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Abstract—Research in the domain of reversible circuits found
significant interest in the last years – not least because of the
promising applications e.g. in quantum computation and low-
power design. First physical realizations are already available,
motivating the development of efficient testing methods for this
kind of circuits. In this paper, complementary approaches for
automatic test pattern generation for reversible circuits are
introduced and evaluated. Besides a simulation-based technique,
methods based on Boolean satisfiability and pseudo-Boolean
optimization are thereby applied. Experiments on large reversible
circuits show the suitability of the proposed approaches with re-
spect to different application scenarios and test goals, respectively.

I. INTRODUCTION

Reversible circuits, i.e. circuits performing reversible oper-
ations only, build the basis for many emerging technologies
that may enhance or even replace conventional computer
chips in the future. As the most prominent example, quantum
circuits [1] are inherently reversible. With the help of this
kind of circuits, many important problems (e.g. factorization
or database search) can be solved faster than with conventional
methods (see e.g. [2]).

Additionally, even CMOS-based reversible circuits (like the
ones introduced in [3]) have some important benefits. While in
conventional logic energy amounting to kT · ln 2 is dissipated
for each lost bit of information (where k is the Boltzmann’s
constant and T is the temperature), reversible circuits are
information lossless [4], i.e. they are not affected by this [5].
Since with the ongoing miniaturization kT · ln 2 is going to
become a crucial value, reversible circuits are considered as
a good alternative in particular in domains like low-power
design.

As a result, research in the domain of reversible circuits
found significant interest in the last years. Different approaches
ranging from synthesis (see e.g. [6], [7]), optimization (see
e.g. [8], [9]), verification (see e.g. [10], [11]), and debugging
(see e.g. [12]) have been introduced. A new circuit model
(namely a cascade of reversible gates where no fanout and
feedback is allowed [1]) is thereby applied.

However, although large reversible circuits (or quantum
circuits, respectively) have not been physically built yet, first
promising realizations are already available (see e.g. [13],
[3]). Hence, efficient testing methods for this kind of circuits
are required. As a result, researchers studied different fault
models and the respective methods for Automatic Test Pattern
Generation (ATPG).

In one of the first studies [14], the stuck-at fault model was
thereby applied. Later, it was shown that the validity of the
stuck-at fault model is limited for reversible circuits [15]. As
a consequence, new models have been introduced: originally,
the missing gate fault model [15] followed by the partial
missing gate model (also known as missing control line fault
model), the repeated gate model, and further ones [16]. These
fault models have been shown to be computationally tractable,

while at the same time being applicable to different kinds of
technologies.

Along with the fault models, researchers also started to
investigate test pattern generation methods. The focus was
thereby on the determination of minimal or, at least, very
small testsets. Greedy and branch-and-bound methods [15]
as well as ILP formulations [16] have been applied for this
purpose. However, these approaches have been evaluated on
small circuits only. Furthermore, these approaches are based
on the fact that reversible circuits have ideal controllability
and observability making ATPG very easy. But, this is not
always the case. For example, reversible circuits realizing
practical functions (e.g. arithmetic) often include additional
constraints. In particular, constant inputs are frequently used in
this context. Because of this, the controllability may decrease
and, thus, complicates ATPG significantly.

In this paper, we introduce ATPG flows for both, reversible
circuits with and without additional constraints. Therefore,
three complementary approaches for test pattern generation are
applied: a simple one based on simulation and two more elab-
orated methods utilizing efficient solve engines for Boolean
satisfiability (SAT) (for which preliminary results previously
have been discussed in [17]) and pseudo-Boolean optimization
(PBO). All of them have their respective benefits and draw-
backs with respect to the different application scenarios (with
additional constraints or without additional constraints) as well
as with respect to the different test goals (compact testsets
vs. efficient generation). This is discussed in more detail later
in Section IV.

The different performances of the approaches become ev-
ident in the experimental evaluation: While the simulation-
based approach is quite fast if circuits without additional con-
straints are considered, it clearly is outperformed otherwise.
Then, the SAT-based method provides a better alternative. If
not run-time but quality (i.e. the size of the resulting testset) is
the crucial factor, the PBO-based approach performs best. To
the best of our knowledge, this represents the first evaluation
of ATPG with respect to different application scenarios and
test goals, respectively.

