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Abstract 

Intelligent mobile information devices require low-
power and high-performance processors. In order to 
reduce energy consumption with maintaining 
computing performance, we proposed to utilize 
information regarding instruction criticality. Every 
functional unit in our processor has different latency 
and energy consumption. Only critical instructions are 
executed in power-hungry units, and the total energy 
consumption can be reduced. While we have studied 
several techniques to identify critical instructions for 
years, we have not found any technique that achieves 
both simplicity and high accuracy to identify. In this 
paper, we propose to exploit uncriticality rather than 
criticality. Only uncritical instructions are executed in 
power-efficient units, and energy consumption can be 
reduced. Our simulation results show approximately 
10% energy reduction. 
 
1. Introduction 

Smart mobile devices and embedded systems 
require high computing capability, thus employing 
high performance microprocessors. In addition, 
however, they require low power consumption as well 
as high performance. While there is a trade-off 
between power and performance, power is the primary 
design constraint in embedded applications. The 
dynamic power Pactive and gate delay tpd of a CMOS 
circuit are given by 
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where f is clock frequency, Cload is load capacitance, 
Vdd is supply voltage, and Vth is the threshold voltage 
of the device. a is a factor depending upon the carrier 
velocity saturation and is about 1.3 in advanced 
MOSFETs [11, 12]. Eq.(1) clearly shows that power 
supply reduction is the most effective way to lower 
power consumption. On the other hand, Eq.(2) tells us 
that supply voltage reduction increases gate delay, that 
means a slower clock frequency and hence lower 
processor performance. Therefore, it is required that 
the threshold voltage is proportionally scaled down 

with the supply voltage in order to maintain high speed 
in transistor switching.  

On the other hand, leakage power can be given by 

ddoffoff VIP ⋅=     (3) 

where Ioff is the leakage current. The subthreshold 
leakage current Ioff is dominated by threshold voltage 
Vth in the following equation: 
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where S is the subthreshold swing parameter and is 
around 85mV/decade [17]. As you can easily find, 
lower threshold voltage leads to increase subthreshold 
leakage current and thus leakage power. Maintaining 
high speed in transistor switching via low threshold 
voltage gives rise to a significant amount of leakage 
power consumption. In order to solve the problems, we 
decided to exploit information regarding critical path 
in executing a program [14]. Actually, a 
microprocessor has dual-power functional units. 
Instructions that are on critical path, which determines 
the execution time of the program, are executed in fast 
and power-hungry units and instructions that are not 
on critical path are executed in slow and power-
efficient units. It is expected that the scheduling 
reduces microprocessor power consumption with 
maintaining its performance. 

This paper is organized as follows. Section 2 
introduces the criticality-directed low-power 
scheduling, which we have studied for years. Related 
works are also summarized in the section. Section 3 
proposes alternative scheduling directed by instruction 
uncriticality and describes a mechanism to identify 
uncritical instructions. Section 4 explains our 
evaluation methodology and Section 5 presents 
experimental results. Finally, Section 6 concludes. 

 
2. Criticality-directed Scheduling 

Even embedded processors currently execute 
instructions in an out-of-order fashion to attain high 
performance [10, 13]. The execution time is 
determined by the processor’s computing capability 
and by dependences between instructions executed on 
the processor. The critical path is the longest path in a 



data flow graph (DFG), where each node represents an 
instruction and each arc represents a dependency 
between instructions, and it limits performance on 
processors with instruction level parallelism [15]. 
Figure 1 shows a DFG. In this example, its critical path 
consists of instructions I0 -> I3 -> I4 -> I6 -> I7 if 
every instruction's latency is one cycle. 
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Figure 1. DFG and Critical Path. 
 

We proposed to provide a microprocessor with slow 
and power-efficient functional units as well as fast and 
power-hungry ones [14]. Instructions on critical path, 
which determine the execution time of the program, 
are executed in the fast and power-hungry units and 
the otherwise are executed in the slow and power-
efficient ones, as shown in Figure 2. Using this 
scheduling strategy, it is expected that microprocessor 
energy consumption is reduced while its performance 
is maintained. In order to benefit from the energy-
aware scheduling, there are two key components, the 
power-efficient functional unit and some mechanisms 
to identify critical path. 
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Figure 2. Criticality-directed Scheduling. 
 

Utilizing slow and power-efficient functional units 
for executing probably uncritical instructions is the key 
idea behind the proposed low-power architecture. 
Power-efficient units are realized by the following 
circuit designs. Delivering lower supply voltage to the 
slow unit improves its energy efficiency. Increasing 
threshold voltage diminishes circuit speed performance 
but decreases power due to leakage current. 

