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Abstract— On-chip voltage regulation using distributed 

Digital Low Drop Out (LDO) voltage regulators has been 

identified as a promising technique for efficient power-

management for emerging multi-core processors. Digital LDOs 

(DLDO) can offer low voltage operation, faster transient 

response, and higher current efficiency. Response time as well as 

output voltage ripple can be reduced by increasing the speed of 

the dynamic comparators. However, the comparator offset 

steeply increases for high clock frequencies, thereby leading to 

enhanced variations in output voltage. In this work we explore 

the design of digital LDOs with multiple dynamic comparators 

that can overcome this bottleneck. In the proposed topology, we 

apply time-interleaved comparators with the same voltage 

threshold and uniform current step in order to accomplish the 

aforementioned features. Simulation based analysis shows that 

the DLDO with time-interleaved comparators can achieve better 

overall performance than variable step algorithm based DLDO in 

terms of current efficiency, ripple and settling time.  For a load 

step of 50mA, a DLDO with 8 time-interleaved comparators 

could achieve an output ripple of less than 5mV, while achieving 

a settling time of less than 0.5us.  Load current dependant 

dynamic adjustment of clock frequency is proposed to maintain 

high current efficiency of ~97%. 

keywords— low power, voltage regulation, VLSI, digital, circuit 

design 

I. INTRODUCTION  

To meet the demand of energy-efficient computing with 

scaling CMOS technology, need for distribution and 

regulation of relatively low on-chip supply voltage has 

became crucial [1, 2]. Specifically, emerging demand for low 

power, near threshold computing has posed several challenges 

of regulation of these voltages (e.g., 320 mV ± 50mV) for 

highly integrated computing systems like Chip Multi 

Processors (CMP) [3]. The need for efficient voltage 

regulation is more pronounced in near sub-threshold 

computing regime where the gate delay is highly susceptible 

to supply variation. An increasing number of power domains 

and of power states per domain, as well as decreasing 

decoupling capacitance per local grid and wide range of digital 

load currents necessitate the design of high-efficiency, 

compact on-die voltage regulators [5,6]. The on-chip LDO 

regulators are more suitable for the near-threshold/sub-

threshold logic circuits [7], since they can supply more stable 

and precise voltage with lower voltage ripple and faster 

transient response despite lower power efficiency, compared 

with the switching regulators [8], [9].Conventional Analog 

LDOs are not applicable at such low voltages mainly because 

of increase of PVT variations, poor noise characteristics and 

the small bias current, mainly in the sub-threshold regime 

[10],[11]. 

    Digital LDO topologies have been explored in recent years, 

that can be suitable for low operating voltages([7], [8]).  The 

rationale behind such designs is to convert the control section 

of an LDO into a compact and scalable digitally 

implementable circuit ([9]-[11]). The supply devices acting as 

linear region ON-OFF switches, can operate with lower drop-

out voltage, leading to higher efficiency. Dynamic 

comparators employed in DLDOs can operate at a faster rate, 

while burning relatively small static power, thereby providing 

appreciable current efficiency. Further, relatively compact and 

robust design of digital control units allows the designer to 

replicate and distribute such regulators in larger numbers on 

the die to provide ultra-fine grained spatio-temporal power 

management.  It is observed that faster operation of 

comparators can achieve improved ripple and quicker 

response to load transients. However, at higher clock 

frequencies, the power consumption and offset of the dynamic 

comparators increases steeply, which can degrade the LDO 

efficiency and increase the output ripple. 

     To address the above bottlenecks, in this paper we 

propose time-interleaved LDO model with dynamic frequency 

adjustment based on Load current level. In section-II we will 

describe the basic architecture of variable step algorithm based 

LDO, along with performance analysis of the proposed design. 
In section-III we will describe the basic architecture of time 

interleaved LDO, along with performance analysis of the 

proposed design.  In section III system level simulation results 

are presented. Section IV concludes the paper. 