The rest of this paper is structured as follows: The first
section introduces the necessary background including a brief
introduction to reversible circuits, test of reversible circuits,
as well as SAT and PBO. The proposed ATPG flows are then
described in Section III. The actual test pattern generation
represents thereby the most crucial and most complex task.
The respective simulation-based, SAT-based, and PBO-based
methods addressing this task are introduced in Section IV.
Finally, experimental results are presented in Section V and
conclusions are drawn in Section VI, respectively.
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Fig. 1. Reversible circuit and circuit with SMCF

II. BACKGROUND

To keep the remainder of the paper self-contained, this
section introduces reversible circuits, provides a brief overview
on testing of reversible circuits, and reviews core techniques
utilized in this work.

A. Reversible Circuits
A logic function f :Bn → Bm over inputs X = {x1, ..., xn}

is reversible iff (1) its number of inputs is equal to its number
of outputs (i.e. n = m) and (2) it maps each input pattern to
a unique output pattern. That is, reversible functions represent
bijections. Reversible circuits are realizations of reversible
functions. A reversible circuit G is a cascade of reversible
gates gi, i.e. G = g1g2...gd, where no fanout and feedback is
allowed [1]. In this work, we consider the most widely used
reversible gate, the Toffoli gate [18].

Definition 1: A Toffoli gate over the set of inputs
X = {x1, ..., xn} has the form g(C, t), where C ⊂ X is the
set of control lines and t ∈ X \C is the target line. A single
Toffoli gate g(C, t) realizes the bijective funtion

(x1, ..., xn) 7→ (x1, ..., xt−1, t⊕
∧

xc∈C
xc, xt+1, ..., xn).

That is, if all control line variables xc are assigned to 1,
the target line t is inverted. Under this assignment the gate is
called activated. All other input values xk with k ∈ X \ {t}
pass the gate unaltered. Note that the set of control lines may
be empty. In this case, the gate works as a NOT gate, i.e. the
target line is always inverted.

Example 1: Fig. 1(a) shows a reversible circuit including
five circuit lines and four Toffoli gates, i.e. n = 5 and d = 4.
Control lines are denoted by a •, while the target line is de-
noted by ⊕. The annotated values demonstrate the computation
of the respective gates for a certain input pattern. In this case,
gates g2, g3, and g4 are activated.

B. Test of Reversible Circuits
As in conventional circuits, Automatic Test Pattern Genera-

tion (ATPG) methods for reversible circuits aim at determining
a set of stimulus patterns (denoted as testset) in order to detect
faults in a circuit with respect to an underlying fault model.
A testset is called complete, if it includes patterns that detect
all testable faults under the assumed model. In this paper, we
explicitly consider the single missing control faults defined as
follows:

Definition 2: Let g(C, t) be a Toffoli gate of a circuit G.
Then, a Single Missing Control Fault (SMCF) appears if in-
stead of g, a gate g′(C ′, t) is executed, whereas C ′ = C \{xi}
with xi ∈ C and xi 6= t (i.e. a control line is removed).

In order to detect a fault, the respective gates have to be acti-
vated so that the faulty behavior can be observed at the outputs
of the circuit. This requires certain input assignments [16].
More precisely, to detect an SMCF at gate g(C, t), all control
lines in C (except the missing one) have to be assigned to 1,
while the missing control line has to be assigned to 0. The
assignment of the remaining lines can be arbitrarily chosen.

Example 2: Fig. 1(b) illustrates an SMCF which can occur
in the reversible circuit previously introduced in Fig. 1(a). The
respective assignment needed to detect this fault is also given.

Note that the approach presented in this paper can be
extended for other fault models as well (in particular to the
single additional control fault model or the single missing gate
fault model). Then, just the assignments to the faulty gate
have to be adjusted. However, due to page limitations, in the
following we focus on SMCFs.

The aim of automatic test pattern generation is to determine
a compact, but complete, testset including as less as possible
test patterns.

C. SAT and PBO
Solvers for Boolean satsifiability (SAT) and pseudo-Boolean

optimization (PBO) are core technologies utlized in this work
for the purpose of ATPG. Both problems are defined as
follows:

Definition 3: The Boolean satisfiability problem determines
an assignment to the variables of a Boolean function
Φ : {0, 1}n → {0, 1} such that Φ evaluates to 1 or proves that
no such assignment exists. The function Φ is thereby given
in Conjunctive Normal Form (CNF). Each CNF is a set of
clauses where each clause is a set of literals and each literal
is a propositional variable or its negation.