 
2.1. Previous Work 

The critical path is a chain of dependent instructions, 
which determines the number of cycles executing the 
program. And thus, the performance of the processor is 
limited by the speed at which it executes the 

instructions along the critical path. If we can identify 
which instructions are critical, we can accelerate their 
execution by any means. 

Critical path predictors (CPP’s) [18] are a 
mechanism to dynamically identify critical instructions. 
Exploiting information regarding instruction criticality 
is effective not only for improving processor 
performance but also for reducing power consumption 
[3, 14, 16]. Seng et al. [16] proposed to use the CPP to 
reduce power consumption on high-performance 
microprocessors. The critical instructions are executed 
in fast and power-hungry functional units while the 
non-critical ones are executed in slow and power-
efficient units. They focus on power consumption 
rather than energy consumption, which is a primary 
concern in portable embedded devices. Chin et al. [3] 
utilize slack [5] for dynamic voltage scaling (DVF). 
The slack of a dynamic instruction is the number of 
cycles it can be delayed with no effect on the execution. 

While CPP’s can be utilized for identifying critical 
path, none of them achieves both simplicity in circuit 
and accuracy in identification [4]. Complex circuit 
consumes additional power. Low accuracy seriously 
diminishes processor performance, resulting in the 
increase in energy consumption. 

 
3. Uncriticality-directed Scheduling 
3.1. Overview 

While we have studied several techniques to 
identify critical instructions for years, we have not yet 
found any technique that achieves both simplicity in 
circuit and high accuracy in identification [4]. In order 
to reduce the performance loss due to low 
identification accuracy, we propose to exploit 
instruction uncriticality rather than instruction 
criticality. Only uncritical instructions are executed in 
the slow units, as shown in Figure 3. 
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Figure 3. Unriticality-directed Scheduling. 
 

While we have several CPP’s to identify critical 
instructions, there are not any mechanisms to identify 
uncritical instructions. Since the mechanism for 
identifying critical instructions does not achieve both 
simplicity and accuracy, it seems difficult to construct 
such a mechanism for identifying uncritical 
instructions that achieves the both. However, it is not 
correct. We can easily identify uncritical instructions.  



Out-of-order execution processors have the 
instruction scheduling window, where instructions wait 
for their input operands. Each instruction can be issued 
to a functional unit where it is executed, only when its 
operands become available. Here, we call such an 
instruction ready instruction. In the instruction window, 
there are two types of ready instructions. One is 
instructions that have their dependent instructions in 
the instruction window. The other is instructions that 
do not have any dependent instructions. Here, we call 
the latter instructions solitary instructions. It is not 
necessary to execute solitary instructions in hurry, 
since their execution results will not be immediately 
used. They can be executed in the slow units. In other 
words, solitary instructions are uncritical. 
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Figure 4. Scheduling Example. 

 
Figure 4 explains how uncriticality-directed 

instruction scheduling works. We use the DFG shown 
in Figure 1. At time #0, it is supposed that four 
instructions, I0 - I3, are in the instruction window. The 
dashed box indicates the instruction window and gray 
nodes indicate the future instructions, which have not 
been dispatched yet. You can see that instructions I0 
and I1 are ready instructions. I0 has two dependent 
instructions, I2 and I3, while I1 does not have any. 
That is, I1 is a solitary instruction and is issued to the 
slow and power-efficient unit. In contrast, I0 is issued 
to the fast and power-hungry unit. At time #1, I0 and 
I1 have already left the window, and I4 and I5 are 
dispatched into the window. Now, I2 and I3 are ready 
instructions and only I2 is a solitary instruction. Hence, 
I3 is issued to the fast unit and I2 is issued to the slow 
one. From this example, you can understand how 
uncriticality-directed scheduling works. 

3.2. Identifying Solitary Instructions 
Next, we propose a mechanism to identify solitary 

instructions. Before describing its details, we explain 
register renaming mechanism. 

In order to eliminate anti- and output- dependences, 
out-of-order execution processors perform register 
renaming before they dispatch instructions into the 
instruction window. There are two common ways to 
implement register renaming. One is using a separated 
renaming registers which are usually constructed by 
reorder buffer. The other combines the renaming 
registers with architected registers in a single register 
file [19]. We focus on the latter one. The register 
renaming mechanism requires a register mapping 
hardware, which mainly consists of three structures; 
map table, active list, and free list. By means of the 
map table, every logical register is mapped into a 
physical register. The destination register is mapped to 
a free physical register which is supplied by the free 
list, while operand registers are translated into the last 
mapping assigned to them. The old destination register 
is kept in the active list. When an instruction is retired, 
the old destination register that is allocated by the 
previous instruction with the same logical register is 
freed and placed in the free list. We utilize the map 
table in order to identify solitary instructions. 

