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Abstract—Recently, Deep Convolutional Neural Network
(DCNN) has achieved tremendous success in many machine
learning applications. Nevertheless, the deep structure has
brought significant increases in computation complexity. Large-
scale deep learning systems mainly operate in high-performance
server clusters, thus restricting the application extensions to
personal or mobile devices. Previous works on GPU and/or FPGA
acceleration for DCNNs show increasing speedup, but ignore
other constraints, such as area, power, and energy. Stochastic
Computing (SC), as a unique data representation and process-
ing technique, has the potential to enable the design of fully
parallel and scalable hardware implementations of large-scale
deep learning systems. This paper proposed an automatic design
allocation algorithm driven by budget requirement considering
overall accuracy performance. This systematic method enables
the automatic design of a DCNN where all design parameters
are jointly optimized. Experimental results demonstrate that
proposed algorithm can achieve a joint optimization of all design
parameters given the comprehensive budget of a DCNN.

I. INTRODUCTION

As the important branches of deep learning, Deep Neural
Networks (DNNs) and Recurrent Neural Networks (RNNs),
outperforms traditional machine learning techniques in several
real-world problems [1–3]. Recently, Deep Convolutional Neu-
ral Network (DCNN), which is one of most widely used types
of DNNs, has achieved tremendous success in many machine
learning applications, such as speech recognition [4], image
classification [5], [6], and video classification [7]. DCNN is
now the dominant approach for almost all recognition and
detection tasks, and approaches human performance on some
tasks [8]. Nevertheless, the introduction of deep structure in
deep learning brought significant increases in computation
complexity. Large-scale deep learning systems mainly oper-
ate in high-performance server clusters, thus restricting the
application extensions to personal or mobile devices.

General-Purpose Graphics Processing Units (GPGPUs)
are widely used for current deep learning research to ac-
celerate DCNNs [9]. GPGPU’s major competitor is Field-
Programmable Gate Arrays (FPGAs). Considering energy-
efficiency, FPGAs are more suitable for portable and embed-
ded DCNN applications. Previous works on FPGA accelera-
tion for DCNNs [10][11][12] show increasing speedup. These
implementations, however, focus on improving the throughput
of an embedded network, which ignores other constraints to
run a network, such as area, power, and energy. A notable trend
is that machine learning is running locally on mobile/wearable
devices and Internet-of-Things (IoT) entities instead of relying
on a remote server. In order to bring the success of DCNNs to
these resource constrained systems, designers must overcome
the challenges of implementing resource-hungry DCNNs in
embedded systems with limited area and power budget.

Stochastic Computing (SC) [13], as a unique data represen-
tation and processing technique, has the potential to enable the
design of fully parallel and scalable hardware implementations

of large-scale deep learning systems. Many complex arithmetic
operations can be implemented with very simple hardware
logic in stochastic computing framework [13–17], which offers
an immense design space for (i) neuron integrations due to the
significantly reduced area per neuron, and (ii) performance op-
timizations with respect to the budget of area, error resiliency,
power/energy, or speed. We use the term budget to describe the
design constraint when implementing a hardware based DCNN
using SC. For example, given the area budget of an embedded
design of DCNN, SC enables a comprehensive optimization
including other design parameters mentioned above.

A node, referred as to neuron, in a DCNN can be im-
plemented by different stochastic computing based designs.
Given these designs, how to arrange them to structure a
complete DCNN achieving preferred design parameter(s) such
as constrained energy, promised accuracy, and restricted area
leaves blanks to researchers. This paper deals with the problem
of deriving the optimal structure of hardware deep learning
systems given a design budget and proposes an automatic
algorithm driven by budget requirement with the comprehen-
sive design parameters of a network taken into consideration.
More specifically, the proposed automatic design allocation
algorithm greedily decides implementation for each layer of
a DCNN, and then optimizes the complete DCNN jointly
to achieve the better objective design parameter(s) by re-
allocating different implementations. This systematic method
enables the automatic design of a DCNN where design pa-
rameters are jointly optimized given the budget.