Definition 4: The pseudo-Boolean optimization problem
determines a satisfying solution for a pseudo-Boolean func-
tion Ψ : {0, 1}n → {0, 1} which – at the same time –
minimizes an objective function F . The pseudo-Boolean func-
tion Ψ is thereby a conjunction of constraints defined by∑n

i=1 ciẋi ≥ cn, where c1 . . . , cn ∈ Z and ẋi either is a pos-
itive or a negative literal. The objective function F is defined
by F(x1, . . . , xn) =

∑n
i=1 miẋi with m1, . . . ,mn ∈ Z.

Example 3: Let Φ = (x1 + x2 + x3)(x1 + x3)(x2 + x3).
Then, x1 = 1, x2 = 1, and x3 = 1 is a satisfying assignment
solving the SAT problem.

Accordingly, let Ψ = (2x1 + 3x2 + x3 ≥ 3)(2x1 + x2 ≥ 2)
and F = x1 + x2 + x3. Then, x1 = 1, x2 = 0, and x3 = 0 is
a solution to the PBO problem, satisfying Ψ and at the same
time minimizing F .

Both, SAT and PBO, are well investigated problems. In
the past efficient solving algorithms (so called SAT solvers or
PBO solvers, respectively) have been proposed (see e.g. [19],
[20]). Instead of simply traversing the complete space of
assignments, intelligent decision heuristics, powerful learn-
ing schemes, and efficient implication methods are thereby
applied. In case of PBO, it is also common to translate the
respective instance into a sequence of SAT instances in order
to efficiently determine a solution [21]. In the following, we
apply these techniques as black boxes delivering the solution
for the proposed ATPG problem formulations.

III. ATPG FLOWS

This section introduces two flows for ATPG of reversible
circuits. The aim is to provide an algorithm that generates a
complete testset covering all faults depending on a given fault
model (stored in a fault list). Two different criteria are thereby
considered: On the one hand, the testsets should be as small
as possible. On the other hand, the results should be available
as fast as possible.

As already shown for conventional circuits, controllability
and observability are thereby crucial factors. The former
criterion defines the ability to establish a certain signal value
by setting values at the primary inputs. The latter one defines
the ability to determine a certain signal value by observing
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Fig. 2. Exploiting observability & controllability

the primary output values. Due to the reversibility, both tasks
can easily be performed in general reversible circuits. In fact,
given a fault for which a test pattern should be generated, the
values of the primary inputs (primary outputs) triggering this
fault (showing the fault) can easily be obtained be performing
the computations in the respective direction.

Example 4: Consider the circuit shown in Fig. 2 including
an SMCF at gate g4. In order to detect this fault, a test pattern
is required which establishes the signal value 1 at all control
lines of g4 and the signal value 0 at the missing control line,
respectively. Such a pattern can easily be derived by simulating
an appropriate input assignment to g4 (e.g. 01001 in Fig. 2)
backwards to the inputs of the circuit (leading to 10001 in
Fig. 2). Then, the faulty behavior can be detected at the outputs
of the circuits (instead of the desired output 01001, the faulty
output 01011 is generated in the example of Fig. 2).

Exploiting this observation, an ATPG flow for reversible
circuits as shown in Fig. 3(a) can be applied to generate a
complete testset. As long as there are faults, which are not
covered by the already determined test patterns, a new fault
is selected (Step (a)). Then, for this fault a test pattern as
described above is created (Step (b)) and added to the testset
(Step (c)). Since this test pattern might cover further faults,
fault simulation is performed next, i.e. the pattern is simulated
and further faults which are detected by this are removed
from the fault list (Step (d)). This procedure is repeated until
no faults are left, i.e. until the fault list is empty. Then, the
generated patterns form the complete testset (Step (e)).

However, this flow can only be applied if observability
and controllability in reversible circuits remain ideal. But,
this may not always be the case. For example, reversible
circuits realizing practical functions (e.g. arithmetic) often
include additional constraints. In particular, constant inputs
are frequently applied in this context. Because of this, the
controllability may decrease and, thus, complicates Step (b) of
the described flow. Moreover, in some cases even untestable
faults may result.

Example 5: Consider the circuit in Fig. 4. The two constant
inputs make it impossible to detect the highlighted missing
control fault at gate g4. In fact, all possible assignments 01001,
01011, 01101, and 01111 needed to activate g4 (and therewith
the faulty behavior) cannot be established since the corre-
sponding primary input patterns 10001, 10111, 10101, and
10011 conflict with the constant input assignments.