 

II. VARIABLE SHIFT ALGORITHM BASED LDO: 

A. DLDO circuit with variable shift control scheme: 

    This proposed model comprises of a set of driver PMOS 

transistors (256 used in the simulations) that are directly attached 

to the point whose voltage is desired to be regulated. The model 

comprises of a fixed number of Digital Latched Comparators 

(shown in Fig.1) with the reference voltages equally spaced and 

encompassing a range centered about the fixed voltage which we 

desire to achieve (e.g. when the desired voltage is 800 mV,we 

have a set of 17 comparators,one having reference voltage = 800 

mV, 16 comparators in the range 760-840mV spaced equally). 

 
 

Fig: 1 Dynamic Latched Comparator used in the proposed Models 



 

The operation of the circuit and its control lies in the fact that 

variable number of comparators can be turned on and off 

depending on the deviation from the desired voltage and hence is 

expected to give faster settling time. This is accomplished by a 

digital logic circuit that has also been simulated in Synopsys. It 

comprises of a logic that identifies the junction in the 

thermometer code of the set of PMOS drivers(ie if on is 

represented by 1 and off is represented by 0, the state of the 

PMOS drivers comprises of a set of 1s followed by a set of 

0s).After identifying the junction and on the basis of the voltage 

sampled in the present clock cycle the circuit changes the state of 

some transistors(either turning some on or some off and shifting 

the thermometer code).This change of the state is variable unlike 

the Conventional LDO and is dependent on the deviation from the 

desired voltage. The maximum number of PMOS transistors that 

can be turned on/off (called the Max Step Size) is fixed by the 

Digital logic used. Although a wide range for the Maximum step 

size can be selected, the minimum step size is dependent on the 

Max Step Size and the number of Comparators. However it can 

be set to 1(for obtaining high accuracy) by adjusting these 

parameters. 

 
 

 

The operation of this Model is described as below. At every 

clock cycle, the voltage of the desired point is sampled which is 

fed back to all the comparators .Depending on the Reference 

voltages of the comparators, some will give VDD or GND as the 

Output.(e.g. if the voltage sampled is 795mV, Comparators 

having Vref above 795mV will give GND as the output while 

comparators below 795mV will give VDD as Output). Now if the 

voltage is below Vdesired, the more number of comparators will 

have GND as Output and conversely if the voltage is above 

Vdesired, the less number of comparators will have GND as 

Output. The number of PMOS that will be turned on/off depends 

on the deviation of the states of the comparators from the ideal 

configuration. Thus depending on the states of the comparators as 

deviated from the desired configuration the Digital logic circuit 

would connect its output to the PMOS drivers near the 

thermometer code junction point. This is because if the Vout is 

less than Vdesired , more PMOS transistors must be turned on to 

supply more current and raise the voltage and conversely if the 

Vout is more than Vdesired, some PMOS transistors must be 

turned off to reduce the supplied current and lower the voltage. In 

our proposed model, the digital logic have been designed such 

that if Vout is greater than Vdesired, the number of PMOS to be 

turned off = Max Step Size*(Extra number of Comparators that 

have GND as output/No of Comparators on either side of 

Vdesired). 

Similarly if Vout is less than Vdesired, the number of PMOS 

to be turned on = Max Step Size*(Extra number of Comparators 

that have VDD as output/No of Comparators on  either side of 

Vdesired). This proportional change to the deviation ensures 

proper control. For example, if the voltage have risen to level 

above the highest Vref, Max Step Size(also called Block 

Size)number of PMOS transistors will be turned off in the present 

clock cycle. 

Thus depending on the voltage reached by this transition, 

appropriate action will be taken in the next clock cycle (Time 

period = 1ns used in this case).The Digital Logic connects the 

output of the Comparators to the appropriate number of PMOS 

transistors. 

