand, Eq.(2) tells us
that supply voltage reduction increases gate delay, that
means a slower clock frequency and hence lower
processor performance. Therefore, it is required that
the threshold voltage is proportionally scaled down

with the supply voltage in order to maintain high speed
in transistor switching.

On the other hand, leakage power can be given by

ddoffoff VIP ⋅= (3)

where Ioff is the leakage current. The subthreshold
leakage current Ioff is dominated by threshold voltage
Vth in the following equation:

S
V

off

th

I
−

∝10 (4)

where S is the subthreshold swing parameter and is
around 85mV/decade [17]. As you can easily find,
lower threshold voltage leads to increase subthreshold
leakage current and thus leakage power. Maintaining
high speed in transistor switching via low threshold
voltage gives rise to a significant amount of leakage
power consumption. In order to solve the problems, we
decided to exploit information regarding critical path
in executing a program [14]. Actually, a
microprocessor has dual-power functional units.
Instructions that are on critical path, which determines
the execution time of the program, are executed in fast
and power-hungry units and instructions that are not
on critical path are executed in slow and power-
efficient units. It is expected that the scheduling
reduces microprocessor power consumption with
maintaining its performance.

This paper is organized as follows. Section 2
introduces the criticality-directed low-power
scheduling, which we have studied for years. Related
works are also summarized in the section. Section 3
proposes alternative scheduling directed by instruction
uncriticality and describes a mechanism to identify
uncritical instructions. Section 4 explains our
evaluation methodology and Section 5 presents
experimental results. Finally, Section 6 concludes.

2. Criticality-directed Scheduling

Even embedded processors currently execute
instructions in an out-of-order fashion to attain high
performance [10, 13]. The execution time is
determined by the processor’s computing capability
and by dependences between instructions executed on
the processor. The critical path is the longest path in a

data flow graph (DFG), where each node represents an
instruction and each arc represents a dependency
between instructions, and it limits performance on
processors with instruction level parallelism [15].
Figure 1 shows a DFG. In this example, its critical path
consists of instructions I0 -> I3 -> I4 -> I6 -> I7 if
every instruction's latency is one cycle.

I0 I2

I3 I4 I6

I5I1

I7I0 I2

I3 I4 I6

I5I1

I7

Figure 1. DFG and Critical Path.

We proposed to provide a microprocessor with slow
and power-efficient functional units as well as fast and
power-hungry ones [14]. Instructions on critical path,
which determine the execution time of the program,
are executed in the fast and power-hungry units and
the otherwise are executed in the slow and power-
efficient ones, as shown in Figure 2. Using this
scheduling strategy, it is expected that microprocessor
energy consumption is reduced while its performance
is maintained. In order to benefit from the energy-
aware scheduling, there are two key components, the
power-efficient functional unit and some mechanisms
to identify critical path.

Instructions

Power-hungry units

Power-efficient units

Identified as critical

Otherwise
Instructions

Power-hungry units

Power-efficient units

Identified as critical

Otherwise

Figure 2. Criticality-directed Scheduling.

Utilizing slow and power-efficient functional units
for executing probably uncritical instructions is the key
idea behind the proposed low-power architecture.
Power-efficient units are realized by the following
circuit designs. Delivering lower supply voltage to the
slow unit improves its energy efficiency. Increasing
threshold voltage diminishes circuit speed performance
but decreases power due to leakage current.

2.1. Previous Work

The critical path is a chain of dependent instructions,
which determines the number of cycles executing the
program. And thus, the performance of the processor is
limited by the speed at which it executes the

instructions along the critical path. If we can identify
which instructions are critical, we can accelerate their
execution by any means.

Critical path predictors (CPP’s) [18] are a
mechanism to dynamically identify critical instructions.
Exploiting information regarding instruction criticality
is effective not only for improving processor
performance but also for reducing power consumption
[3, 14, 16]. Seng et al. [16] proposed to use the CPP to
reduce power consumption on high-performance
microprocessors. The critical instructions are executed
in fast and power-hungry functional units while the
non-critical ones are executed in slow and power-
efficient units. They focus on power consumption
rather than energy consumption, which is a primary
concern in portable embedded devices. Chin et al. [3]
utilize slack [5] for dynamic voltage scaling (DVF).
The slack of a dynamic instruction is the number of
cycles it can be delayed with no effect on the execution.