Consequently, an extended ATPG flow (shown in Fig. 3(b))
has to be applied if reversible circuits with additional con-
straints are considered. This flow differs from the previous
one by the fact that Step (b) is supposed either to create a test
pattern which satisfies the additional constraints or to prove
that no such test pattern exists. If a valid test pattern has been
obtained, the flow continues as described above. If in contrast,
the fault has been proven to be untestable, the fault is moved
from the fault list to a list of untestable faults (Step (f)). This
list can be used later e.g. to optimize the considered circuit.
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Fig. 3. ATPG flow for reversible circuits
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Fig. 4. Circuit with untestable fault

IV. TEST PATTERN GENERATION

In both flows covered in the previous section, Step (b),
i.e. the actual test pattern generation, represents the most
crucial and most complex task. In the following, three
complementary methods for this task are described: a
simulation-based method, a SAT-based method, and a
PBO-based method. All of them have their respective ben-
efits and drawbacks with respect to the test goal (compact
testsets vs. efficient generation) as well as with respect to the
additional constraints.

A. Simulation-based
As illustrated in Example 4, test pattern generation is easy

if circuits without additional constraints are considered. Then,
the faulty behavior simply is activated by an appropriate
input assignment which is subsequently propagated towards
the primary inputs and the primary outputs. Using simulation,
this can be done in linear time with respect to the number of
gates the circuit is composed of. In fact, this provides a very
simple and efficient way to generate test patterns.

In contrast, if additional constraints have to be considered,
simulation reaches its limits quite fast. Then, the obtained test
patterns have to be validated against constant input values.
If this validation fails, a different test pattern needs to be
generated. This process continues until either a valid one
is determined or no further appropriate test patterns can be
generated (and the fault has been classified to be untestable).

Example 6: Consider the circuit shown in Fig. 5 including
an SMCF at gate g4. In order to activate the faulty behavior,
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Fig. 5. Simulation-based ATPG

first the input assignments 01001 and 01011 are applied to g4
and propagated towards the inputs. Both lead to invalid test
patterns contradicting the constant input x1 = 0 and x2 = 0.
Not before the input assignment 11001 is applied, a valid test
pattern, namely 00001, can be obtained.

In the worst case, this procedure amounts to an exponential
number of simulation runs. In case of the SMCF model, 2n−|C|

different patterns exist for a given fault (where |C| is the num-
ber of control lines of the considered gate). This is, because
the values of the control lines are fix, but the assignment
of the remaining n − |C| lines can be arbitrarily chosen in
order to detect the fault. In particular for larger functions with
n � 1, this is crucial. Thus, simulation provides an efficient
solution for the ATPG problem only if reversible circuits
without additional constraints are considered. Beyond that, no
special treatment ensuring a compact testset is provided by
this method.

B. SAT-based
The exponential behavior of ATPG for reversible circuits

with additional constraints cannot be avoided. However, by
using efficient solving techniques, this process can be acceler-
ated. To this end, an alternative is proposed which makes use
of SAT solvers. Therefore, the ATPG problem is reformulated
as a SAT instance asking “Is there a valid assignment to all
primary inputs of the given circuit so that the considered faulty
behavior is triggered?”.

To encode this, a Boolean function Φ over the following
variables is created:
• ~x1 = x1

n, x
1
n−1 . . . x

1
1 representing the assignment to the

respective primary inputs of the circuit,
• ~xd+1 = xd+1

n , xd+1
n−1 . . . x

d+1
1 representing the assignment

to the primary outputs of the circuit, and
• ~xk = (xk

nx
k
n−1 . . . x

k
1) with 2 ≤ k ≤ d representing

the input (output) assignment to the respective gate gk
(gk−1).

Example 7: Consider the reversible circuit depicted in
Fig. 6(a). The variables needed to encode the ATPG problem
for this circuit as a SAT instance are annotated to the respective
gate inputs and outputs.

