
Homomorphic Data Isolation for Hardware
Trojan Protection

M. Tarek Ibn Ziad∗, Amr Alanwar†, Yousra Alkabani∗, M. Watheq El-Kharashi∗ and Hassan Bedour∗
∗Department of Computer and Systems Engineering, Ain Shams University, Cairo, Egypt

†Department of Electrical Engineering, UCLA, Los Angeles, CA, USA
Email: mohamed.tarek@eng.asu.edu.eg, alanwar@ucla.edu,

{yousra.alkabani, watheq.elkharashi, hassan.bedour}@eng.asu.edu.eg

Abstract—The interest in homomorphic encryption/decryption
is increasing due to its excellent security properties and
operating facilities. It allows operating on data without revealing
its content. In this work, we suggest using homomorphism
for Hardware Trojan protection. We implement two partial
homomorphic designs based on ElGamal encryption/decryption
scheme. The first design is a multiplicative homomorphic,
whereas the second one is an additive homomorphic. We
implement the proposed designs on a low-cost Xilinx Spartan-6
FPGA. Area utilization, delay, and power consumption are
reported for both designs. Furthermore, we introduce a
dual-circuit design that combines the two earlier designs
using resource sharing in order to have minimum area cost.
Experimental results show that our dual-circuit design saves
35% of the logic resources compared to a regular design without
resource sharing. The saving in power consumption is 20%,
whereas the number of cycles needed remains almost the same.

Keywords- ElGamal Encryption, Hardware Trojan,
Homomorphism, Security

I. INTRODUCTION

Increasing the complexity of systems proclaims the out-
sourced manufacturing concept nowadays. This raises a lot of
trust issues in the design industry in many directions. Anyone
with access to any step of the manufacturing process could
alter the final product to inject a Hardware Trojan. Malicious
circuitry can be injected by fabrication facilities or third party
IP owners. This threatens design community as the fabrication
process is obscured from designers and the details of third
party IPs are hidden to protect IP owners’ rights [1].

Hardware Trojan appears to be one of the most important
topics as the use of silicon chips in different applications
becomes very popular, varying from cell phones, cars, to
strategically important military devices. It is important to pro-
vide methods that resolve the trust issues between fabrication
facilities, designers, and end-users. End-users need to make
sure that products are not controlled by unknown entities,
are stable enough, and will not leak critical information.
Maintaining technology secrets of the fabrication facilities and
design royalties of third party IP owners raises the difficulty of
Hardware Trojan detection and protection. Homomorphic en-
cryption may be used to solve this issue and defeat Hardware
Trojans.

In general, homomorphic encryption is a type of encryption,
which allows specific types of operations to be carried out

on ciphertext and generates an encrypted result which, when
decrypted, matches the result of operations performed on the
plaintext. This is a desirable feature that has been utilized in
many modern systems [2], [3]. In this work, we introduce
the idea of using homomorphism to defeat Hardware Trojan
injected in third party IPs. Consider the case where a third
party IP is needed to carry out some operation on data A and
will produce output data B. Fig. 1 shows the ideal world,
where the third party IP does not have any access to the
real data as it is homomorphically encrypted. This will give
us the capability to carry out the required operation by the
third party IP without revealing the original data. Thus, we
can retrieve the result B after the decryption process. Full
homomorphism (FH) evaluates any arbitrary depth circuit on
ciphertexts, whereas partial homomorphism (PH) supports one
type of operations only, addition or multiplication.

Fig. 1: Homomorphic encryption to protect from hardware
Trojan.

The key contributions of this paper include:
1) Discussing new ideas to have a blind data processing by

the third party IP with a minimum cost.
2) Implementing ElGamal encryption scheme, which is

multiplicative homomorphic and the CRT-based Elgamal
(CEG) encryption scheme, which is additive homomor-
phic, on a low-cost FPGA and showing the resource
utilization, performance, and power analysis of both
schemes.

3) Introducing a dual-circuit design that supports both,
multiplicative and additive homomorphic properties and
providing the obtained savings on area and power over a
regular design that has no resource sharing.

The rest of the paper is organized as follows. Section II
summarizes the related work. Overview about homomorphism
and the utilized schemes are given in Section III. Hardware
Trojan protection using PH is introduced in Section IV.
Experimental evaluation and estimation of the overhead of
the proposed methods are shown in Section V. Section VI
concludes the work.

ar
X

iv
:1

50
5.