The contributions of this paper are summarized as fol-
lows, 1) SC paradigm is finely applied to DCNN, i.e.,
major computing tasks are performed in SC domain. With
SC components, the hardware footprints can be significantly
reduced for wearable/mobile devices. 2) We explored different
implementations for neurons of different layers in a DCNN.
Accumulative/Approximate Parallel Counter (APC) [18], [19]
and Multiplexer based neurons with distinct implementation
details are investigated. 3) An automatic design allocation al-
gorithm is proposed to optimize the complete DCNN hardware
design using SC. This algorithm can also evaluate a general
budget-driven hardware optimization for DCNNs.

Experimental results have been demonstrated on the prob-
lem of classifying handwritten digits in MNIST database
using LeNet-5 [20] with the SC based DCNN designs. It
reveals that proposed automatic design allocation algorithm
can achieve a joint optimization of all design parameters given
the comprehensive budget of a DCNN.

II. RELATED WORKS

Experiments in [9][21] showed a high speedup of DCNN
implemented on GPGPU. However, the widespread deploy-
ment of DCNNs has been hindered by their high complexities
and power consumptions of server-based GPGPU-like devices,
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particularly in resource-constrained offline wearable devices
and embedded systems. Farabet et al. in [10] proposed an
FPGA-based processor specific for convolutional networks.
The proposed processor was well structured. Nevertheless, the
paper lacked evaluation of power and/or energy consumption.
Similarly, Cadambi et al. of [12] demonstrated a general
accelerator working for five typical tasks including DCNN.
The paper, however, explored architectural design space in-
stead of considering optimization of on-chip design parameters
of a hardware-based DCNN. In [11], authors contributed to
developing a co-processor to improve the speed of DCNN, but
they didn’t mention how to optimize the network performance
given hardware budget constraints.

Predecessors have been investigating SC as a candidate
for implementing hardware-based DCNN. Inspired by [18],
authors in [22] introduced several basic hardware implemen-
tations for matrix operations including inner-product calcu-
lation which is crucial in DCNN inference process. Based
on lots of similar works exploring hardware implementation
for stochastic computing, a recent work [19] presented a
neuron cell design using SC components, where the pro-
gressive precision characteristics of SC was exploited. The
aforementioned papers focused on the analysis of performance
in SC implementations, but optimization was not accomplished
from a higher network-wise view. Even though the synthesis
results were listed, but still, there lacked re-design of the im-
plementation for DCNN with constrained hardware resources.
The aforementioned researches proved SC is a promising
technique for embedded DCNN system. However, there is no
existing work designing DCNN using SC with a structural
optimization given hardware budget.

III. STOCHASTIC COMPUTING BASED DCNN
A. Deep Convolutional Neural Network Architecture

In this paper, we consider a general DCNN architecture,
which consists of a stack of convolutional layers, pooling
layers, and fully connected layers. By arranging the topology
of the above layers, powerful architectures, such as LeNet
[23] and AlexNet [24], can be built for specific applications.
Without the loss of generality, we conduct the investigation
on the fifth generation of LeNet architecture using SC, which
is comprised of two pairs of convolutional and pooling layers,
and one fully connected hidden layer with the output layer.
Note that the proposed methodology can accommodate other
DCNN architectures as well.