Having these variables, the ATPG problem is formulated as
the conjunction of the following three constraints. First, the
functionality of the given circuit is encoded, i.e. the constraint

d∧
k=1

n∧
i=1

xk+1
i =



xk
i , if xk

i represents a control
line of gate gk

xk
i ⊕

∧
xc∈Ck

xc, if xk
i represents the target

line of gate gk

xk
i ,

else (i.e. if xk
i represents

neither a control line nor
a target line of gate gk)

is added to the SAT instance. That is, for every gate gk(Ck, tk)

in the circuit, the respective input/output mapping is con-
strained (depending on the position of the control and tar-
get lines). In other words, the values of all lines (except
the target line) are passed through (xk+1

i = xk
i ), while

the output value for the target line is determined depend-
ing on the input values of the control and the target line
(xk+1

i = xk
i ⊕

∧
xc∈Ck\{xk

i }
xc).

Afterwards, constraints are added ensuring that the faulty
behavior is activated. In the case that a test pattern for an
SMCF at the ith line of gate gk(Ck, tk) should be generated,
the constraint

(xk
i = 0) ∧ (

∧
xc∈Ck\{xk

i }

xc = 1)

is added. For the remaining cases, these constraints are applied
accordingly. Other fault models can be supported by using
corresponding assignments.

Finally, the additional constraints are added to the instance.
Here, we consider constant inputs. That is, for each constant
input, constraints are added, ensuring that the respective vari-
able x1

i is set to the corresponding value.
Example 7 (continued): Using the variables introduced in

Fig. 6(a), a SAT instance is created asking for a test pattern
which detects the SMCF at gate g4. Therefore, the three
constraints as shown in Fig. 6(b) are added.

Afterwards, all these constraints are converted into CNF
– the common input format for SAT solvers. Since only
Boolean operations like equality, AND, or XOR are used, this
can be done quite easily.

If the solver determines a satisfying assignment for the
resulting instance, a valid test pattern can be obtained from
the assignment to x1

1 . . . x
1
n. If in contrast the SAT solver

returns unsatisfiable, it has been proven that no test pattern
considering the additional constraints exists – the respective
fault is untestable under these constraints.

In comparison to the simulation-based method, this ap-
proach makes full use of modern solving techniques. Thus,
in case of a reversible circuit with additional constraints, a
valid test pattern can be generated much more efficiently.
Nevertheless, also the SAT-based method does not provide a
special treatment ensuring a compact testset.

C. PBO-based
To address the demand for a compact testset, another ATPG

method is introduced. Therefore, we adjust the problem for
which a solution should be obtained: Instead of determining
a test pattern which detects one particular fault, an approach
is introduced which generates a test pattern detecting as many
faults as possible. PBO solvers are utilized for this task.

All the variables already introduced in Fig. 6(a) for SAT-
based ATPG are thereby applied again. The same holds for
most of the constraints. In fact, the functional constraints and
the additional constraints are reused. But, in order to encode
the faults, new variables and constraints are introduced. In case
of the SMCF model, for each undetected fault a new variable
fltgki and the constraint

fltgki = (xk
i = 0) ∧ (

∧
xc∈Ck\{xk

i }

xc = 1)

is added. That is, fltgki is set to 1 if an input assignment
is applied which detects a missing control fault at line i at
gate gk. Otherwise, this variable is set to 0.
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(c) PBO constraints
Fig. 6. SAT and PBO formulation for a SMC fault

Example 8: Consider again the circuit depicted in Fig. 6(a).
To formulate the ATPG problem as a PBO instance, the func-
tional constraints and the additional constraints from Fig. 6(b)
are reused. In addition, the fault constraints as shown in
Fig. 6(c) are added.

Accordingly, variables and constraints can be added for
other fault models as well.

Having this instance, the objective function need to be
formulated. Recall that a test pattern should be generated
which detects as many faults as possible. Each fltgki vari-
able set to 1 represents a fault to be detected under the
current assignment. Thus, the PBO problem to be solved is
to determine a satisfying solution for the proposed instance
which maximizes the number of variables fltgki set to 1.
Using common PBO solvers, this is formulated in the objective
function as follows:

F =

d∑
k=1

∑
xi∈C

flt
gk
ci

Note that – according to the definition of the PBO problem
(see Section II-C) – PBO solvers try to find a satisfying
solution which minimizes F . Due to the inversion of the
the respective fltgkci variables, the solver in fact maximizes
F =

∑d
k=1

∑
xi∈C fltgkci .

Example 8 (continued): For the considered example, the
objective function as shown in Fig. 6(c) is applied. Using
this, a test pattern is obtained which detects as many faults
represented by fltgkci as possible.