While CPP’s can be utilized for identifying critical
path, none of them achieves both simplicity in circuit
and accuracy in identification [4]. Complex circuit
consumes additional power. Low accuracy seriously
diminishes processor performance, resulting in the
increase in energy consumption.

3. Uncriticality-directed Scheduling
3.1. Overview

While we have studied several techniques to
identify critical instructions for years, we have not yet
found any technique that achieves both simplicity in
circuit and high accuracy in identification [4]. In order
to reduce the performance loss due to low
identification accuracy, we propose to exploit
instruction uncriticality rather than instruction
criticality. Only uncritical instructions are executed in
the slow units, as shown in Figure 3.

Instructions

Power-efficient units

Power-hungry units

Identified as uncritical

Otherwise
Instructions

Power-efficient units

Power-hungry units

Identified as uncritical

Otherwise

Figure 3. Unriticality-directed Scheduling.

While we have several CPP’s to identify critical
instructions, there are not any mechanisms to identify
uncritical instructions. Since the mechanism for
identifying critical instructions does not achieve both
simplicity and accuracy, it seems difficult to construct
such a mechanism for identifying uncritical
instructions that achieves the both. However, it is not
correct. We can easily identify uncritical instructions.

Out-of-order execution processors have the
instruction scheduling window, where instructions wait
for their input operands. Each instruction can be issued
to a functional unit where it is executed, only when its
operands become available. Here, we call such an
instruction ready instruction. In the instruction window,
there are two types of ready instructions. One is
instructions that have their dependent instructions in
the instruction window. The other is instructions that
do not have any dependent instructions. Here, we call
the latter instructions solitary instructions. It is not
necessary to execute solitary instructions in hurry,
since their execution results will not be immediately
used. They can be executed in the slow units. In other
words, solitary instructions are uncritical.

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

time

(a) time #0

(b) time #1

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

time

(a) time #0

(b) time #1
Figure 4. Scheduling Example.

Figure 4 explains how uncriticality-directed

instruction scheduling works. We use the DFG shown
in Figure 1. At time #0, it is supposed that four
instructions, I0 - I3, are in the instruction window. The
dashed box indicates the instruction window and gray
nodes indicate the future instructions, which have not
been dispatched yet. You can see that instructions I0
and I1 are ready instructions. I0 has two dependent
instructions, I2 and I3, while I1 does not have any.
That is, I1 is a solitary instruction and is issued to the
slow and power-efficient unit. In contrast, I0 is issued
to the fast and power-hungry unit. At time #1, I0 and
I1 have already left the window, and I4 and I5 are
dispatched into the window. Now, I2 and I3 are ready
instructions and only I2 is a solitary instruction. Hence,
I3 is issued to the fast unit and I2 is issued to the slow
one. From this example, you can understand how
uncriticality-directed scheduling works.

3.2. Identifying Solitary Instructions
Next, we propose a mechanism to identify solitary

instructions. Before describing its details, we explain
register renaming mechanism.

In order to eliminate anti- and output- dependences,
out-of-order execution processors perform register
renaming before they dispatch instructions into the
instruction window. There are two common ways to
implement register renaming. One is using a separated
renaming registers which are usually constructed by
reorder buffer. The other combines the renaming
registers with architected registers in a single register
file [19]. We focus on the latter one. The register
renaming mechanism requires a register mapping
hardware, which mainly consists of three structures;
map table, active list, and free list. By means of the
map table, every logical register is mapped into a
physical register. The destination register is mapped to
a free physical register which is supplied by the free
list, while operand registers are translated into the last
mapping assigned to them. The old destination register
is kept in the active list. When an instruction is retired,
the old destination register that is allocated by the
previous instruction with the same logical register is
freed and placed in the free list. We utilize the map
table in order to identify solitary instructions.

