
Modern floorplanning with boundary clustering constraint*
Li Li1, Yuchun Ma2, Ning Xu1, Yu Wang2, Xianlong Hong2

1 WuHan University of Technology, WuHan, China
2Tsinghua University, Beijing, China
Email: myc@mail.tsinghua.edu.cn

Abstract

 With the development of SOC designs, modern
floorplanning typically needs to provide extra options
to meet the different emerging requirements in the
hierarchical designs, such as boundary constraint for
I/O connection, clustering constraint for performance
and reliability, etc. This paper addresses modern
floorplanning with boundary clustering constraint. It
has been empirically shown that the modern
constraints extremely restrict the solution space; that is,
a large number of randomly generated floorplans
might be infeasible. In order to effectively search the
feasible solutions, the feasible conditions based on
B*-tree representation with boundary clustering
constraint are investigated. The properties, coupled
with an efficient simulated annealing algorithm,
provide the way to produce feasible floorplans by
dynamic repairing, which can transform an infeasible
solution into a feasible one if the constraint is violated.
Our algorithm is verified by using the MCNC and
GSRC benchmarks, and the empirical results show that
our algorithm can obtain promising solutions in
acceptable time.

1. Introduction

Classical floorplanning formulation roughly
determines the layout of a given set of modules, such
that no modules overlap, and the enclosing layout
region has minimum area and interconnection. After
entering SOC era, however, modern floorplanning
takes more care of providing extra options to place
dedicated modules in the hierarchical designs. So it is
common that designers will put additional placement
constraints on the final packing to get meaningful
designs for different purposes, such as abutment,
boundary and fixed-outline constraints, etc. For
instance, in mixed mode placement, the macros are

 *This work is supported by NSFC 60606007 and
60720106003, Tsinghua Basic Research Fund JC20070021,
and Tsinghua National Laboratory for Information Science
and Technology (TNList) Cross-discipline Foundation.

always packed on the boundaries or clustered to the
boundaries first so that the standard cells can be placed
in the center. Therefore, we define a special kind of
constraints named boundary clustering constraint
which requires constrained modules being on the
boundaries or clustering to the boundaries. Boundary
clustering constraint can help to minimize wire length
and routing space fragmentation in hierarchical design
for SOC designs [10] [11]. In mixed-size placement,
before the detailed placement of standard cells, the
macro modules are first packed along or clustered to
the boundaries which satisfy the boundary clustering
constraint. As shown in the Figure 1, the macro blocks
are all placed along or clustered to the boundaries
before the standard cells are placed [10].

Figure 1: Placement of hard macro blocks

Recently, several floorplan representations are
proposed, e.g., sequence pair (SP) [4], BSG [5], O-tree
[2], B*-tree [1], corner block list (CBL) [6] and TCG
[7]. Each representation has its own characteristics.
Based on different representations, several works were
proposed to handle various constraints including
boundary constraint. In [8], it handled the boundary
constraint using sequence pair. In [12], CBL was used
to handle boundary constraints by proposing several
boundary conditions in CBL representation. In [3], it
handled boundary constraint using B*-tree. In
boundary constraint, the constrained modules are
restricted to be along the boundaries. But the boundary
clustering constraint is different from boundary
constraint since the constrained modules may not be
located along boundaries but be clustered to the
constrained blocks which are along the boundaries. As

2009 IEEE Computer Society Annual Symposium on VLSI					

978-0-7695-3684-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ISVLSI.2009.24

79

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 10,2010 at 13:27:57 UTC from IEEE Xplore. Restrictions apply.

shown in Figure1, some small macros are not along the
boundaries, but clustered near to the big macros which
are along the boundaries. Dealing with boundary
clustering constraint is more meaningful for the macro
placement in hierarchical designs. T.C. Chen, etc
proposed a MP-tree to solve macro modules in
mixed-size design in [9]. They handled the standard
cells and macro modules separately by packing them in
two steps. The macros are placed along four
boundaries alone so that the center region is left to the
standard cells. Although the two-step method ensures
maximal contiguous (minimally fragmented) space for
standard cells, it may result in long interconnects and
therefore inferior timing results since the connections
between macros and other cells are ignored in the first
step. Therefore, to obtain the global optimization, it is
necessary to pack the macros with the consideration of
other cells. In the high level of hierarchical designs, the
standard cells can be clustered into virtual modules so
that a floorplanning methodology with boundary
clustering constraints is very necessary.