Similar to the SAT-based approach, all these constraints
finally are converted into the proper format and passed to
the respective solve engine. Since PBO solvers do not work
with Boolean formulas provided in CNF, all constraints need
to be encoded in terms of pseudo-Boolean constraints. This
is straight-forward: Each clause ẋi1 ∨ ẋi2 ∨ · · · ∨ ẋij of
the CNF simply is replaced with an equivalent constraint
ẋi1 + ẋi2 + · · ·+ ẋij ≥ 1.

Then, the PBO solver determines a result from which a
test pattern can be derived. Additionally, the concrete faults
which are detected by this pattern can be obtained from the
assignment to the corresponding fltgkci -variables. In the next
iterations, all fltgkci -variables representing detected faults (as
well as their constraints) are then removed from both, the
formula and the objective function. That is, the proposed
formulation is applied to the remaining faults only. In doing
so, Step (a) and Step (d) of the flow presented in Fig. 3 can
be omitted. The whole ATPG flow terminates either if test
patterns for all faults have been generated or if the instance
becomes unsatisfiable. In the latter case, all faults still included
in the fault list are then classified to be untestable.

Overall, the PBO-based approach eventually provides an
alternative to the previously introduced methods. As also con-

firmed by the experiments discussed in the next section, quite
compact testsets are generated for both, circuits with additional
constraints and circuits without additional constraints. In con-
trast, the complexity and therewith the run-time increases due
to the fact that in addition to the determination of a satisfying
assignment also an objective function is minimized.

V. EXPERIMENTAL EVALUATION

This section presents experimental results obtained by the
proposed approaches. Therefore, all methods have been im-
plemented in C++. MiniSAT [19] and clasp [20] are ap-
plied as solve engine for the SAT-based approach and the
PBO-based approach, respectively. As benchmarks, reversible
circuits from RevLib [22] have been taken including some
of the largest realizations available so far. Evaluations have
been performed considering the single missing control fault
model, the single additional control fault model, and the single
missing gate fault model. But due to page limitations, only the
results obtained with the SMCF model are reported. However,
the drawn conclusions hold for the other models as well. The
experiments have been carried out on an AMD Phenom II ×4
with 8 GB main memory. The timeout (denoted by TO) was
set to 3600 CPU seconds.

Table I provides the results. The first columns denote
thereby the name of the circuit (CIRCUIT), the number of
gates (d), the number of lines (n), the number of constant
inputs (c), and the number of possible faults to be tested (#F).
Afterwards, the size of the resulting testset (#TS), the number
of untestable faults (#UT), and the run-time in CPU seconds
needed to obtain these results (TIME) are reported for all
proposed approaches. In case of a timeout, Column #TS
reports the number of patterns generated so far along with
the percentage of faults covered by them.

Two different goals are considered in ATPG: quality (i.e. de-
termining an as compact as possible testset) and run-time. If
the former one is the crucial factor, the PBO-based approach
leads to the best results. In fact, for most of the benchmarks,
testsets with the smallest number of patterns are obtained
(exceptions are ham7 104, ham15 109, 4gt4-v0 78, 4gt12-
v0 86). On average, 33.26% less test patterns in comparison
to the SAT-based approach and 46.41% less test patterns in
comparison to the simulation-based approach are observed,
respectively. If in contrast run-time is the main criteria, a more
divergent picture results. Then, the simulation-based approach
clearly outperforms the other approaches if circuits without
additional constraints are considered. In fact, all benchmarks
can be handled in just a few seconds, while the SAT-based and
PBO-based approach need some minutes or even timeout. But,
as also discussed in Section IV-A, simulation is not efficient
for circuits with additional constraints. Here, the SAT-based
approach is the better alternative.