Figure 5 shows the mechanism to identify solitary 
instructions. A small table is attached to the map table. 
We call the table solitary table. The solitary table is 1-
bit wide and its entry size is equal to the number of 
physical registers. Since conventional processors have 
only tens of registers, its hardware budget is very small. 
In a different view, every register file entry has an 
additional 1-bit field. The solitary table works as 
follows. (1) When a new physical register is allocated 
as a destination, its associated entry in the solitary 
table is set. (2) When every instruction refers the map 
table by its logical source register number (Ln in the 
figure) and obtains the corresponding physical register 
number (Pm in the figure), its associated entry in the 
solitary table is reset. (3) Whenever an instruction is 
issued, it refers the solitary table by its physical 
destination register number. If its associated entry is 
still set, it is a solitary instruction. 

This mechanism is 100% accurate in identifying 
solitary instructions, because all instructions in the 
instruction window have updated the solitary table 
when they are dispatched into the window. From these 
observations, we can see that the solitary table 
achieves both simplicity in circuit and accuracy in 
identification, when it is utilized for uncriticality-
directed instruction scheduling. 
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Figure 5. Solitary Table. 

 
4. Evaluation Methodology 

We implemented our simulator using SimpleScalar/ 
PISA tool set [1]. Table 1 summarizes processor 
configurations. Six programs from SPEC2000 CINT 
and eight programs from MediaBench [8] are used. For 
SPEC programs, 200 million instructions are skipped 
before actual simulation begins. After that, each 
program is executed for 100 million instructions. For 
MediaBench, each program is executed from 
beginning to end. We do not count NOP instructions. 

 
Table 1. Processor Configurations 

Fetch width 8 instructions 
L1 instruction cache 16K, 2 way, 1 cycle

Branch predictor gshare + bimodal
gshare predictor 4K entries, 12 histories

bimodal predictor 4K entries 
Branch target buffer 1K sets, 4 way

Dispatch width 4 instructions 
Instruction window size 32 entries 

Issue width 4 instructions 
Integer ALU’s 4 fast units (+ 1 slow)

Integer multipliers 2 units 
Floating-point ALU’s 1 unit 

Floating-point 1 unit 
L1 data cache ports 2 ports 

L1 data cache 16K, 4 way, 2 cycles
Unified L2 cache 8M, 8 way, 10 cycles

Memory Infinite, 100 cycles
Commit width 8 instructions 

 
We will compare two processor models; the 

baseline model and the proposed one. We focus on 
integer ALU (iALU). The baseline model has four fast 
and power-hungry iALU’s and the proposed one has 
an additional slow iALU. The fast iALU executes most 

integer operations in one cycle, while the slow iALU 
executes operations in two cycles. In this evaluation, 
we count the activities of each iALU and estimate its 
dynamic power consumption based on Pentium M’s 
frequency-voltage configurations [6] for the fast 
(1.6GHz - 1.484V) and slow (800MHz - 1.036V) 
iALU’s. While it was predicted that leakage power 
would be comparable to dynamic power in future 
process technologies [2], we assume that leakage 
power is equal to 10% of dynamic power since Intel’s 
45nm process technology will allow chips with more 
than five times less leakage power than those made 
today [7]. We apply this assumption to the fast iALU’s 
but do not consider leakage power for the slow iALU, 
since supply voltage is reduced and threshold voltage 
is increased in the slow iALU. 
 
5. Results 

This section presents simulation results. First, the 
impact on computing performance is shown. After that, 
we show how frequently slow iALU is utilized. And 
last, the impact on energy efficiency is presented. 

 
5.1. Impact on Performance 

Figure 6 shows the percentage increase in execution 
cycles. For SPEC programs, the impact on 
performance is little; the percentage increase is up to 
4.1% and an average of 2.3%. Some programs from 
MediaBench suffer slightly larger performance 
degradation than SPEC programs do. For two 
programs (unepic and mpeg2encode), performance 
degradation is more than 5%. However, the average 
increase in execution cycles among all MediaBench 
programs is only 3.3%. From these observations, we 
confirm that solitary instructions do not have serious 
impact on performance even if their execution latency 
is increased. Considering all programs evaluated, the 
average increase in execution cycles is only 2.9%. 
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Figure 6. Increase in Execution Cycles. 