A convolutional layer is associated with a set of learnable
filters (or kernels), which are activated when specific types
of features are found at some spatial positions in the inputs.
After obtaining features using convolution, a subsampling step
can be applied to aggregate statistics of these features to
reduce the dimensions of data and mitigate over-fitting issues.
This subsampling operation is realized by a pooling layer in
hardware-based DCNNs, where different non-linear functions
can be applied, such as max pooling, average pooling, and
L2-norm pooling. The activation functions in neurons are
non-linear transformation functions, such as Rectified Linear
Units (ReLU) f(x) = max(0, x), hyperbolic tangent (tanh)
f(x) = tanh(x) or f(x) = |tanh(x)|, and sigmoid function
f(x) = 1

1+e−x . We adopt the tanh activation function since
it can be implemented efficiently as a finite state machine
(FSM) in SC using a stochastic approximation method. The
fully connected layer is a normal neural network layer with
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Fig. 1. Neurons in DCNN. (a) Inner Product, (b) pooling, and (c) activation

its inputs fully connected with its previous layer. The loss
function of DCNN specifies how the network training penal-
izes the deviation between the predicted and true labels, and
typical loss functions are softmax loss, sigmoid cross-entropy
loss or Euclidean loss.

In general, we can define three kinds of basic neurons
(nodes) in hardware-based DCNN based on their correspond-
ing operations as Fig.1 shows. Neurons in convolutional layers
and fully connection layers calculate the inner product shown
in Fig.1 (a) of inputs and weights based on its incoming
connection with the previous layer. And the products are
subsampled through a pooling neuron shown in Fig.1 (b).
We use average pooling here as a case study due to its
simple hardware implementation. The subsampled outputs are
transformed by an activation function shown in Fig.1 (c) to
ensure the inputs of next layer are within [−1, 1].
B. Stochastic Computing Based Neuron

In stochastic computing, the value of a number which lies
in [0, 1] is represented by the occurrence probability of 1s in a
random bit stream. A 4-bit sequence X = 0010, for example,
represents x = P (X = 1) = 1

4 = 0.25. An m-bit sequence
can only represent numbers in the set { 0

m ,
1
m ,

2
m , · · · ,

m
m};

Only a small subset of the real numbers in the interval [0, 1]
can be expressed exactly in SC. Clearly, the precision and
accuracy of SC depend on the length of the stream.

The two most popular representations for stochastic num-
bers are unipolar and bipolar formats, which interpret values
in the intervals [0, 1] and [−1, 1], respectively. Unipolar coding
is commonly used in unsigned arithmetic operations, whereas
bipolar format is used in signed arithmetic calculations. More
specifically, in unipolar coding, the number x carried in a
stochastic stream of bits X is x = P (X = 1) = P (X),
whereas in the bipolar format, x = 2P (X = 1) − 1 =
2P (X)− 1.

In this section, we first conduct a detailed investigation
of the energy-accuracy trade-off among two hardware neuron
designs using SC, i.e., APC-based neuron and MUX-based
neuron, as shown in Fig.2 and Fig.3, respectively. Hardware-
based pooling is provided afterward, and finally, we present
the structure optimization method for the overall DCNN
architecture.

1) APC-Based Neuron: Fig.2 illustrates the APC-based
hardware neuron design, where the inner product is calculated
using XNOR gates (for multiplication in bipolar coding) [25]
and an APC (for addition). To be more specific, we denote
the number of bipolar inputs and stochastic stream length by
n and m, respectively. Accordingly, n XNOR gates are used
to generate n products of inputs (x′is) and weights (w′is), and
then the APC accumulates the sum of 1s in each column of the
products shown in Fig.2 (a). Instead of an FSM, a saturated
up/down counter is used to perform the scaled hyperbolic
tangent activation function Btanh(·) for binary inputs as Fig.2
(b) shows. Details and optimization of the Btanh(·) activation
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Fig. 2. APC-based neurons. (a) Inner product and (b) activation

function using a saturated up/down counter for binary inputs
are demonstrated in [19].

2) MUX-Based Neuron: As shown in Fig.3, the MUX-
based neuron is composed of XNOR gates, a MUX, and a
K-state FSM. XNOR gates compute the products of bipolar
inputs (x′is) and weights (w′is); the n−to−1 MUX sums up
all stochastic products; and the hyperbolic tangent activation
function is achieved by a K-state FSM, respectively. As the
inner product calculated by a MUX is a stochastic number, the
K-state FSM design mentioned in [25] can be used here to
implement the activation function denoted as Stanh(K,x) =
tanh(K·x2 ) where x is the input.