Figure 5 shows the mechanism to identify solitary
instructions. A small table is attached to the map table.
We call the table solitary table. The solitary table is 1-
bit wide and its entry size is equal to the number of
physical registers. Since conventional processors have
only tens of registers, its hardware budget is very small.
In a different view, every register file entry has an
additional 1-bit field. The solitary table works as
follows. (1) When a new physical register is allocated
as a destination, its associated entry in the solitary
table is set. (2) When every instruction refers the map
table by its logical source register number (Ln in the
figure) and obtains the corresponding physical register
number (Pm in the figure), its associated entry in the
solitary table is reset. (3) Whenever an instruction is
issued, it refers the solitary table by its physical
destination register number. If its associated entry is
still set, it is a solitary instruction.

This mechanism is 100% accurate in identifying
solitary instructions, because all instructions in the
instruction window have updated the solitary table
when they are dispatched into the window. From these
observations, we can see that the solitary table
achieves both simplicity in circuit and accuracy in
identification, when it is utilized for uncriticality-
directed instruction scheduling.

Ln: logical register#

Pm: physical register#

Pm

0

map table

solitary
table

Ln: logical register#

Pm: physical register#

PmPm

00

map table

solitary
table

Figure 5. Solitary Table.

4. Evaluation Methodology

We implemented our simulator using SimpleScalar/
PISA tool set [1]. Table 1 summarizes processor
configurations. Six programs from SPEC2000 CINT
and eight programs from MediaBench [8] are used. For
SPEC programs, 200 million instructions are skipped
before actual simulation begins. After that, each
program is executed for 100 million instructions. For
MediaBench, each program is executed from
beginning to end. We do not count NOP instructions.

Table 1. Processor Configurations

Fetch width 8 instructions
L1 instruction cache 16K, 2 way, 1 cycle

Branch predictor gshare + bimodal
gshare predictor 4K entries, 12 histories

bimodal predictor 4K entries
Branch target buffer 1K sets, 4 way

Dispatch width 4 instructions
Instruction window size 32 entries

Issue width 4 instructions
Integer ALU’s 4 fast units (+ 1 slow)

Integer multipliers 2 units
Floating-point ALU’s 1 unit

Floating-point 1 unit
L1 data cache ports 2 ports

L1 data cache 16K, 4 way, 2 cycles
Unified L2 cache 8M, 8 way, 10 cycles

Memory Infinite, 100 cycles
Commit width 8 instructions

We will compare two processor models; the

baseline model and the proposed one. We focus on
integer ALU (iALU). The baseline model has four fast
and power-hungry iALU’s and the proposed one has
an additional slow iALU. The fast iALU executes most

integer operations in one cycle, while the slow iALU
executes operations in two cycles. In this evaluation,
we count the activities of each iALU and estimate its
dynamic power consumption based on Pentium M’s
frequency-voltage configurations [6] for the fast
(1.6GHz - 1.484V) and slow (800MHz - 1.036V)
iALU’s. While it was predicted that leakage power
would be comparable to dynamic power in future
process technologies [2], we assume that leakage
power is equal to 10% of dynamic power since Intel’s
45nm process technology will allow chips with more
than five times less leakage power than those made
today [7]. We apply this assumption to the fast iALU’s
but do not consider leakage power for the slow iALU,
since supply voltage is reduced and threshold voltage
is increased in the slow iALU.

5. Results

This section presents simulation results. First, the
impact on computing performance is shown. After that,
we show how frequently slow iALU is utilized. And
last, the impact on energy efficiency is presented.

5.1. Impact on Performance

Figure 6 shows the percentage increase in execution
cycles. For SPEC programs, the impact on
performance is little; the percentage increase is up to
4.1% and an average of 2.3%. Some programs from
MediaBench suffer slightly larger performance
degradation than SPEC programs do. For two
programs (unepic and mpeg2encode), performance
degradation is more than 5%. However, the average
increase in execution cycles among all MediaBench
programs is only 3.3%. From these observations, we
confirm that solitary instructions do not have serious
impact on performance even if their execution latency
is increased. Considering all programs evaluated, the
average increase in execution cycles is only 2.9%.

0%

2%

4%

6%

8%

gz
ip vp
r

gc
c

pa
rs

er

vo
rte

x

bz
ip

2

ep
ic

un
ep

ic

gs
m

de
co

de

gs
m

en
co

de

jp
eg

de
co

de

jp
eg

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

SPEC2000 MediaMench

Figure 6. Increase in Execution Cycles.