In this paper, we deal with the floorplan design
with boundary clustering constraint using the B*-tree
representation. B*-tree has been proved a superior
representation due to its simple, yet effective binary
tree structure. In this paper, the feasible conditions
based on B*-tree representation with boundary
clustering constraint are investigated. The properties,
coupled with an efficient simulated annealing
algorithm, provide the way to produce floorplans with
boundary clustering constraint. Through dynamic
repairing, it is guaranteed that every solution in each
iterative process is feasible. The effect and efficiency
of our algorithm are verified by using the MCNC and
GSRC benchmarks, and the empirical results show that
our algorithm can obtain promising solutions in
acceptable time.

The remainder of this paper is organized as follows.
Section2 gives the problem definition. Section3 briefly
introduces the B*-tree representation.Section4 explores
the feasible conditions based on B*-tree for the
boundary clustering constraint. Section 5 presents our
overall algorithm. Experimental results are reported in
Section 6. Finally, we conclude our work in Section 7.

2. Problem Formulation

In this section, we first define the boundary clustering
constraint and then formulate the placement problem.
2.1. Boundary Clustering Constraint

The boundary clustering constraint means that the
constrained modules must be placed along or clustered

to the boundaries in the final placement. We conclude
the definitions of this constraint as follows.
 Definition 1: Modules are clustered along the
bottom (left) boundary iff these modules abut each
other and there exists no other module below (left to)
the clustered modules in the final placement.

Definition 2: Modules are clustered along the top
(right) boundary iff these modules abut each other and
there exists no other module above (right to) the
clustered modules in the final placement.

For instance, as shown in Figure2, b3, b4 and b5 are
defined as constrained modules. The packing in Figure
2 represents an admissible placement. In Figure 2(a),
we can see that b3 is on the left boundary. b5 and b4 are
clustered with b3 to the left boundary. So b3, b4 and b5
satisfy the boundary clustering constraint. However, in
Figure 2(b), the placement is illegal. Since b3, b4 and b5
are not placed along or clustered to any boundaries.

 (a) (b)

Figure 2: A placement with boundary clustering
constraint modules (b3, b4 and b5) (a) A feasible
placement; (b) An infeasible placement

2.2. Problem Definition

Let B = {b1 , b2 , … , bn} be a set of n rectangular
modules whose respective width, height and area are
denoted by Wi , Hi and Ai , 1≤ i ≤ n. Let (xi , yi) denote
the coordinate of the bottom-left corner of module bi ,
1≤ i ≤ n, on a chip. A placement P with the boundary
clustering constraint is an assignment of the coordinate
(xi , yi) for each bi , 1≤ i ≤ n, such that no two modules
overlap and the constrained modules meet the
boundary clustering constraint. The goal of
floorplanning/placement is to optimize a predefined
cost metric, such as the area and wire length, induced
by the assignment of bi’s on the chip.

3. B*-tree Representation

B*-trees [1] are an ordered binary tree for
modeling a compacted floorplan. Given an admissible
placement [2] (in which no module can move left or
bottom) P, we can represent it by a unique B*-tree T.
(See Figure 3(b) for the B*-tree representing the
placement of Figure 3(a)). The root of B*-tree
corresponds to the block on the bottom-left corner.
Similar to the DFS procedure, we construct the B*-tree
T for an admissible placement P in a recursive fashion:

80

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 10,2010 at 13:27:57 UTC from IEEE Xplore. Restrictions apply.

Starting from the root, we first recursively construct
the left subtree and then the right subtree. Let Ri denote
the set of blocks located on the right-hand side and
adjacent to bi. The left child of the node ni corresponds
to the lowest block in Ri that is unvisited. The right
child of ni represents the lowest block located above
and with its x-coordinate equal to that of bi.