05
22

6v
2 

 [
cs

.C
R

] 
 2

1 
M

ay
 2

01
5



II. RELATED WORK

Recently, some architectural methodologies try to increase
the chances of the activation of a Hardware Trojan during
testing. Salmani et. al increased the Trojan activity by inserting
dummy flip-flops in the design [4]. They chose the locations of
the inserted flip-flops based on a transition probability thresh-
old. Rajendran et al. introduced a methodology for securing
all the gates of the design using ring oscillators [5]. They
added extra logic that converts paths of the circuit into ring
oscillators. Changes in the frequency of the ring oscillators
were used to detect the presence of Trojans. Al-Anwar et al.
in [6] developed a novel method for the protection against
a hardware Spyware that depends basically on decreasing
the probability of seeking sensitive information. They intro-
duced multiplexing between multiple variants implementation.
Then, they used cyclic redundancy check (CRC) to detect
the infected IP. In [7], Al-Anwar et al. suggested obfuscating
the output of the suspected IP before sending out data, then
undoing that obfuscation at the input of the receiver in order to
protect data from leaking and avoid injected triggering. They
introduced using either RC4 or a simple obfuscating function.
Ibn Ziad et al. injects a Hardware Trojan in a voting machine
to tamper voting results [8]. The attack depends mainly on
the unused bits. They provided a protection technique against
the proposed attack and showed its overhead. Al-Anwar et al.
in [9] introduced multiplexing reconfigurable IPs’ outputs and
CRC Trojan detection scheme (MCRC) method in order to
decrease the probability of leaking critical information by a
hacked IP. They also suggested using partial reconfiguration
technology to remove an infected IP.

Side-channel dependent methodologies for Hardware Trojan
detection aim to localize the impact of the Trojan on the circuit
without activating it. Their main idea is to try to detect the
presence of a Trojan with high probability via detecting the
overload of the Trojan circuit on different circuit parameters;
such as the delay or the power as compared to a non-infected
circuit. Rad et al. studied the impact of a Trojan on the power
supply transient current of an IC using statistical methods [10].
Jin and Makris used path delay analysis to detect Trojans [11].
Moreover, gate-level characterization techniques accompanied
by statistical methods were used to detect Hardware Tro-
jans [12].

Unfortunately, all Hardware Trojan detection methods re-
quire the presence of a non-infected (golden) chip. That
requirement represents a real problem as it is feasible only
if the design does not contain third party IPs [13]. But, if the
system designer integrates third party IPs in the design, these
methods become less practical. Zhang and Tehranipoor tried to
provide an alternative to using a golden design by using code
coverage analysis, formal verification, and ATPG methods to
achieve high confidence in whether the circuit is Trojan-free
or Trojan-inserted [14]. Baumgarten et al. suggested using
reconfigurable logic barriers within a design to prevent the
activation and operation of Hardware Trojans inserted during
the manufacturing stage of an IC [15].

III. BACKGROUND

The aim of this section is to give a brief description about
the idea of homomorphism, survey existing partial homo-
morphic encryption schemes, and discuss ElGamal security
scheme.

A. Partial Homomorphism (PH)

PH has been known for many years. It offers the ability to
perform a certain type of operations, addition or multiplication,
on ciphertexts without revealing data. For example, let us
consider the two messages, m1 and m2, where both messages
are encrypted and their ciphertexts are given by E(m1) and
E(m2), respectively. If the multiplication of the two cipher-
texts is equivalent to the ciphertext of the multiplication of
the two messages as shown in (1), we call this a multiplicative
homomorphic scheme. On the other hand, if the multiplication
of the two ciphertexts equals the ciphertext of the addition of
the two messages as shown in (2), we call this an additive
homomorphic scheme.

E(m1)× E(m2) = E(m1 ×m2) (1)

E(m1)× E(m2) = E(m1 +m2) (2)

It is worth mentioning that PH is different from FH,
which allows the efficient evaluation of an arbitrary depth
circuit (composed of additions and multiplications) to be
evaluated directly on ciphertexts. The first full homomorphic
encryption (FHE) scheme was introduced by Gentry [16] in
2009. Since then, there has been some work done toward
obtaining efficient hardware implementations of FHE schemes.
Hardware building blocks for the lattice-based cryptosystem
were considered by Göttert et al. [17]. Also, Pöppelmann
and Güneysu introduced an efficient hardware implementation
of ring-learning-with-errors (RLWE) based encryption [18].
However, these schemes are not practical for this application
due to its very large ciphertext and public key sizes. Thus, we
focus on PH in this paper.