5.2. Solitude Breakdown
Figure 7 presents the breakdown of integer ALU

instructions. It explains how frequently iALU
instructions are executed in the slow iALU. In other
words, it explains how many instructions are solitary.
Since we have already seen that performance impact is
little, the many the solitary instructions are, the larger
the power reduction is. Each bar is divided into two
parts. The bottom part indicates the percentage of
instructions that are executed in the fast iALU’s. The
top one indicates the percentage of instructions that are
executed in the slow ALU.

0%

20%

40%

60%

80%

100%

gz
ip vp
r

gc
c

pa
rs

er

vo
rte

x

bz
ip

2

ep
ic

un
ep

ic

gs
m

de
co

de

gs
m

en
co

de

jp
eg

de
co

de

jp
eg

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

SPEC2000 MediaMench

fast iALU slow iALU

Figure 7. Breakdown of iALU Instructions.

For SPEC programs, the percentage of solitary

instructions is almost the same among the programs
and is 24.2% on average. One forth of iALU
instructions are executed in the slow iALU. This is a
good number, since the issue width of the model
processor is four and there is one slow iALU. In the
case of MediaBench, every program has a different
characteristic. The percentage of solitary instructions
varies between 11.4% and 37.1%. Programs that have
a large number of solitary instructions will loose the
chance of power reduction, since the model processor
does not have enough number of the slow iALU’s for
such a large percentage. In contrast, programs that
have only a small number of solitary instructions will
achieve small power reduction. On average, 22.9% of
instructions are executed in the slow iALU. The
average number is smaller than that of SPEC programs.
When we consider all programs evaluated, 23.5% of
instructions are executed in the slow iALU. Hence, the
ratio of iALU’s, that is four fast iALU’s and one slow
iALU, is a good trade-off point.

5.3. Impact on Energy Efficiency

Figure 8 shows energy consumed by integer ALU’s.
For each program, the number is normalized by that
for the baseline model. Energy reduction can be easily
estimated from Figure 7. Actually, the shape of the

graphs in Figures 7 and 8 are very similar. The
difference comes from leakage power. In the programs
where severe performance loss occurs, leakage power
is increased due to longer execution time. For SPEC
programs, the average energy reduction is 9.3%. In the
case of MediaBench, energy reduction varies between
2.9% and 16.1%. The average power reduction among
all programs is 9.0%. While this number looks small, it
is achieved by a very small additional hardware
budget; the small solitary table and an integer ALU.

70%

75%

80%

85%

90%

95%

100%

gz
ip vp
r

gc
c

pa
rs

er

vo
rte

x

bz
ip

2

ep
ic

un
ep

ic

gs
m

de
co

de

gs
m

en
co

de

jp
eg

de
co

de

jp
eg

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

SPEC2000 MediaMench

Figure 8. Relative Energy Consumption.

Figure 9 show the relative energy-delay product
(EDP). Smaller EDP values are better in energy
efficiency. While the impact on performance is little,
one program (mpeg2encode) diminishes energy
efficiency by 2.5%. Referring back to Figure 6, it can
be seen that mpeg2encode is one of the programs that
has larger impact on performance. Nonetheless, an
average of 6.3% reduction in EDP is achieved.
Especially, in the case of epic, 13.7% improvement in
energy efficiency can be seen.

75%

80%

85%

90%

95%

100%

105%

gz
ip vp
r

gc
c

pa
rs

er

vo
rte

x

bz
ip

2

ep
ic

un
ep

ic

gs
m

de
co

de

gs
m

en
co

de

jp
eg

de
co

de

jp
eg

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

SPEC2000 MediaMench

Figure 9. Relative Energy-Delay Product.

Figure 10 presents the relative energy-delay-square
product (ED2P). ED2P is another good metric for
evaluating energy efficiency under DVS [9]. While we
do not utilize DVS, we use multiple supply voltages

for iALU’s and hence we evaluate energy efficiency
by ED2P. Smaller ED2P values are better in energy
efficiency. Since the impact on performance is further
considered in ED2P, two programs (unepic and
mpeg2encode) show degradation in energy efficiency.
Referring back to Figure 6, it can be seen that unepic
and mpeg2encode are the programs that we are afraid
of larger performance degradation. While ED2P is a
metric for high-performance processors and it might
not be good for evaluating embedded processors, we
still achieve an average improvement of 3.6% in ED2P.