Based on the definition, the root of T represents the
block on the bottom-left corner, and thus the x- and y-
coordinates of the block associated with the root (xroot,
yroot) = (0, 0). If node nj is the left child of node ni,
block bj is placed on the right-hand side and adjacent to
block bi in the placement; i.e., xj = xi+ wi. Otherwise, if
node nj is the right child of ni, block bj is placed above
block bi, with the x-coordinate of bj equal to that of bi;
i.e., xj = xi. With the contour structure, we can compute
the y-coordinate of a block in amortized constant time.

 (a) (b)
Figure 3: (a) An admissible placement; (b) the
B*-tree representing the placement

4. Feasible conditions for the boundary
clustering constraint

In this paper, we proposed the feasible conditions
based on B*-tree for boundary clustering constraint so
that we can search the feasible solutions efficiently.
The feasible solutions may guide the process of the
randomly optimization and promote the efficiency of
our algorithm.

4.1. Feasible conditions of B*-tree

 From the construction of B*-tree, we can conclude
that if a node is not on a boundary but satisfied the
boundary clustering constraint, the parent of the node
must be a satisfied boundary clustering constrained
module. So our algorithm firstly checks the boundary
modules, and then finds out the modules clustering to
the boundary constrained modules.

Let the leftmost branch (rightmost branch) of a
B*-tree denote the path formed by the root and its
leftmost (rightmost) descendants. By the definition of
the B*-tree, all nodes in the leftmost (rightmost) branch
are not right (left) children of others, which means there
exists no module below (left to) the corresponding
modules. We conclude the following conditions for the
feasible conditions of a B*-tree with the bottom and

left boundary clustering constraint.
 Bottom boundary clustering condition: The nodes

corresponding to the bottom clustering blocks must be
on the leftmost branch of a B*-tree and their children.

 Left boundary clustering condition: The nodes
corresponding to the left clustering modules must be on
the rightmost branch of a B*-tree and their children.

For example, we can see in Figure 3(b), b1, b7, b8 and
b10 are in the leftmost branch, so they are on the bottom
boundary. It also has clustered condition. If b8 is
boundary clustering constrained module, b9 is also a
boundary clustering module. Because the b9 clusters
with b8 to the bottom boundary. Similarly, the left
boundary modules are b2 and b3. We can see that b5 is a
child of b2 , it means that b5 is clustered with b2 to the
left boundary. If the b2 is a constrained module, the b5
satisfies the boundary clustering constraint, and so on.

Let the bottom-left (bottom-right) branch of a
B*-tree denotes the path formed by the end of the
leftmost (rightmost) branch and its rightmost (leftmost)
descendants. If the nodes in the bottom-left
(bottom-right) branch have left (right) children, it is
very difficult to judge the right (top) boundary
conditions. In order to guarantee that modules can be
placed along the right (top) boundary, their left (right)
children are moved. By the definition of the B*-tree, all
nodes in the bottom-left branch of a B*-tree which left
children are moved are with the same x- coordinate
with the module placed at the bottom-right corner. So
there is no module placed right to these modules.
Further, no module is placed above these modules
since the right children of the nodes in the bottom-right
branch are moved. Thus, we conclude the following
conditions for the feasible conditions of a B*-tree with
the right and top boundary clustering constraint.

 Right boundary clustering condition: The nodes
corresponding to the right clustering modules must be
on the bottom-left branch of a B*-tree which left
children are moved.

 Top boundary clustering condition: The nodes
corresponding to the top clustering modules must be on
the bottom-right branch of a B*-tree which right
children are moved.

In Figure 3(b), b11 and b10 are on the bottom-left
branch and their left children are moved. So they are
on right boundary. Similarly, the top boundary is
including b3 and b4.
 As we all know, the final placement not only
depends on B*-tree structure, but also depends on the
dimension of the modules. Handling floorplanning
with boundary clustering constraint, we propose some
sufficient conditions for B*-tree which are mentioned
above. It means that the placement is legal if the
sufficient conditions are satisfied. So the sufficient
conditions may help us search the feasible solutions

81

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 10,2010 at 13:27:57 UTC from IEEE Xplore. Restrictions apply.

efficiently and easily help us judge the validity of the
solutions. The sufficient conditions also can guide the
process of the randomly optimization.