Nevertheless, two problems challenge the implementation:
(i) the inner product calculated by an n input MUX is scaled
to z

n , where the correct inner-product result is z, and (ii) with
the input z

n , the K-state FSM calculates tanh(K·z2·n ) instead
of the desired value tanh(z). Thus, in order to recover the
correct activation, we need to re-scale up the results of MUX
by n times and multiply the stream by 2

K (or multiply by
2·n
K directly). As opposed to the relatively simple and efficient

data conversions on a software platform, such conversions in
a hardware-based neuron incur significant hardware overhead,
because the linear gain transformation needs one more FSM
[25], and the scaling multiplication requires one XNOR gate
as well as another bipolar stochastic stream generated.

In this paper, considering an n inputs neuron with inner
product denoted by z, we select the state number K such that
2·n
K = 1, and the final output of the FSM is calculated as

Stanh(K,
z

n
) = tanh(

K · z
2 · n ) = tanh(z) (1)

In this way, we achieve the desired activation result with no
additional bit stream conversion (i.e., no hardware overhead).
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Fig. 3. MUX-based neurons. (a) Inner product and (b) activation

3) Pooling Neuron: In a DCNN, down-sampling steps are
performed by the neurons in pooling layers, which reduce the
dimensions of neurons for following convolutional layers or
fully connection layers. Pooling operation achieves the invari-
ance to input data (i.e., image, video, etc.) transformations
and better robustness to noise and clutter. Moreover, the inter-
layer connections can be significantly reduced for a hardware
DCNN by using pooling layers. In this paper, we adopt the
average pooling which simply outputs a mean of k inputs.
In SC-based hardware, we implement it using a MUX and
each input xi has the same probability to be selected as
output. For example, the stochastic arithmetic mean over 4
inputs (2× 2 region) is provided by using three 2-to-1 MUXs
connected hierarchically, where selection signal for each MUX
is a stochastic bit-stream for 0.5.

IV. BUDGET-DRIVEN DESIGN ALLOCATION

Obviously, since neurons in each DCNN layer are homoge-
neous, we consider neurons in the same layer are implemented
using the same design. Design allocation which represents
how to arrange different neuron designs for each DCNN’s
layer is a challenging task. Accuracy, power, area, and energy
constraints have to be satisfied. Inspired by the stable mar-
riage problem [26], we present a design allocation algorithm
which optimizes the overall network design given a preferred
parameter. The first step is to find a minimum feasible solution
(MFS) so that each layer in the DCNN is implemented by a
valid neuron design. The second step is to optimize the MFS
by re-allocating implementation for neurons in each layer to
achieve the desired network-wise objective. The objective of
the overall DCNN optimization is evaluated in terms of a
comprehensive design score defined as follows

Score =

∏
j C

ωj

j

1− Err
(2)

where ωj is the integer weight of each design parameter,
Cj is the overall network cost in terms of one metric (e.g.,
area or power), and Err is the overall network error rate. As
long as any one of the design parameter is the optimization
target, corresponding ωj increases. A small score suggests
an optimized design considering both design parameters and
network performance.

A. Minimum Feasible Solution

The stable marriage algorithm cannot be applied directly
to find a MFS. In the stable marriage problem, an element
can be matched to another element freely. However, in our
problem, a valid hardware design can implement multiple
DCNN layers; several constraints result in limitation to apply
a specific hardware design for neurons in a certain DCNN
layer. For example, in the case, where using APC-based neuron
in a convolutional layer leads to the budget violation, the
convolutional layer should not be implemented with the APC-
based neuron.