80%

85%

90%

95%

100%

105%

110%

gz
ip vp
r

gc
c

pa
rs

er

vo
rte

x

bz
ip

2

ep
ic

un
ep

ic

gs
m

de
co

de

gs
m

en
co

de

jp
eg

de
co

de

jp
eg

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

SPEC2000 MediaMench

Figure 10. Relative Energy-Delay2 Product.

6. Conclusions
Modern smart mobile and embedded systems

require low-power and high-performance processors.
In order to reduce energy consumption with
maintaining computing performance, we are studying
to utilize information regarding critical path in the
program. However, unfortunately, we have not found
any technique that achieves both simplicity and high
accuracy to identify. This paper proposed not to utilize
information regarding instruction criticality but to
utilize information regarding instruction uncriticality.
Uncritical instructions are executed in power-efficient
units and critical ones are executed in power-hungry
units, and hence the total energy consumption can be
reduced. We proposed a very simple mechanism to
identify uncritical instructions. It only requires a 1-bit
table where the number of entries is equal to that of
physical registers. Our simulation results showed that
approximately 10% reduction in energy consumption
is achieved. The mechanism proposed in this paper is
very simple so that we expect that its one of the
promising power reduction techniques for embedded
systems.

Acknowledgements
This work is partially supported by the CREST program

of Japan Science and Technology Agency.

References
[1] T. Austin et al.: SimpleScalar: an infrastructure for

computer system modeling, IEEE Computer, 35(2),
2002.

[2] S. Borkar: Microarchitecture and design challenges for
gigascale integration, 37th Int. Symp. on
Microarchitecture, Keynote, 2004.

[3] Y. Chin et al.: Evaluating techniques for exploiting
instruction slack, Int. Conf. on Computer Design, 2004.

[4] A. Chiyonobu et al.: Evaluating the critical path
predictors using critical path detection criteria, IPSJ
SIG Technical Reports, 2006-ARC-169-11, 2006.

[5] B. Fields et al.: Slack: maximizing performance under
technological constraints”, 29th Int. Symp. on Computer
Architecture, 2002.

[6] Intel Corporation: Intel Pentium M Processor,
Datasheet, 2004.

[7] Intel Corporation: Introducing the 45nm next-
generation Intel Core microarchitecture, white paper,
2007.

[8] C. Lee et al.: MediaBench: a tool for evaluating and
synthesizing multimedia and communications systems,
30th Int. Symp. on Microarchitecture, 1997.

[9] M. Martonosi et al.: Modeling and analyzing CPU
power and performance: metrics, methods, and
abstractions, Int. Conf. on Measurement and Modeling
of Computer Systems, 2001.

[10] V. Rajagopalan: New area and power-efficient MIPS
processors achieve high performance, Microprocessor
Forum, 2007.

[11] T. Sakurai: Alpha power-law MOS model, IEEE Solid-
State Circuits Society Newsletter, 9(4), 2004.

[12] T. Sakurai et al.: Alpha-power law MOSFET model
and its applications to CMOS inverter delay and other
formulas”, IEEE JSSC, 25(2), 1990.

[13] T. Sartorius: The Scorpion mobile application
microprocessor, Microprocessor Forum, 2007.

[14] T. Sato et al.: Power and performance fitting in
nanometer design”, 5th Int. Workshop on Innovative
Architecture for Future Generation High-Performance
Processors and Systems, 2002.

[15] M. Schlansker et al.: Critical path reduction for scalar
programs, 28th Int. Symp. on Microarchitecture, 1995.

[16] J. S. Seng et al.: Reducing power with dynamic critical
path information, 34th Int. Symp. on Microarchitecture,
2001.

[17] D. Sylvester et al.: Power-driven challenges in
nanometer design”, IEEE D&TC, 18(6), 2001.

[18] E. Tune et al.: Dynamic prediction of critical path
instructions 7th Int. Symp. on High Performance
Computer Architecture, 2001.

[19] K. C. Yeager: The MIPS R10000 superscalar
microprocessor”, IEEE Micro, 16(2), 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