4.2. Repair an infeasible B*-tree

Based on the proposed conditions, we can
transform an infeasible B*-tree into feasible one. Three
kinds of operations are devised to change the violated
nodes to meet the boundary clustering constraint. If a
module b is a constrained module, but it violates the
constraint in the packing such as the module n4 in
Figure 4. We can remedy this violation by taking one
of the following three kinds of operations.

 Op1: Swap with a free node in leftmost (rightmost)
branch or bottom-left (bottom-right) branch of a
B*-tree which is not constrained.

Op2: Insert into leftmost (rightmost) branch or
bottom-left (bottom-right) branch of a B*-tree.
 Op3: Choose a constrained node in leftmost or
rightmost branch or a child of a node which satisfies
the constrained as parent.

Suppose a placement has nine modules and the
boundary clustering constrained modules are n0, n1 and
n4. In Figure 4(a), the B*-tree represents one of the
placement. n0 and n1 satisfy the boundary clustering
constraint, but n4 is a violated node. Doing Op1, we
can choose n5 which is a free boundary node to swap
with. So Figure 4(b) is the result of swapping. We can
insert n4 into the rightmost branch of B*-tree showing
in Figure 4(c). We also can choose the n1 as parent to
do Op3 and be right child of it. Because n1 is a
boundary clustering constrained node. Figure 4(d)
shows the legal result. In some cases, certain
operations are not available. When there has no free
boundary modules, we cannot do Op1. And when no
nodes can satisfy the Op3 condition, we must choose
to do Op1 or Op2. Also in some particular condition,
we only can do Op2. In any conditions, one of the
three operations can be used at least. These operations
are based on modification on tree structure, Op1 only
takes O(1) times. The Op2 and Op3 take O(n) time,
where n is the number of modules.

Figure 4: (a) an infeasible B*-tree in which n4 is
violating; (b) swapping with a free boundary node;
(c) inserting into rightmost branch of the B*-tree;
(d) choosing a left boundary constrained node as
parent.

5. SA-based optimization flow
The flow of our algorithm is summarized in Figure

5. With B*-tree representation we develop a simulated
annealing based algorithm [1] for handling the
placement with boundary clustering constraint. Given
an initial B*-tree, we firstly check whether the B*-tree
satisfies the feasible conditions for the boundary
clustering constraint. If it violates the constraint, we
should repair it. In the simulated annealing process, the
perturb() function perturbs the B*-tree to get a new one
and roughly judges whether it changes the feasible
conditions of B*-tree. It returns a boolean variable. If
the perturbations do not change the validity of the
B*-tree, it returns false. It can avoid redundant
scanning and improve the efficiency of our algorithm.
The detail methods will be introduced in section 5.2.
On the contrary, if the perturb() function returns true,
we need to recheck the feasible conditions of B*-tree.
We transform an infeasible B*-tree into feasible one if
any condition is violated. The perturbation process
repeats until the termination conditions are met.

Figure 5: Design flow graph of our algorithm

5.1. Perturbation in SA

We use simulated annealing to search for an
optimal solution. We apply the following three
operations to perturb a B*-tree:

Op1: Rotate a module.
Op2: Swap two modules.
Op3: Move a module to another place in B*-tree.
Op1 only exchanges the width and height of a

module without changing a B*-tree while Op2 and
Op3 do. Only two nodes in a B*-tree are exchanged
for Op2. The time complexity of Op2 takes O(1) time.
However, the topology of a B*-tree is changed for Op3
since we need to delete and insert nodes into the
B*-tree. The operations for deleting and inserting
nodes are described in the following.

82

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 10,2010 at 13:27:57 UTC from IEEE Xplore. Restrictions apply.