One of the earliest discoveries in the context of PH is
the Goldwasser-Micali cryptosystem [19], whose security is
based on the quadratic residuosity problem. It allows homo-
morphic evaluation of a bitwise exclusive-or. Other additive
homomorphic encryption schemes that provide semantic se-
curity are Benaloh [20] and Paillier [21]. On the other hand,
there exist two well-known schemes, which are multiplicative
homomorphic schemes. The first one is the Rivest-Shamir-
Adleman (RSA) [22], which is one of the most widely used
public-key cryptosystems. The second is ElGamal encryption
scheme [23], which is the selected cryptosystem to be used in
our work.

B. ElGamal Scheme

ElGamal public-key cryptography algorithm is considered
to be one of the efficient and popular algorithms that provides
a high level of security. To illustrate its functionality, let
us consider that a user called Alice wants to send a private



message m to another user Bob. ElGamal process works as
follows. Bob generates his keys. He chooses a secret random
exponent k and a generator g. So, his public key is (g, h)
where h = gk(mod n) and n is a large prime. Alice has to
encrypt the message m before sending it to Bob. She generates
a random exponent l and sends the ordered pair (C1, C2) to
Bob, where C1 and C2 are defined as (3).

C1 = gl(mod n), C2 = hl ×m(mod n) (3)

Bob can easily decrypt the ciphertext using (4).

m = C1
−k × C2(mod n) (4)

This encryption scheme is homomorphic with respect to
multiplication as if (x1, y1) and (x2, y2) are valid encryptions
for messages m1 and m2, with the same key, then (x1x2, y1y2)
is a valid encryption of m1m2. Hu et al. proposed a simple
modification to make ElGamal additively homomorphic by
placing the message m in the exponent [24]. So, if we encrypt
two messages m1 and m2 using (3) but multiply hl with
gm instead of m, the multiplication of the two ciphertexts
results in a valid encryption of gm1+m2 . The problem here
is that recovering the message involves solving a discrete
logarithm problem (DLP) and this is precisely the problem
whose difficulty ensures security. To solve this problem, they
introduced a new scheme, called CRT-based ElGamal Scheme
(CEG), which uses the Chinese Remainder Theorem (CRT)
to replace one DLP in a large space by several similar
problems in a more tractable search space. This allows for
easily obtaining m1 +m2, while retaining the full security of
the scheme, as shown later.

C. CRT-based ElGamal (CEG) Scheme

To illustrate how CEG works, let us reuse the previous
example of Alice and Bob. In the first step, Bob also chooses a
secret random exponent k and a generator g. He also chooses
di for i = 1, . . . , t such that gcd(di, dj) = 1 for i 6= j. So, his
public key is (g, h, (d1, . . . , dt)), where h = gk(mod n) and
n is a large prime. For encryption, Alice sends the encryption
of message m as a t-tuple of pairs (C1, C2) by using (5).

C1 = gli(mod n), C2 = hli × gmi(mod n) (5)

where mi = m (mod di) and li is a generated random
exponent for i = 1, . . . , t. Bob can decrypt the ciphertext using
(6) and (7).

m = CRT−1[(logg(C2i × C−k
1i

(mod n)), i = 1, . . . , t)] (6)

CRT−1[Ci] =

t∑
i=1

Ci
d

di
(
d

di

−1

mod di)mod d (7)

Correctness and efficiency of the illustrated scheme is dis-
cussed in details in [24]. As a part of this work, we implement
the CEG scheme in hardware and show its resource utilization
and power consumption.

IV. HARDWARE TROJAN PROTECTION USING PH

Here, we introduce our suggested methods for defeating
Hardware Trojan in third party IPs. First, we propose two
schemes that support PH for the third party IP, which per-
forms one type of operation (multiplication only or addition
only). Then, we combine the two methods in a dual-circuit
design that supports both multiplication and addition to satisfy
applications that utilize the two operations.

