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Abstract  

   With the development of SOC designs, modern 
floorplanning typically needs to provide extra options 
to meet the different emerging requirements in the 
hierarchical designs, such as boundary constraint for 
I/O connection, clustering constraint for performance 
and reliability, etc. This paper addresses modern 
floorplanning with boundary clustering constraint. It 
has been empirically shown that the modern 
constraints extremely restrict the solution space; that is, 
a large number of randomly generated floorplans 
might be infeasible. In order to effectively search the 
feasible solutions, the feasible conditions based on 
B*-tree representation with boundary clustering 
constraint are investigated. The properties, coupled 
with an efficient simulated annealing algorithm, 
provide the way to produce feasible floorplans by 
dynamic repairing, which can transform an infeasible 
solution into a feasible one if the constraint is violated. 
Our algorithm is verified by using the MCNC and 
GSRC benchmarks, and the empirical results show that 
our algorithm can obtain promising solutions in 
acceptable time. 

1. Introduction 

Classical floorplanning formulation roughly 
determines the layout of a given set of modules, such 
that no modules overlap, and the enclosing layout 
region has minimum area and interconnection. After 
entering SOC era, however, modern floorplanning 
takes more care of providing extra options to place 
dedicated modules in the hierarchical designs. So it is 
common that designers will put additional placement 
constraints on the final packing to get meaningful 
designs for different purposes, such as abutment, 
boundary and fixed-outline constraints, etc. For 
instance, in mixed mode placement, the macros are 
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always packed on the boundaries or clustered to the 
boundaries first so that the standard cells can be placed 
in the center. Therefore, we define a special kind of 
constraints named boundary clustering constraint 
which requires constrained modules being on the 
boundaries or clustering to the boundaries. Boundary 
clustering constraint can help to minimize wire length 
and routing space fragmentation in hierarchical design 
for SOC designs [10] [11]. In mixed-size placement, 
before the detailed placement of standard cells, the 
macro modules are first packed along or clustered to 
the boundaries which satisfy the boundary clustering 
constraint. As shown in the Figure 1, the macro blocks 
are all placed along or clustered to the boundaries 
before the standard cells are placed [10].  

 
Figure 1: Placement of hard macro blocks 

Recently, several floorplan representations are 
proposed, e.g., sequence pair (SP) [4], BSG [5], O-tree 
[2], B*-tree [1], corner block list (CBL) [6] and TCG 
[7]. Each representation has its own characteristics. 
Based on different representations, several works were 
proposed to handle various constraints including 
boundary constraint. In [8], it handled the boundary 
constraint using sequence pair. In [12], CBL was used 
to handle boundary constraints by proposing several 
boundary conditions in CBL representation. In [3], it 
handled boundary constraint using B*-tree. In 
boundary constraint, the constrained modules are 
restricted to be along the boundaries. But the boundary 
clustering constraint is different from boundary 
constraint since the constrained modules may not be 
located along boundaries but be clustered to the 
constrained blocks which are along the boundaries. As 
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shown in Figure1, some small macros are not along the 
boundaries, but clustered near to the big macros which 
are along the boundaries. Dealing with boundary 
clustering constraint is more meaningful for the macro 
placement in hierarchical designs. T.C. Chen, etc 
proposed a MP-tree to solve macro modules in 
mixed-size design in [9]. They handled the standard 
cells and macro modules separately by packing them in 
two steps. The macros are placed along four 
boundaries alone so that the center region is left to the 
standard cells. Although the two-step method ensures 
maximal contiguous (minimally fragmented) space for 
standard cells, it may result in long interconnects and 
therefore inferior timing results since the connections 
between macros and other cells are ignored in the first 
step. Therefore, to obtain the global optimization, it is 
necessary to pack the macros with the consideration of 
other cells. In the high level of hierarchical designs, the 
standard cells can be clustered into virtual modules so 
that a floorplanning methodology with boundary 
clustering constraints is very necessary. 

In this paper, we deal with the floorplan design 
with boundary clustering constraint using the B*-tree 
representation. B*-tree has been proved a superior 
representation due to its simple, yet effective binary 
tree structure. In this paper, the feasible conditions 
based on B*-tree representation with boundary 
clustering constraint are investigated. The properties, 
coupled with an efficient simulated annealing 
algorithm, provide the way to produce floorplans with 
boundary clustering constraint. Through dynamic 
repairing, it is guaranteed that every solution in each 
iterative process is feasible. The effect and efficiency 
of our algorithm are verified by using the MCNC and 
GSRC benchmarks, and the empirical results show that 
our algorithm can obtain promising solutions in 
acceptable time.  