For node deletion, three types of nodes must be
considered: leaf nodes, nodes with one child, and
nodes with two children. For a leaf node, it can be
removed from a B*-tree directly without affecting
other nodes. For a node with one child, it is replaced by
its child. The subtree rooted by the child remains
unchanged after the deletion. This tree update can be
performed in O(1) time. The process to delete a node
with two children is a bit more complex. One of its two
children is chosen to replace the target node. Then we
move a child of the node to the position of the node.
The procedure continues until the corresponding leaf
node is processed. This operation takes O(h) time,
where h is the height of B*-tree. As shown in Figure 6,
three cases of a node deletion are represented. In figure
6(a), the node deleted is a leaf node. And in Figure 6(b),
it has one child. The node with two children is deleted
showing in Figure 6(c).

 (a) (b)

 (c)

Figure 6: The operation of a node deletion (a) a leaf
node; (b) a node with one child; (c) a node with two
children

When we insert a node ni into a B*-tree, we
randomly choose a node nj as its new parent. Then, ni
is inserted into the left (or right) of nj and the original
left (or right) child of nj becomes the left (or right)
child of ni. The operation takes O(1) time. According
to the above analysis, Op3 takes O(n) time, where n is
the number of modules.

5.2. Maintaining a Feasible B*-tree

The feasible condition of a B*-tree may be
destroyed after perturbation. However, some
perturbations do not influence the legality of B*-tree.
In these conditions, we needn’t recheck the B*-tree. It
is very helpful to reduce our running time especially
when the number of modules is very large. For
example, it is obvious that rotating modules do not
change the validity. And when we choose two free or
constrained nodes to do the perturbation, the validity of
the result will not be affected and so on.

Further, to guarantee a feasible B*-tree during

perturbation, we do not move nodes to left (right)
children of the nodes in the bottom-left (bottom-right)
branch. It can be controlled in the perturb() function.

6. Experimental Results
We implemented our algorithm using C++

programming language on a Pentium 4 2.4 GHz
computer with 512 MB memory. We compared our
algorithm with floorplanner based on B*-tree with no
constraint in [1] based on the MCNC and GSRC
benchmark circuits listed in Table 1. Columns 1, 2, 3 in
the table give the respective names of circuits, number
of modules and number of constrained modules.

Table1: the information of the circuit
Circuit #of modules #of constrain t number

apte 9 4
xerox 10 4

hp 11 4
ami33 33 10
ami49 49 10
n100 100 11
n200 200 20
n300 300 20

In the hierarchical designs, we can cluster standard
cells into virtual blocks which have the similar size of
the macro modules. We simultaneously handle macro
modules and the virtual blocks in the floorplanning.
Using the above mentioned benchmarks, the
constrained modules denote the macro modules and the
remaindering modules denote the virtual blocks in
SOC design.

The area and time comparisons between the
B*-tree with no constraint in [1] and ours are listed in
Table 2. The column “Time ratio” gives the ratio of the
runtime in [1] and the runtime of our algorithm. The
empirical results show that even with certain amount of
boundary clustering constrained modules, our
algorithm can obtain promising solutions in acceptable
time. According to the above mentioned sufficient
conditions in section 4, the solution space may be
reduced. But from the results, we can see that the
coverage of the solution space is quite extensive and
the quality of the solution is also promising. As shown
in Table 2, the average area utilization is 95.902%, the
decrease is only 0.635% comparing with the algorithm
in [1] with no constrained modules. For xerox circuit,
the area utilization has increased from 95.91% to
97.036%. The time over-head by checking and
repairing B*-tree is linear to the number of modules.
For apte circuit, the time ratio is 1:1.47. However,
when the size of circuits are between ten and a hundred,
such as xerox, hp, ami33, ami49 and n100, the time
cost increases about three or four times. When we use
the circuits of n200 and n300, the running time has
increased about 8 times. Figure 7 shows the resulting
layout for ami33 with ten constrained modules. Figure

83

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 10,2010 at 13:27:57 UTC from IEEE Xplore. Restrictions apply.

8 shows the resulting placements for n100 with the
eleven constrained modules shaded.