A. Sufficient PH Support

Upon classifying the IPs based on processing type, one
concludes that there is no need to afford the high cost of FH if
the third party IP does only one type of operation. It is totally
sufficient to have PH encryption/decryption before/after the
suspected IP. In other words, if the suspected IP is used in
an electronic voting system and only does addition operation
to count votes on the server side [8], it is enough to support
one of the additively homomorphic schemes mentioned before
in Subsection III-A. For non computational suspected IPs,
it is adequate to do simple obfuscation functions before the
suspected IP and do the inverse of that function afterwords.
Here, we discuss two partial homomorphic hardware imple-
mentations based on ElGamal encryption scheme described
in Subsection III-B. The first implementation is the main
ElGamal encryption/decryption scheme [23], which is a mul-
tiplicative homomorphic scheme. The second one is the CEG
scheme [24], which is an additive homomorphic scheme.

1) Elgamal Scheme Implementation: Fig. 2 shows the
block diagram for our implementation of ElGamal encryp-
tion/decryption scheme. The encryption module consists of
two Montgomery modular multipliers, two Montgomery mod-
ular exponentiators, and a finite state machine (FSM) con-
troller that is responsible for synchronizing other components’
inputs and outputs to perform the encryption operations de-
fined in (3). The decryption module consists of one Mont-
gomery modular exponentiator, one modular divider, and a
FSM controller that is also responsible for synchronizing other
components’ inputs and outputs to perform the decryption
operations defined in (4). Both modules use a clock and reset
signals as inputs. Reset and done signals are utilized to indicate
the start and the end of module operations. The message m,
ciphertexts C1 and C2, and the public key h are all k bits
vectors, where k is a user-defined integer.

Montgomery multipliers were used in the design as the
Montgomery’s algorithm [25] is the most widely used algo-
rithm for efficient modular multiplication. Other multiplication
methods like the multiply and reduce and double, add, and
reduce are computationally more complex [26]. The binary
Montgomery multiplier employs only simple addition, sub-
traction, and shift operation to avoid trial division, which
is a critical and time-consuming operation in conventional
modular multiplication. In fact, this multiplier computes Z =
X × Y ×R−1mod M instead of Z = X × Y mod M , where
R is a chosen integer that should be a power of two and
relatively prime to M . So, in this case, the operands need to



(a) Encryption.

(b) Decryption.

Fig. 2: Block diagram for ElGamal encryption/decryption
scheme.

be converted into and out of Montgomery’s domain each time
this multiplier is used.

In general, modular exponentiation is usually accomplished
by performing repeated modular multiplications. For our
modular exponentiators, the LSB-first algorithm using Mont-
gomery multiplication is used. This algorithm computes Z =
Y Xmod M in k executions of a loop that, in turn, includes
at most two Montgomery multiplication operations, which are
executed concurrently. That improves the performance of the
module [26].

The decryption part of the scheme includes the usage of
a modular divider module. We implemented the plus-minus
algorithm as it gives the shortest computation time with a cost-
effective area [27]. The key generation module consists mainly
of a Montgomery exponentiation circuit and a true random
number generator (TRNG) module, which is not in the scope
of this paper. Finally, it is worth noting that the usage of only
one multiplier and one exponentiator is enough to achieve the
desired encryption results, but that results in a high critical
path delay.

2) CEG Scheme Implementation: Fig. 3 shows the
block diagram for our implementation of the CEG encryp-
tion/decryption scheme. This design is quietly different from
ElGamal design discussed before as the encryption operations
defined in (5) requires the usage of multiple Montgomery
exponentiators. As the timing delay needed by one expo-
nentiator is more than the delay of a single multiplier, the
FSM controller is modified to utilize only one Montgomery
multiplier. A modular reducer circuit is used to handle the
operation of reducing m into several mi based on the relation
of mi = m(mod di) for i = 1, . . . , t.

For the decryption module, it consists of one Montgomery

(a) Encryption.

(b) Decryption.

Fig. 3: Block diagram for the CRT-based ElGamal (CEG)
encryption/decryption scheme.

modular exponentiator, one Montgomery modular multiplier,
one modular divider, one modular adder, FSM controller, and
a single block of memory used to facilitate the implementation
of the inverse CRT needed in (6) [24]. Input and output vectors
are now k× t bits instead of k bits, where t is the number of
ciphertext pairs.