In this proposed scheme the Min Step size(ie minimum no of 

transistors that can be turned on/off = Max_Step Size*1/(Number 

of Comparators on either side of Central Comparator).However 

using more refined Digital logic Min  Step Size can be set to 1 for 

any Max Step Size or number of Comparators but that will not 

give proportional change in response. For further discussion, we 

would refer Num-C as the number of Comparators on either side 

of Central comparators,Vref-Gap as the difference in reference 

voltage gap between the successive Comparators and Block-Size 

as the Maximum Step size. Thus Total Number of Comparators = 

2*Num-C + 1 

B. Variation with design parameters: 

The performance of the circuit can be measured by the 
Voltage ripple at the steady state and its settling time(time to 
attain steady state from zero voltage).A number of design 
parameters should be properly designed to optimize the 
performance of the circuit. 

1)Number Of Comparators: 

More number of comparators pave the way for more fine 

grained voltage reference levels and more fine grained step 

currents through PMOS switches. Therefore for a constant load 

(I=10mA, C=5.0 nF) ripple voltage decreases and settling time 

increases with increase in number of comparators.  

 
 

 

2)Variation with Capacitance: 

 For a constant supply of current the charging and discharging 

times increase proportionately with increase in capacitance 

attributing for an increase in settling time. Voltage  ripple also 

decreases as higher capacitance filter out the high frequency 

components of steady state voltage.  

 
 

 

3)Variation with Vreference Gap:   

 For a constant current(2mA) and fixed number of 

comparators(8),the settling time as well as the ripple is found to 

increase with the gap between the successive Vreferences.This is 

because with increasing Vref-Gap,the effective range over which 

the LDO control increases, accounting for larger Vripple.Also for 

Fig: 2 Schematic Diagram of the ProposedVariable Shift LDO Model 

 

Fig: 4 Variation of settling Time and Ripple Voltage with 

Capacitance 

 

Fig: 3 Variation of settling Time and Ripple Voltage with No of Comparators 

 

Vout 



larger Vref gap, the change in the state of the driver PMOS  will 

occur after larger time.Hence the settling time also increases. 

 

 

4)Variation with Minimum Step Size :  

For fixed number of comparators, the Block Size determines the 
Minimum Step size (i.e., Minimum Step Size = Block Size/Num-
C).If the Minimum Step Size(or Block Size) is large,more PMOS 
can be turned on/off in response to the change. Hence increasing 
the Minimum Step Size will decrease the settling time and 
increase the voltage ripple accordingly. 

 

 

5) Variation with the Width of the Device:  

Current supplied to the load is mainly determined by the maximum 
number of transistors that can turn on in one clock cycle.Thus along 
with the size of the individual transistors,it becomes important to 
regulate the number of transistors that can be turned ON. As 
predicted and observed an optimum point is obtained on either side of 
which the ripple voltage increases with the change in the width of the 
device. This is because for constant current load and capacitance, 
there is an optimum value of supply current that needs to be provided 
so that the voltage ripple remains minimum.  

 

 

III. TIME INTERLEAVED COMPENSATOR BASED LDO: 

A. DLDO Circuit with Time-Interleaved Comparators: 

The proposed model (fig. 8) comprises of a bank of dynamic 
comparators clocked in a time interleaved manner. Each dynamic 
comparator is connected with a PMOS switch. The clock time 
period is divided into equal phases as the number of comparators. 
Each comparator is clocked at the beginning of each division 
through a pulse generation circuit. Each comparator compares the 
voltage at the output with the required reference voltage at the 
beginning of each time division and accordingly turns ON or OFF 
the corresponding PMOS switch. 