The remainder of this paper is organized as follows. 
Section2 gives the problem definition. Section3 briefly 
introduces the B*-tree representation.Section4 explores 
the feasible conditions based on B*-tree for the 
boundary clustering constraint. Section 5 presents our 
overall algorithm. Experimental results are reported in 
Section 6. Finally, we conclude our work in Section 7. 

2. Problem Formulation 

In this section, we first define the boundary clustering 
constraint and then formulate the placement problem. 
2.1. Boundary Clustering Constraint 
 

The boundary clustering constraint means that the 
constrained modules must be placed along or clustered 

to the boundaries in the final placement. We conclude 
the definitions of this constraint as follows. 
   Definition 1: Modules are clustered along the 
bottom (left) boundary iff these modules abut each 
other and there exists no other module below (left to) 
the clustered modules in the final placement. 

Definition 2: Modules are clustered along the top 
(right) boundary iff these modules abut each other and 
there exists no other module above (right to) the 
clustered modules in the final placement. 

For instance, as shown in Figure2, b3, b4 and b5 are 
defined as constrained modules. The packing in Figure 
2 represents an admissible placement. In Figure 2(a), 
we can see that b3 is on the left boundary. b5 and b4 are 
clustered with b3 to the left boundary. So b3, b4 and b5 
satisfy the boundary clustering constraint. However, in 
Figure 2(b), the placement is illegal. Since b3, b4 and b5 
are not placed along or clustered to any boundaries. 

       
            (a)                   (b) 

Figure 2: A placement with boundary clustering 
constraint modules (b3, b4 and b5) (a) A feasible 
placement; (b) An infeasible placement  

2.2. Problem Definition 

Let B = {b1 , b2 , … , bn} be a set of n rectangular 
modules whose respective width, height and area are 
denoted by Wi , Hi and Ai , 1≤ i ≤ n. Let (xi , yi ) denote 
the coordinate of the bottom-left corner of module bi , 
1≤ i ≤ n, on a chip. A placement P with the boundary 
clustering constraint is an assignment of the coordinate 
(xi , yi) for each bi , 1≤ i ≤ n, such that no two modules 
overlap and the constrained modules meet the 
boundary clustering constraint. The goal of 
floorplanning/placement is to optimize a predefined 
cost metric, such as the area and wire length, induced 
by the assignment of bi’s on the chip.  

3. B*-tree Representation 

B*-trees [1] are an ordered binary tree for 
modeling a compacted floorplan. Given an admissible 
placement [2] (in which no module can move left or 
bottom) P, we can represent it by a unique B*-tree T. 
(See Figure 3(b) for the B*-tree representing the 
placement of Figure 3(a)). The root of B*-tree 
corresponds to the block on the bottom-left corner. 
Similar to the DFS procedure, we construct the B*-tree 
T for an admissible placement P in a recursive fashion: 
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Starting from the root, we first recursively construct 
the left subtree and then the right subtree. Let Ri denote 
the set of blocks located on the right-hand side and 
adjacent to bi. The left child of the node ni corresponds 
to the lowest block in Ri that is unvisited. The right 
child of ni represents the lowest block located above 
and with its x-coordinate equal to that of bi.  

Based on the definition, the root of T represents the 
block on the bottom-left corner, and thus the x- and y- 
coordinates of the block associated with the root (xroot, 
yroot) = (0, 0). If node nj is the left child of node ni, 
block bj is placed on the right-hand side and adjacent to 
block bi in the placement; i.e., xj = xi+ wi. Otherwise, if 
node nj is the right child of ni, block bj is placed above 
block bi, with the x-coordinate of bj equal to that of bi; 
i.e., xj = xi. With the contour structure, we can compute 
the y-coordinate of a block in amortized constant time. 

       
         (a)                          (b) 
Figure 3: (a) An admissible placement; (b) the 
B*-tree representing the placement 

4. Feasible conditions for the boundary 
clustering constraint 

In this paper, we proposed the feasible conditions 
based on B*-tree for boundary clustering constraint so 
that we can search the feasible solutions efficiently. 
The feasible solutions may guide the process of the 
randomly optimization and promote the efficiency of 
our algorithm. 