B. Dual-Circuit Design

The main motivation for this design is that some third party
IPs require the usage of more than one single type of operation.
For instance, an IP may need to perform both addition and
multiplication but not at the same time. One can imagine the
functionality of that IP as a simple ALU that uses a selection
line to switch its mode between two different operations. In
this case, using one type of partial homomorphic schemes
would not be sufficient. We have to implement two different
schemes, such as implementing the two schemes described
above, in order to prevent the attacker from revealing the
ALU input and output data. We suggest a solution for this
issue by combining the two previously proposed schemes,
ElGamal and the CEG, in a single dual-circuit design. Thus,
the proposed design supports both additive and multiplicative
homomorphism.

Furthermore, we try to share resources as much as we can
between the two schemes in order to have minimal design cost.
For example, computing C1 in (3) and (5) needs an exponen-
tiation operation. The same situation occurs when computing
C2 as we need an exponentiation operation followed by
a multiplication operation. The only difference is that the
modified versions in (5) reuse their modules many times based
on the value of t. Thus, we use the duality concept that enables
us of sharing as much resources between the two circuits in



order to reduce the design area. As the CEG scheme uses the
same basic blocks of ElGamal scheme with some additional
blocks, we depend on the same architecture shown in Fig. 3
and add a select signal that chooses between the multiplicative
homomorphic one and the additive homomorphic algorithms.
The FSM controller is modified to be able of handling the two
cases with the same building modules. The case is the same
for the key generation and decryption modules.

By using this simple idea, we manage to decrease the area
cost a lot and allow for the two homomorphic properties to
be available on a single module. That completely solves the
issue of the third party IP, which needs to perform both addi-
tion and multiplication operation. Moreover, another possible
example for an application that needs the availability of both
homomorphic operations is when we have two unique IPs in a
design and the first IP performs addition while the second IP
performs multiplication. Assuming that both IPs will not work
on the same time, one can instantiate only one instance of our
dual-circuit module and control its functionality to perform the
needed operation of any of the two IPs, when needed, with
the minimal cost in area and power consumption.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of our proposed
methods, described in Section IV, in terms of resource utiliza-
tion, delay, and power consumption. The proposed methods are
implemented on Xilinx Spartan-6 XC6SLX75 with FGG484
package and -2 speed grade. The area and performance results
are obtained from the Xilinx ISE 14.6 tool after place and
route analysis. The power is calculated using Xilinx Xpower
Analyzer with 100 MHz clock.

A. PH Schemes Results

Table I shows the top-level module resource utilization of
our two partial homomorphic encryption/decryption schemes,
ElGamal and CEG, using vectors of size equals 8 bits.

Table II shows the maximum operating frequency of the two
proposed partial homomorphic schemes along with the needed
number of cycles to finish their work.

TABLE I: Resource utilization of ElGamal and CRT-based
ElGamal (CEG) encryption/decryption schemes for k = 8 bits.

Encryption Decryption
ElGamal CEG ElGamal CEG

Number of Registers 295 614 207 364
Number of LUTs 420 715 259 442
Number of BRAMs 0 0 0 1

TABLE II: Timing performance of ElGamal and CRT-based
ElGamal (CEG) encryption/decryption schemes for k = 8 bits.

Encryption Decryption
ElGamal CEG ElGamal CEG

Frequency (MHz) 161.277 164.352 123.870 121.862
No. of Cycles 171 480 153 512

TABLE III: Power consumption (mW) of ElGamal and CEG
encryption/decryption schemes for k = 8 bits.

Encryption Decryption
ElGamal CEG ElGamal CEG

Clocks 5.65 7.87 4.21 5.87
Logic 3.84 5.47 2.70 3.69
Signals 2.82 4.69 2.01 3.23
BRAMs 0.00 0.00 0.00 0.74
IOs 16.51 8.99 5.23 2.74
Leakage 65.00 65.00 64.00 64.00

Total 93.82 92.02 78.15 80.27

From power prospective, Table III shows the power analysis
for ElGamal encryption/decryption scheme and the CRT-based
one. It was found that the dynamic power slightly decreased
in case of encryption and increased in case of decryption due
to the usage of the memory component and its logic controller
in decryption. The leakage power remains constant in the both
cases.

B. Dual-Circuit Design Results

Here, we compare the results of our proposed dual-circuit
design to using regular two IPs, one for ElGamal and another
for CEG design without any resource sharing between them.
We want to address the effect of our resource sharing. In
order to differentiate between the two designs, we call the
first design, Dual ElGamal, while the second design is called
Regular ElGamal.