 

Fig 8 :Schematic Diagram Of Time interleaved comparator based LDO 

The working principle resembles the general negative feedback 

operation. The output voltage is fed back to the comparator.  As 

soon as the comparator senses output voltage is less than the 

reference voltage, at the next positive clock edge it turns on the 

corresponding PMOS switch which acts like a current source and 

supplies more current to the load. Thus the output voltage 

increases and stabilizes around reference value. All the 

comparators have only a Single VREF. 
As all the comparators operate within a single clock period 

and update the supply current instantly at each of the N phases,  

 

Fig 9 :Variation of Power Efficiency with Clock frequency 

 

 (where N= number of comparator times within one clock 

period) the settling time is observed to be significantly small 

as compared to the single comparator case. On a CMP, the 

local load current can vary over a large range. The main 

problem with such configuration is that the efficiency reduces 

drastically at lower values of current because relatively larger 

amount of power is burnt in the control circuitry constituting 

of multiple comparators. For a given load-current, power 

efficiency of the LDO can be improved by lowering the clock 

frequency (fig. 9), provided an acceptable level of output 

ripple is maintained . This explains a need for the optimization 

of the circuit for minimization of power for low load current. One 

of the effective ways to achieve this is to dynamically dynamic 

modify the clock frequency for depending upon load current. 

B. Variation of design parameters:  

 The variations of output voltage properties with design    
parameters are discussed below: 

1. Variation with Clock frequency:  

For a constant load (I = 10.0 mA, C= 3.0 nF) and fixed 
number of comparators (16),  steady state voltage ripple and 
settling time  is found to decrease with increase in clock 
frequency. As with increase in clock frequency the duration 

Fig: 5 Variation of settling Time and Ripple Voltage with Vref-Gap 
 

 

Fig: 6 Variation of settling Time and Ripple Voltage with Min Step 

Size 

 

Fig: 7 Variation of settling Time and Ripple Voltage with Vref-Gap 



of each   time  interleave   decreases more number of 
comparisons can be done within fixed amount of time. So for 
a sufficiently large current step the number of comparisons 
can be finished quickly amounting to a decrease   in settling 
time. The charging / discharging time also decreases with the 
increase in clock frequency resulting to a decreased voltage 
ripple. 

 

Fig 10: Variation of ripple voltage and settling time with clock frequency 

 

2. Variation with Number of comparators: 

  For a constant load current (10.0mA, C= 3.0 nF) , fixed 
total current supplied by the pMOS switches (48 mA) and 
fixed clock frequency (1GHz) ,the steady state voltage 
ripple  is found to decrease with the number of 
comparators (pMOS width= 20um, ). With the increase in 
comparison levels the duration of the time interleaves 
decreases, reducing the charging /discharging time of the 
capacitance and in turn the steady state voltage ripple. 
However , the settling time required is found to be almost 
constant because of the balancing effect of number of 
pMOS switches and current supplied by each of them. 

 
 

Fig 11: Variation of ripple voltage and settling time with No of comparators 

3. Variation with Load current: 

  For a constant load current(10.0mA) ,the settling time is 
found to increase with Capacitance (Number of compartors 
= 16, pmOS width= 20um,  Clock frequency = 1Ghz). This 
can be explained by the fact that for constant supply of 
current , the charging/discharging time of the circuit is 
directly proportional to the capacitance.Larger capacitance 
takes more number of time steps to charge from zero level 
to steady state voltage level. As it takes larger time for 
larger capacitances to charge/discharge,the ripple for 
higher value of capacitances is lower(as shown in Fig.L).  

 

 

Fig 12: Variation of ripple voltage and settling time with Load current 

4. Variation with Output Capacitance : 

For a constant load current(10.0mA) ,the settling time is 
found to increase with Capacitance (Number of 
compartors = 16, pmOS width= 20um,  Clock frequency 
= 1Ghz). This can be explained by the fact that for 
constant supply of current , the charging/discharging time 
of the circuit is directly proportional to the 
capacitance.Larger capacitance takes more number of 
time steps to charge from zero level to steady state 
voltage level. As it takes larger time for larger capacitance 
to charge/discharge,the ripple for higher value of 
capacitance is lower(as shown in Fig. M). 

 
 

Fig 13: Variation of ripple voltage and settling time with Load 
Capacitance 

5. Variation with width of each PMOS: 

 The load current range of the LDO depends on the 
maximum current that can be pumped through the PMOS 
switches. Thus along with the maximum number of the 
individual transistors, it becomes important to regulate the 
width of transistors that can be turned on. 