4.1. Feasible conditions of B*-tree 

   From the construction of B*-tree, we can conclude 
that if a node is not on a boundary but satisfied the 
boundary clustering constraint, the parent of the node 
must be a satisfied boundary clustering constrained 
module. So our algorithm firstly checks the boundary 
modules, and then finds out the modules clustering to 
the boundary constrained modules. 

Let the leftmost branch (rightmost branch) of a 
B*-tree denote the path formed by the root and its 
leftmost (rightmost) descendants. By the definition of 
the B*-tree, all nodes in the leftmost (rightmost) branch 
are not right (left) children of others, which means there 
exists no module below (left to) the corresponding 
modules. We conclude the following conditions for the 
feasible conditions of a B*-tree with the bottom and 

left boundary clustering constraint. 
 Bottom boundary clustering condition: The nodes 

corresponding to the bottom clustering blocks must be 
on the leftmost branch of a B*-tree and their children. 

 Left boundary clustering condition: The nodes 
corresponding to the left clustering modules must be on 
the rightmost branch of a B*-tree and their children.  

For example, we can see in Figure 3(b), b1, b7, b8 and 
b10 are in the leftmost branch, so they are on the bottom 
boundary. It also has clustered condition. If b8 is 
boundary clustering constrained module, b9 is also a 
boundary clustering module. Because the b9 clusters 
with b8 to the bottom boundary. Similarly, the left 
boundary modules are b2 and b3. We can see that b5 is a 
child of b2 , it means that b5 is clustered with b2 to the 
left boundary. If the b2 is a constrained module, the b5 
satisfies the boundary clustering constraint, and so on. 

Let the bottom-left (bottom-right) branch of a 
B*-tree denotes the path formed by the end of the 
leftmost (rightmost) branch and its rightmost (leftmost) 
descendants. If the nodes in the bottom-left 
(bottom-right) branch have left (right) children, it is 
very difficult to judge the right (top) boundary 
conditions. In order to guarantee that modules can be 
placed along the right (top) boundary, their left (right) 
children are moved. By the definition of the B*-tree, all 
nodes in the bottom-left branch of a B*-tree which left 
children are moved are with the same x- coordinate 
with the module placed at the bottom-right corner. So 
there is no module placed right to these modules. 
Further, no module is placed above these modules 
since the right children of the nodes in the bottom-right 
branch are moved. Thus, we conclude the following 
conditions for the feasible conditions of a B*-tree with 
the right and top boundary clustering constraint. 

 Right boundary clustering condition: The nodes 
corresponding to the right clustering modules must be 
on the bottom-left branch of a B*-tree which left 
children are moved. 

 Top boundary clustering condition: The nodes 
corresponding to the top clustering modules must be on 
the bottom-right branch of a B*-tree which right 
children are moved.  

In Figure 3(b), b11 and b10 are on the bottom-left 
branch and their left children are moved. So they are 
on right boundary. Similarly, the top boundary is 
including b3 and b4. 
   As we all know, the final placement not only 
depends on B*-tree structure, but also depends on the 
dimension of the modules. Handling floorplanning 
with boundary clustering constraint, we propose some 
sufficient conditions for B*-tree which are mentioned 
above. It means that the placement is legal if the 
sufficient conditions are satisfied. So the sufficient 
conditions may help us search the feasible solutions 
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efficiently and easily help us judge the validity of the 
solutions. The sufficient conditions also can guide the 
process of the randomly optimization.  

4.2. Repair an infeasible B*-tree 

Based on the proposed conditions, we can 
transform an infeasible B*-tree into feasible one. Three 
kinds of operations are devised to change the violated 
nodes to meet the boundary clustering constraint. If a 
module b is a constrained module, but it violates the 
constraint in the packing such as the module n4 in 
Figure 4. We can remedy this violation by taking one 
of the following three kinds of operations. 

 Op1: Swap with a free node in leftmost (rightmost) 
branch or bottom-left (bottom-right) branch of a 
B*-tree which is not constrained. 

Op2: Insert into leftmost (rightmost) branch or 
bottom-left (bottom-right) branch of a B*-tree. 
   Op3: Choose a constrained node in leftmost or 
rightmost branch or a child of a node which satisfies 
the constrained as parent.  