Firstly, Table IV shows the area reduction that results from
using our Dual ElGamal design over Regular ElGamal design.
The area reduction column is calculated using (8). It is clear
that the idea of dual-circuit design has greatly improved the
usage of hardware resources.

Reduction(%) =
Regular area−Dual area

Regular area
× 100. (8)

Table V gives the maximum operating frequency of our
Dual ElGamal design and the Regular ElGamal design using
vectors of size k = 8 bits. The number of cycles here
represents the clock cycles needed to perform one multi-
plicative homomorphic operation followed by one additive
homomorphic operation. The needed number of cycles to get
the final output is the same in both designs, except that the
encryption part of our dual designs utilizes more clock cycles.

TABLE IV: Area reduction of our Dual ElGamal design over
the Regular ElGamal design for k = 8 bits.

Encryption Decryption
Regular Dual Area Regular Dual Area
ElGamal ElGamal reduction ElGamal ElGamal reduction

(%) (%)

Registers 909 635 30.14 536 364 32.09
LUTs 1137 735 35.36 626 457 26.99
BRAMs 0 0 00.00 1 1 00.00



TABLE V: Timing comparisons between our Dual ElGamal
design and the Regular ElGamal design for k = 8 bits.

Encryption Decryption
Regular Dual Regular Dual

Frequency (MHz) 161.277 158.51 117.099 121.344
No. of Cycles 651 662 665 665

TABLE VI: Power consumption (mW) of our Dual ElGamal
design and the Regular ElGamal design for k = 8 bits.

Encryption Decryption
Regular Dual Regular Dual

Clocks 11.78 6.89 8.78 4.86
Logic 9.25 6.29 5.91 3.82
Signals 8.14 6.02 5.67 3.49
BRAMs 0.00 0.00 0.74 0.74
IOs 25.27 10.83 5.67 3.61
Leakage 65.00 65.00 65.00 64.00

Total 119.44 95.03 91.77 80.52

That is due to the usage of only one Montgomery multiplier
instead of two, as illustrated in Section IV.

From power prospective, Table VI shows the power analysis
for our Dual ElGamal design and the Regular ElGamal
design. The usage of the duality idea results in an obvious
improvement in total power consumption as it eliminates the
power consumed by the duplicated modules. The savings in
power consumption are 20.44% for encryption and 12.26% for
decryption.

VI. CONCLUSION

In this work, we highlighted the importance of homomor-
phic encryption in defeating Hardware Trojans in third party
IPs. As PH is sufficient enough with some third party IPs, we
implemented two designs that supports PH (multiplicative only
and additive only) based on ElGamal encryption/decryption
scheme.

Furthermore, we integrated the two designs together and
introduced a dual-circuit design that achieved a great improve-
ment in area and power over a regular design that combines
two IPs, one for ElGamal and another for CEG, without
any resource sharing between them. Our architectures were
implemented on a low-cost Xilinx Spartan-6 FPGA and area,
delay, and power results were reported.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar. A Survey of Hardware Trojan
Taxonomy and Detection. IEEE Design & Test of Computers, 27(1):10–
25, January 2010.

[2] Y. Gahi, M. Guennoun, Z. Guennoun, and K. El-Khatib. An Encrypted
Trust-based Routing Protocol. In IEEE Conference on Open Systems
(ICOS), 2012, October 2012.

[3] D. Hrestak and S. Picek. Homomorphic Encryption in the Cloud.
In 37th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2014, pages
1400–1404, May 2014.

[4] H. Salmani, M. Tehranipoor, and J. Plusquellic. New design strategy
for improving hardware Trojan detection and reducing Trojan activation
time. In Proceedings of the IEEE International Workshop on Hardware-
Oriented Security and Trust, HOST ’09, pages 66–73, July 2009.

[5] J. Rajendran, V. Jyothi, O. Sinanoglu, and R. Karri. Design and
analysis of ring oscillator based Design-for-Trust technique. In VLSI
Test Symposium (VTS), 2011 IEEE 29th, pages 105–110, May 2011.

[6] A. Al-Anwar, Y. Alkabani, M.W. El-Kharashi, and H. Bedour. Defeating
hardware spyware in third party IPs. In Saudi International Electronics,
Communications and Photonics Conference (SIECPC), April 2013.

[7] A. Al-Anwar, Y. Alkabani, M.W. El-Kharashi, and H. Bedour. Hardware
Trojan Protection for Third Party IPs on FPGA. In 16th EUROMICRO
Conference on Digital System Design, pages 662–665, Santander, Spain,
September 2013.