 

Fig 14: Variation of ripple voltage and settling time with width of pMOS 
switches 

The settling time is found to decrease with the width of 

the device because of the increased ability of the pMOS 

switch array to pump current in every clock cycle. More 

current charges the capacitance in less number of clock cycles 

and decreases the settling time. 
For an increase in width pMOS switches pump more current 
to the load capacitance in each time interleave, this leads to 
increase steady state ripple. Simulation results also follow the 



TABLE I: Simulation results for a single DLDO with different current 

load and nearly same current efficiency        (W = 100um)  

Load 

Current 

Clock 

Period 

Ripple Current Eff. 

40 mA 1ns 3.9 mV 97.8% 

20 mA 2ns 4.4 mV 97.3% 

10 mA 4ns 5.0 mV 96.9% 

5 mA 8ns 5.2 mV 96.8% 

 
 

 

 

 

 
 Fig 16: Schematic Diagram of the LDO Scheme with its distribution and its associated logic components 

 
 

 

trend for a load current of 10.0 mA, load capacitance of 3.0nF 
and an array of 16 comparators. 

C. Frequecy Scaling with load current variation: 

  Dynamic frequency scaling is achieved through a programmable 

clock divider whose division factor varies with the local current 

level. In the DLDO, the number of driver ON PMOS transistors at 

any instant is the indicator of the local current level.  The logic 

comprising of an adder-block, sums all the gate voltages of the 

PMOS transistors (0 indicates it is on and VDD indicates it is 

off). (fig. 16), thereby producing the digital control signal for the 

programmable divider.  The proposed circuit has been modeled 

in Matlab using behavioral equations governing the operation 

of the DLDO. The rigorous numerical analysis done for design 

optimization has been corroborated with SPICE simulations 

for desired operating conditions (fig. 15). The plots show that 
for lower currents, the clock speed can be proportionately reduced 

without significantly compromising the ripple while reducing the 

power in the comparators. Table-I summarizes the results for 

output voltage ripple for different load current values and 

corresponding clock frequencies. Nearly constant peak to peak 

ripple and current efficiency is observed for different load current 

values in the proposed scheme. 

     
Fig 15: (a) I= 40mA,Clock period = 1ns, (b) I= 20mA,Clock period = 2ns, (c) 

I= 10mA,Clock period = 4ns, d: I= 5mA,Clock period = 8ns,(Left hand side 

figures correspond to Matlab Simulations and right hand side figures 
correspond to Cadence Simulations) 

 

IV. GRID MODELLING  

  Different IR drop models for flip-chip and wire bond packages have 

been proposed by [12]- [15]. Modelling of IR drp in a typical flip 

chip package is done in [16]. Here we adopted the flip chip package 

for grid modeling (fig. 17). 

 

 

 

 

The most common way to distribute power in a GSI chip is to 

distribute it through an on-chip grid made of orthogonal 

segments([17]-[19]). The horizontal and vertical segments of a grid 

are routed at different metal levels and are connected through vias at 

the crossing points. The main challenge in the design of the power 

distribution network is to achieve a minimum acceptable voltage 

fluctuation across the with minimum routing area of the interconnect 

metal layers ([20]-[22]).  

 

 



Fig 17: Power and Ground pads for flip chip package (left) and grid     

between  neighbouring four pads (right) 

 
TABLE II: PARAMETERS FOR GRID-MODELLING 

 

Parameters Values   Parameters Values  
Cell Size(a) 1 mm Resistance (distributed 

over 0.1mm) 
0.55 Ω 

Max Current Density 5 A/cm2 

Segment Length (lsegx) 0.1 mm Capacitance ( lumped at 

each LDO node) 9 nF 
Segment Width  (lsegy) 0.1 mm 

    

A. Pad-Modelling: 

Almost two-thirds of the total pads are used for power 

distribution. These power and ground pads are uniformly spread 

throughout the surface of the chip to reduce voltage drop. The 

pads have been modeled as voltage sources with associated 

resistances, capacitances and inductances with values as specified 

in Table III (fig. 18). 