Suppose a placement has nine modules and the 
boundary clustering constrained modules are n0, n1 and 
n4. In Figure 4(a), the B*-tree represents one of the 
placement. n0 and n1 satisfy the boundary clustering 
constraint, but n4 is a violated node. Doing Op1, we 
can choose n5 which is a free boundary node to swap 
with. So Figure 4(b) is the result of swapping. We can 
insert n4 into the rightmost branch of B*-tree showing 
in Figure 4(c). We also can choose the n1 as parent to 
do Op3 and be right child of it. Because n1 is a 
boundary clustering constrained node. Figure 4(d) 
shows the legal result. In some cases, certain 
operations are not available. When there has no free 
boundary modules, we cannot do Op1. And when no 
nodes can satisfy the Op3 condition, we must choose 
to do Op1 or Op2. Also in some particular condition, 
we only can do Op2. In any conditions, one of the 
three operations can be used at least. These operations 
are based on modification on tree structure, Op1 only 
takes O(1) times. The Op2 and Op3 take O(n) time, 
where n is the number of modules.  

                      
Figure 4: (a) an infeasible B*-tree in which n4 is 
violating; (b) swapping with a free boundary node; 
(c) inserting into rightmost branch of the B*-tree; 
(d) choosing a left boundary constrained node as 
parent. 

5. SA-based optimization flow  
The flow of our algorithm is summarized in Figure 

5. With B*-tree representation we develop a simulated 
annealing based algorithm [1] for handling the 
placement with boundary clustering constraint. Given 
an initial B*-tree, we firstly check whether the B*-tree 
satisfies the feasible conditions for the boundary 
clustering constraint. If it violates the constraint, we 
should repair it. In the simulated annealing process, the 
perturb() function perturbs the B*-tree to get a new one 
and roughly judges whether it changes the feasible 
conditions of B*-tree. It returns a boolean variable. If 
the perturbations do not change the validity of the 
B*-tree, it returns false. It can avoid redundant 
scanning and improve the efficiency of our algorithm. 
The detail methods will be introduced in section 5.2. 
On the contrary, if the perturb() function  returns true, 
we need to recheck the feasible conditions of B*-tree. 
We transform an infeasible B*-tree into feasible one if 
any condition is violated. The perturbation process 
repeats until the termination conditions are met. 

 
Figure 5: Design flow graph of our algorithm  

5.1. Perturbation in SA 

We use simulated annealing to search for an 
optimal solution. We apply the following three 
operations to perturb a B*-tree:  

Op1: Rotate a module. 
Op2: Swap two modules. 
Op3: Move a module to another place in B*-tree. 
Op1 only exchanges the width and height of a 

module without changing a B*-tree while Op2 and 
Op3 do. Only two nodes in a B*-tree are exchanged 
for Op2. The time complexity of Op2 takes O(1) time. 
However, the topology of a B*-tree is changed for Op3 
since we need to delete and insert nodes into the 
B*-tree. The operations for deleting and inserting 
nodes are described in the following. 
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For node deletion, three types of nodes must be 
considered: leaf nodes, nodes with one child, and 
nodes with two children. For a leaf node, it can be 
removed from a B*-tree directly without affecting 
other nodes. For a node with one child, it is replaced by 
its child. The subtree rooted by the child remains 
unchanged after the deletion. This tree update can be 
performed in O(1) time. The process to delete a node 
with two children is a bit more complex. One of its two 
children is chosen to replace the target node. Then we 
move a child of the node to the position of the node. 
The procedure continues until the corresponding leaf 
node is processed. This operation takes O(h) time, 
where h is the height of B*-tree. As shown in Figure 6, 
three cases of a node deletion are represented. In figure 
6(a), the node deleted is a leaf node. And in Figure 6(b), 
it has one child. The node with two children is deleted 
showing in Figure 6(c). 

     
       (a)             (b) 

 
             (c) 

Figure 6: The operation of a node deletion (a) a leaf 
node; (b) a node with one child; (c) a node with two 
children 

When we insert a node ni into a B*-tree, we 
randomly choose a node nj as its new parent. Then, ni 
is inserted into the left (or right) of nj and the original 
left (or right) child of nj becomes the left (or right) 
child of ni. The operation takes O(1) time. According 
to the above analysis, Op3 takes O(n) time, where n is 
the number of modules. 

5.2. Maintaining a Feasible B*-tree 

The feasible condition of a B*-tree may be 
destroyed after perturbation. However, some 
perturbations do not influence the legality of B*-tree. 
In these conditions, we needn’t recheck the B*-tree. It 
is very helpful to reduce our running time especially 
when the number of modules is very large. For 
example, it is obvious that rotating modules do not 
change the validity. And when we choose two free or 
constrained nodes to do the perturbation, the validity of 
the result will not be affected and so on.  