5.2. Solitude Breakdown 
Figure 7 presents the breakdown of integer ALU 

instructions. It explains how frequently iALU 
instructions are executed in the slow iALU. In other 
words, it explains how many instructions are solitary. 
Since we have already seen that performance impact is 
little, the many the solitary instructions are, the larger 
the power reduction is. Each bar is divided into two 
parts. The bottom part indicates the percentage of 
instructions that are executed in the fast iALU’s. The 
top one indicates the percentage of instructions that are 
executed in the slow ALU. 
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Figure 7. Breakdown of iALU Instructions. 

 
For SPEC programs, the percentage of solitary 

instructions is almost the same among the programs 
and is 24.2% on average. One forth of iALU 
instructions are executed in the slow iALU. This is a 
good number, since the issue width of the model 
processor is four and there is one slow iALU. In the 
case of MediaBench, every program has a different 
characteristic. The percentage of solitary instructions 
varies between 11.4% and 37.1%. Programs that have 
a large number of solitary instructions will loose the 
chance of power reduction, since the model processor 
does not have enough number of the slow iALU’s for 
such a large percentage. In contrast, programs that 
have only a small number of solitary instructions will 
achieve small power reduction. On average, 22.9% of 
instructions are executed in the slow iALU. The 
average number is smaller than that of SPEC programs. 
When we consider all programs evaluated, 23.5% of 
instructions are executed in the slow iALU. Hence, the 
ratio of iALU’s, that is four fast iALU’s and one slow 
iALU, is a good trade-off point. 

 
5.3. Impact on Energy Efficiency 

Figure 8 shows energy consumed by integer ALU’s. 
For each program, the number is normalized by that 
for the baseline model. Energy reduction can be easily 
estimated from Figure 7. Actually, the shape of the 

graphs in Figures 7 and 8 are very similar. The 
difference comes from leakage power. In the programs 
where severe performance loss occurs, leakage power 
is increased due to longer execution time. For SPEC 
programs, the average energy reduction is 9.3%. In the 
case of MediaBench, energy reduction varies between 
2.9% and 16.1%. The average power reduction among 
all programs is 9.0%. While this number looks small, it 
is achieved by a very small additional hardware 
budget; the small solitary table and an integer ALU. 
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Figure 8. Relative Energy Consumption. 
 

Figure 9 show the relative energy-delay product 
(EDP). Smaller EDP values are better in energy 
efficiency. While the impact on performance is little, 
one program (mpeg2encode) diminishes energy 
efficiency by 2.5%. Referring back to Figure 6, it can 
be seen that mpeg2encode is one of the programs that 
has larger impact on performance. Nonetheless, an 
average of 6.3% reduction in EDP is achieved. 
Especially, in the case of epic, 13.7% improvement in 
energy efficiency can be seen. 
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Figure 9. Relative Energy-Delay Product. 
 

Figure 10 presents the relative energy-delay-square 
product (ED2P). ED2P is another good metric for 
evaluating energy efficiency under DVS [9]. While we 
do not utilize DVS, we use multiple supply voltages 



for iALU’s and hence we evaluate energy efficiency 
by ED2P. Smaller ED2P values are better in energy 
efficiency. Since the impact on performance is further 
considered in ED2P, two programs (unepic and 
mpeg2encode) show degradation in energy efficiency. 
Referring back to Figure 6, it can be seen that unepic 
and mpeg2encode are the programs that we are afraid 
of larger performance degradation. While ED2P is a 
metric for high-performance processors and it might 
not be good for evaluating embedded processors, we 
still achieve an average improvement of 3.6% in ED2P. 
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Figure 10. Relative Energy-Delay2 Product. 
 

6. Conclusions 
Modern smart mobile and embedded systems 

require low-power and high-performance processors. 
In order to reduce energy consumption with 
maintaining computing performance, we are studying 
to utilize information regarding critical path in the 
program. However, unfortunately, we have not found 
any technique that achieves both simplicity and high 
accuracy to identify. This paper proposed not to utilize 
information regarding instruction criticality but to 
utilize information regarding instruction uncriticality. 
Uncritical instructions are executed in power-efficient 
units and critical ones are executed in power-hungry 
units, and hence the total energy consumption can be 
reduced. We proposed a very simple mechanism to 
identify uncritical instructions. It only requires a 1-bit 
table where the number of entries is equal to that of 
physical registers. Our simulation results showed that 
approximately 10% reduction in energy consumption 
is achieved. The mechanism proposed in this paper is 
very simple so that we expect that its one of the 
promising power reduction techniques for embedded 
systems. 
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