7. Conclusion
 We have explored the feasible conditions of a
B*-tree with boundary clustering constraint and
developed a simulated annealing based floorplan
algorithm. Also, we have proposed an efficient

algorithm to transform an infeasible solution into a
feasible one if the boundary clustering constraint is
violated. Unlike most previous works, our algorithm
can repair infeasible solutions rather than directly
rejecting them during optimization process. Our
algorithm is verified by using the MCNC and GSRC
benchmarks, and the empirical results show that our
algorithm can obtain promising solutions in acceptable
time.

Table 2: comparison between B*-tree based algorithm used in [1] with no constraints and ours
 B*-tree with no constraint B*-tree with constraint

circuit
Total

area of
blocks Resulting

area (mm2)
Area

utilization(%)
Runtime
(s)

Resulting
area (mm2)

Area
utilization %)

Runtime
(s)

Runtime
ratio

apte 46.56 46.92 99.23 0.82 46.92 99.23 1.13 1：1.47
xerox 19.32 20.26 95.91 0.98 19.940 97.036 3.66 1：3.73

hp 8.92 9.11 96.90 1.03 9.110 96.903 3.36 1：3.25
ami33 1.16 1.19 97.04 16.84 1.213 95.377 57.59 1：3.42
ami49 35.43 36.78 96.36 27.34 37.200 95.281 156.6 1：5.72
n100 0.1795 0.1854 96.8 119.22 0.1886 95.178 476.6 1：3.50
n200 0.1757 0.1842 95.41 178.77 0.1850 94.950 1450.3 1：8.11
n300 0.2732 0.2874 95.05 362.2 0.2928 93.260 3000.7 1：8.29

average 96.51 95.902

Figure 7: The placement result of ami33, Figure 8: The placement result of n100,
where the number of constraint modules where the number of constraint modules
is ten, the dead space is 4.623%. is eleven, the dead space is 4.822%.

References
[1] Y.C. Chang, Y.W. Chang, G.M. Wu, and S.W. Wu,
"B*-trees: A new representation for non-slicing floorplans, "
Proc. DAC, 2000, pp. 458-463.
[2] P.N. Guo, C.K. Cheng, and T. Yoshimura, "An O-tree
representation of non-slicing floorplans and its applications,"
Proc. DAC, 1999, pp. 268-273
[3] J.M. Lin, H.E. Yi, and Y.W. Chang, "Module placement
with boundary constraints using B*-trees," IEEE Proceedings
Circuits, Devices and Systems, 2002, pp. 251--256.
[4] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,
"Rectangle-Packing Based Module Placement," International
Conference on Computer Aided Design, 1995, pp. 472–479
[5] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani,
"Module Placement on BSG-Structure and ICLayout
Applications," International Conference on Computer Aided
Design, 1996, pp. 484–491
[6] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng,
and J. Gu, "Corner Block List: An effective and efficient
topological representation of non-slicing floorplan,"
International Conference on Computer Aided Design, 2000,

pp. 8–12.
[7] J.M. Lin and Y.W. Chang, "TCG: A Transitive Closure
Graph-Based Representation for Non-Slicing Floorplans, "
38th Design Automation Conference, 2001, pp. 764–769.
[8] J. Lai, M.S. Lin, T.C. Wang and Li.C. Wang, "Module
Placement With Boundary Constraints Using the Sequence
Pair Representation," Asia and South Pacific Design
Automation Conference, 2001, pp. 515–520.
[9] Tung-Chieh Chen, Ping-Hung Yuh, Yao-Wen Chang,
Fwu-Juh Huang and Denny Liu, “MP-trees: A Packing-Based
Macro Placement Algorithm for Mixed-Size Designs,”,
DAC’07, 2007, pp. 447-452
[10] Enno Wein and Jacques Benkoski, "Hard macros will
revolutionize SOC design," EETimes, 2004
[11] Synopsys, Inc., "Hard Macro Placement in Complex
SOC Design," SOC Central, 2007
[12] Yuchun Ma, Sheqin Dong, Xianlong Hong, Yici Cai,
Chung-Kuan Cheng, Jun Gu: VLSI floorplanning with
boundary constraints based on corner block list. ASP-DAC
2001, pp. 509-514

84

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 10,2010 at 13:27:57 UTC from IEEE Xplore. Restrictions apply.