TABLE I
EXPERIMENTAL RESULTS

SIMULATION-BASED SAT-BASED PBO-BASED
Circuit d n c #F #TS #UT TIME(S) #TS #UT TIME(S) #TS #UT TIME(S)
W/o additional constraints
4 49 16 16 4 0 24 7 0 <0.01 7 0 0.01 5 0 0.03
ham7 104 23 7 0 34 6 0 0.01 5 0 0.01 6 0 0.03
0410184 169 46 14 0 49 10 0 0.02 12 0 0.08 3 0 0.06
ham15 108 70 15 0 125 10 0 0.02 9 0 0.13 9 0 0.21
ham15 109 109 15 0 126 9 0 0.02 8 0 0.23 9 0 0.27
ham15 107 132 15 0 352 43 0 0.06 25 0 0.76 16 0 0.82
hwb7 61 236 7 0 693 46 0 0.14 34 0 1.78 27 0 2.61
hwb7 62 331 7 0 582 57 0 0.18 36 0 1.83 29 0 4.64
hwb8 113 637 8 0 2214 93 0 0.77 57 0 6.25 44 0 28.27
plus127mod8192 162 910 13 0 5704 232 0 4.39 269 0 29.20 104 0 1280.72
hwb9 119 1544 9 0 5812 136 0 2.80 101 0 16.62 82 0 245.42
hwb9 123 1959 9 0 3596 138 0 2.58 91 0 29.08 79 0 439.90
urf3 155 26468 10 0 52936 26 0 7.86 25 0 60.78 (89.63)5 0 TO
W/ additional constraints
one-two-three-v0 97 11 5 2 23 4 9 0.01 3 9 0.02 3 9 0.02
4gt4-v0 78 13 5 1 18 8 0 <0.01 5 0 <0.01 6 0 0.02
4gt12-v0 86 14 5 1 20 7 0 <0.01 4 0 <0.01 5 0 0.02
decod24-enable 32 14 9 6 17 3 0 0.08 3 0 <0.01 3 0 0.02
mod5d1 16 15 8 3 19 3 0 <0.01 5 0 <0.01 3 0 0.02
graycode6 11 15 11 5 10 3 0 0.03 1 0 <0.01 1 0 <0.01
miller 5 16 8 5 24 6 0 0.02 5 0 <0.01 4 0 0.03
3 17 6 17 7 4 20 5 0 0.01 5 0 <0.01 5 0 0.03
mini-alu 84 20 10 6 27 6 0 0.78 6 0 0.01 4 0 0.03
rd53 131 28 7 2 24 10 0 0.01 11 0 <0.01 11 0 0.11
rd84 142 28 15 7 49 12 0 185.47 16 0 0.03 8 0 0.14
sym6 63 29 14 8 43 7 0 17.36 11 0 0.03 7 0 0.10
4 49 7 42 15 11 61 7 0 268.18 7 0 0.01 5 0 0.10
hwb5 13 88 28 23 131 (35.11)1 – TO 11 0 0.07 7 0 0.24
hwb6 14 159 46 40 241 (35.68)1 – TO 13 0 0.31 7 0 0.60
sym9 148 210 10 1 756 50 0 0.16 23 0 0.92 14 0 1.79
alu 8 453 91 64 730 (30.82)1 – TO 27 48 9.70 9 48 54.42
ex5p 647 206 198 904 (30.97)1 – TO 19 0 11.40 18 0 32.77
spla 1709 489 473 2711 (31.83)1 – TO 42 0 272.87 19 0 719.77
apex2 1746 498 459 2787 (30.10)1 – TO 70 0 148.96 (54.36)1 – TO
table3 1988 554 540 2997 (33.83)1 – TO 49 0 242.64 23 0 2089.34
pdc 2080 619 603 3135 (34.32)1 – TO 49 0 297.46 (78.31)3 – TO
alu4 2186 541 527 3390 (28.67)1 – TO 38 0 189.11 18 0 905.58
ex1010 2982 670 660 4543 (32.16)1 – TO 27 0 226.65 25 0 841.68

CIRCUIT: name of the circuit d: number of gates n: number of lines c: number of constant inputs #F: number of faults to be tested
#TS: number of patterns in the determined testset #UT: number of untestable faults TIME: required run-time in CPU seconds

In case of a timeout, Column #F reports the number of patterns generated so far along with the percentage of faults covered by them.

VI. CONCLUSION

In this paper, approaches for automatic test pattern genera-
tion for reversible circuits have been introduced and evaluated.
Circuits without and with additional constraints are thereby
considered. The proposed methods make use of simulation as
well as solvers for Boolean satisfiability and pseudo-Boolean
optimization. As shown by the experiments, each of these
techniques is suitable for a particular application or test goal,
respectively. While the simulation-based approach is quite
fast if circuit without additional constraints are considered,
it clearly becomes outperformed otherwise. Then, the SAT-
based method provides a better alternative. If instead the size
of the testset is the major criterion, the PBO-based approach
performs best – but also requires larger run-time.
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