 
TABLE III: PARAMETERS FOR PAD-MODELLING 

 

Parameters Values   Parameters Values  
Pad Resistance 1 Ω Pad Capacitance 5pF 

Pad Inductance 1 nH Supply Voltage  1 V 

 

 

 
 

Fig 18: LDO and pads integrated with On-Chip Power Grids. Black points 

correspond to pad and LDO locations and Colored points correspond to 

Output points 

B. Positioning of LDOs: 

As shown in fig. 18, every LDO is connected to a pad i.e. a LDO 
covers an effective area of 1mm2. Since the maximum current density 
simulated is 5 A/cm2, the maximum current supplied by the LDO is 
35 mA. The VDD of the LDO is connected to the power supply pad 
and the node is connected to the points in the grids. An accurate 
reference voltage is internally generated within the LDO. The load is 
modeled by an ideal pulsating current source with an effective shunt 
capacitance of 9nF.  

The operation of the LDO was evaluated by providing 
asynchronous pulse current having different levels and time period 
distributed randomly over all the 9 pad points. In such a pulsating 
condition, the voltage variation throughout the grid provided a strong 
measure of the regulating ability of the proposed circuit scheme. 

C. Parallel Operation of mutliple LDOs   

The allocation of the clock frequency to different ranges of load 

current was found to be an important design parameter. Fig. 19 

dpeicts the variation of the output ripple with the choice of frequency 

allocation, for a load current of 20 mA pr LDO. (Grid Size = 1mm2 ) 

 

 

Fig 19: Output of the Cases discussed above(for 4 different configurations) 
For Load Current (20 mA) for all the cases,  N{f} means working frequency is 

f when number of ON PMOS  is  either of the elements in the right hand side 
brackets. N{fo/2} = {3,4} implies choosing clock frequency = 1GHz/2 for 3 

or 4 PMOS being ON.  

 

The plots show significant dependence of frequency band 

allocation to different load current levels. Hence, this distribution 

needs to be optimized based on simulation based analysis. The 

ripple was also fund to improve for a smoother and uniform 

frequency gradient with respect to load current.  

 

Fig 20 : Skewed Load current pulses(from top-wise current at locations A to I 
only four are shown in the figure) 

In SPICE simulation, the grid-performance has been simulated 
over an effective area of 16 mm2 with 9 LDOs present at the position 
of the Power Supply Pads as shown in Fig 6. Also the distribution of 
current waveforms in the various sections is presented in Figure 9. 
All the nodes in the grid behave very closely even in very random 
distribution of local current. The grid-level simulation  results show 
the advantage of the proposed scheme, in terms of fast response with 
stable, low peak to peak ripple for a wide range of load currents. 



 
.Fig 21: Cadence Simulation Results for Vref = 900 mV(Individual 

Levels – top) The colors correspond to the marked points(in fig F) (Ripple is 
shown in offset) 

Results of the proposed design compare very favorably with 
results reported earlier [23]. The proposed design achieves orders of 
magnitude faster transient response for a much larger load current, 
while achieving similar current efficiency and output ripple.  For the 
maximum load current of 20mA, the effective clock frequency 
increase as compared to the work in [23] is 8x(1GHz/10MHz ) = 800, 
which is the main factor conducive in achieving low ripple along 
with faster response time at comparable efficiency.   

TABLE IV 
Performance Comparison 

 

 

V. CONLUSION 

We proposed the design of digital LDOs with multiple, time-

interleaved dynamic comparators that can provide low ripple and 

fast response time. We employed load dependant clocking 

frequency to reduce the power overhead due to larger number of 

comparators and hence avoided degradation in current efficiency 

over a single comparator design. Simulation based analysis shows 

that the DLDO with time-interleaved comparators can achieve 

better overall performance in terms of current efficiency, ripple 

and settling time.  
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