[8] M. Tarek Ibn Ziad, A Al-Anwar, Y. Alkabani, M. W. El-Kharashi,
and H. Bedour. E-Voting Attacks and Countermeasures. In 28th
International Conference on Advanced Information Networking and
Applications Workshops (WAINA)A-2014), pages 269–274, Victoria, BC,
Canada, May 2014.

[9] A Al-Anwar, Y. Alkabani, M.W. El-Kharashi, and H. Bedour. Hardware
Trojan detection methodology for FPGA. In IEEE Pacific Rim Confer-
ence on Communications, Computers and Signal Processing (PACRIM),
pages 177–182, Victoria, BC, Canada, August 2013.

[10] R. Rad, J. Plusquellic, and M. Tehranipoor. A sensitivity analysis of
power signal methods for detecting hardware Trojans under real process
and environmental conditions. IEEE Trans. Very Large Scale Integr.
Syst., 18:1735–1744, December 2010.

[11] Y. Jin and Y. Makris. Hardware Trojan detection using path delay
fingerprint. In Proceedings of the IEEE International Workshop on
Hardware-Oriented Security and Trust, pages 51–57, June 2008.

[12] S. Wei and M. Potkonjak. Scalable Hardware Trojan Diagnosis.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
20(6):1049–1057, June 2012.

[13] M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J. Rajendran,
and K. Rosenfeld. Trustworthy Hardware: Trojan Detection and Design-
for-Trust Challenges. Computer, 44(7):66–74, July 2011.

[14] X. Zhang and M. Tehranipoor. Case study: Detecting Hardware Trojans
in Third-party Digital IP Cores. In 2011 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pages 67–70, San
Diego, CA, USA, June 2011.

[15] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC Piracy Using
Reconfigurable Logic Barriers. IEEE Design & Test of Computers,
27(1):66–75, January 2010.

[16] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford University, 2009.

[17] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss. On
the Design of Hardware Building Blocks for Modern Lattice-based En-
cryption Schemes. In Proceedings of the 14th International Conference
on Cryptographic Hardware and Embedded Systems, CHES’12, pages
512–529, Leuven, Belgium, 2012.

[18] T. Pöppelmann and T. Güneysu. Towards Efficient Arithmetic for
Lattice-Based Cryptography on Reconfigurable Hardware. In Progress
in Cryptology - LATINCRYPT 2012, volume 7533 of Lecture Notes in
Computer Science, pages 139–158. 2012.

[19] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[20] J. B. Clarkson. Dense Probabilistic Encryption. In Proceedings of the
Workshop on Selected Areas of Cryptography, pages 120–128, 1994.

[21] P. Paillier. Public-key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In Proceedings of the 17th International Conference on
Theory and Application of Cryptographic Techniques, EUROCRYPT’99,
pages 223–238, New York, USA, 1999.

[22] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-key Cryptosystems. Commun. ACM,
21(2):120–126, February 1978.

[23] T. El Gamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In Advances in Cryptology, volume 196
of Lecture Notes in Computer Science, pages 10–18. 1985.

[24] Y. Hu, W. J. Martin, and B. Sunar. Enhanced Flexibility for Homo-
morphic Encryption Schemes via CRT. In International Conference
on Applied Cryptography and Network Security, ACNS, pages 93–110,
Singapore, June 2012.

[25] P. L. Montgomery. Modular Multiplication Without Trial Division.
Mathematics of Computation, 44(170):519–521, 1985.

[26] J. P. Deschamps. Hardware Implementation of Finite-Field Arithmetic.
McGraw-Hill, Inc., New York, USA, 2009.

[27] J. P. Deschamps and G. Sutter. Hardware Implementation of Finite-Field
Division. Acta Applicandae Mathematica, 93(1-3):119–147, 2006.


	I Introduction
	II Related work
	III Background
	III-A Partial Homomorphism (PH)
	III-B ElGamal Scheme
	III-C CRT-based ElGamal (CEG) Scheme

	IV Hardware Trojan protection using PH
	IV-A Sufficient PH Support
	IV-A1 Elgamal Scheme Implementation
	IV-A2 CEG Scheme Implementation

	IV-B Dual-Circuit Design

	V Experimental results
	V-A PH Schemes Results
	V-B Dual-Circuit Design Results

	VI Conclusion
	References