Further, to guarantee a feasible B*-tree during 

perturbation, we do not move nodes to left (right) 
children of the nodes in the bottom-left (bottom-right) 
branch. It can be controlled in the perturb() function. 

6. Experimental Results 
We implemented our algorithm using C++ 

programming language on a Pentium 4 2.4 GHz 
computer with 512 MB memory. We compared our 
algorithm with floorplanner based on B*-tree with no 
constraint in [1] based on the MCNC and GSRC 
benchmark circuits listed in Table 1. Columns 1, 2, 3 in 
the table give the respective names of circuits, number 
of modules and number of constrained modules.  

Table1: the information of the circuit 
Circuit #of modules #of constrain t number 

apte 9 4 
xerox 10 4 

hp 11 4 
ami33 33 10 
ami49 49 10 
n100 100 11 
n200 200 20 
n300 300 20 

In the hierarchical designs, we can cluster standard 
cells into virtual blocks which have the similar size of 
the macro modules. We simultaneously handle macro 
modules and the virtual blocks in the floorplanning. 
Using the above mentioned benchmarks, the 
constrained modules denote the macro modules and the 
remaindering modules denote the virtual blocks in 
SOC design.  

The area and time comparisons between the 
B*-tree with no constraint in [1] and ours are listed in 
Table 2. The column “Time ratio” gives the ratio of the 
runtime in [1] and the runtime of our algorithm. The 
empirical results show that even with certain amount of 
boundary clustering constrained modules, our 
algorithm can obtain promising solutions in acceptable 
time. According to the above mentioned sufficient 
conditions in section 4, the solution space may be 
reduced. But from the results, we can see that the 
coverage of the solution space is quite extensive and 
the quality of the solution is also promising. As shown 
in Table 2, the average area utilization is 95.902%, the 
decrease is only 0.635% comparing with the algorithm 
in [1] with no constrained modules. For xerox circuit, 
the area utilization has increased from 95.91% to 
97.036%. The time over-head by checking and 
repairing B*-tree is linear to the number of modules. 
For apte circuit, the time ratio is 1:1.47. However, 
when the size of circuits are between ten and a hundred, 
such as xerox, hp, ami33, ami49 and n100, the time 
cost increases about three or four times. When we use 
the circuits of n200 and n300, the running time has 
increased about 8 times. Figure 7 shows the resulting 
layout for ami33 with ten constrained modules. Figure 
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8 shows the resulting placements for n100 with the 
eleven constrained modules shaded. 

7. Conclusion 
   We have explored the feasible conditions of a 
B*-tree with boundary clustering constraint and 
developed a simulated annealing based floorplan 
algorithm. Also, we have proposed an efficient 

algorithm to transform an infeasible solution into a 
feasible one if the boundary clustering constraint is 
violated. Unlike most previous works, our algorithm 
can repair infeasible solutions rather than directly 
rejecting them during optimization process. Our 
algorithm is verified by using the MCNC and GSRC 
benchmarks, and the empirical results show that our 
algorithm can obtain promising solutions in acceptable 
time.  

Table 2: comparison between B*-tree based algorithm used in [1] with no constraints and ours 
 B*-tree with no constraint  B*-tree with constraint  

circuit 
Total 

area of 
blocks Resulting 

area (mm2) 
Area 

utilization(%)
Runtime 
(s) 

Resulting 
area (mm2)

Area 
utilization %)

Runtime 
(s) 

 
Runtime  
ratio 

apte 46.56 46.92 99.23 0.82 46.92 99.23 1.13 1：1.47 
xerox 19.32 20.26 95.91 0.98 19.940 97.036 3.66 1：3.73 

hp 8.92 9.11 96.90 1.03 9.110 96.903 3.36 1：3.25 
ami33 1.16 1.19 97.04 16.84 1.213 95.377 57.59 1：3.42 
ami49 35.43 36.78 96.36 27.34 37.200 95.281 156.6 1：5.72 
n100 0.1795 0.1854 96.8 119.22 0.1886 95.178 476.6 1：3.50 
n200 0.1757 0.1842 95.41 178.77 0.1850 94.950 1450.3 1：8.11 
n300 0.2732 0.2874 95.05 362.2 0.2928 93.260 3000.7 1：8.29 

average   96.51   95.902   

                    
Figure 7: The placement result of ami33,           Figure 8: The placement result of n100, 
where the number of constraint modules             where the number of constraint modules 
is ten, the dead space is 4.623%.                     is eleven, the dead space is 4.822%.  
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