In the minimum feasible design allocation algorithm shown
in Algorithm.1, the cost, denoted as clid, of an implementation
i on neurons in a layer l with a specific constraint d is defined
as

clid = ψ · ulid (3)

where ψ is the number of neurons in the current layer and
ulid is the unit cost of constraint d for a neuron in layer l by



Algorithm 1: Minimum Feasible Design Allocation
Data: list of feasible hardware implementations I, list of layers in DCNN L,

optimization objective constraint t
Result: minimum feasible design allocation solution S
Initialize all l ∈ L to be free
S ← ∅
while ∃ free layer l ∈ L has no implementation do

for each i ∈ I do
IsV alid← True
if cost clit > Budget blt then

IsV alid← False

if IsValid then
l’s implementation ← i
Append pair (i, l) to S
break

if l is free then
S ← ∅
break

Output S

implementation i. Similarly, the budget for layer l with respect
to constraint d is denoted by bld. Layers in a DCNN are firstly
initialized to be free. The MFS algorithm tries to find a valid
design for each layer at first. An implementation is valid for
a specific layer when the cost in every aspect of constraint
metric satisfies the requirement. The first valid implementation
is used for current layer. However, if all implementations are
not valid, the solution is void. And an impossible solution is
reported. This greedy process is repeated for each layer of a
DCNN to obtain a MFS.

B. Joint Design Allocation Optimization
The MFS guarantees that each DCNN layer has a valid

implementation design, but the complete DCNN is not opti-
mized, i.e. the accuracy of DCNN is not optimized for the
given constraints. A joint optimization algorithm is proposed
in Algorithm.2. The cost in the algorithm is defined in Eqn.(3),
where we only calculate the cost for the constraint t. Taking
the MFS and the given design budget as the inputs, the
algorithm firstly seeks an implementation with lower cost
for each DCNN layer. The cost difference between the old
implementation and the new one has to be as big as θ to
output the new one. After a lower cost design is ensured, the
algorithm evaluates the refined implementation. If the accuracy
increases, which means the error rate of the network with new
implementation is smaller than the previous one, the algorithm
will output the new implementation scheme for the DCNN.
When the process reaches an iteration limit τ , the current
solution is recognized as the optimized one and algorithm
terminates.

V. EXPERIMENTAL RESULTS

A. Comparison between APC-based and MUX-based neuron
We use Synopsys Design Compiler to synthesize the neu-

rons with the 45nm Nangate Open Cell Library [27]. For an
APC-based neuron, the area, path delay, energy, power, and
absolute error with respect to the input size are shown in Fig.4
(a), (b), (c), (d), and (e), respectively. Energy and absolute
error differ due to bit-stream length change, while other
measures remain constant. To be more specific, as illustrated
in Fig.4 (a), (c), and (d), the APC-based neuron shows an
exponential increase in area, energy, and power including
dynamic and leakage power as the input size of a neuron
increases exponentially. This means that the area, energy, and
power are linearly proportional to input size. However, path

Algorithm 2: Design Allocation Optimization
Data: minimum feasible design allocation solution S, list of feasible hardware

implementations I, optimization objective constraint t
Result: optimized design allocation solution S′
lastScore← ScoreS
currScore← ScoreS
iterCount← 0
do

lastScore← currScore
lastCost← 0
currCost← 0
do
S′ ← ∅
lastCost← currCost
currCost← 0
for each pair (i, l) in S do

for each i′ ∈ I do
if cost ci′t < cit then

l’s implementation ← i′

i∗ ← l’s implementation
currCost← currCost+ dci∗
Append pair (i∗, l) to S′

while lastCost− currCost ≤ threshold θ
currScore← ScoreS′
iterCount← iterCount+ 1

while lastScore ≤ currScore or iterCount < τ
Output S′

delay shown in Fig.4 (b) reflects a saturated pattern when the
input size of a neuron increases to a certain point, which means
that a large input size will not lead to extreme long path delay.

The reason results from: With the efficient implementation
of Btanh(·) function, the hardware of Btanh(·) increases
logarithmically as the input increases, since the input width
of Btanh(·) is log2n. On the other hand, the number of
XNOR gates and the size of the APC grow linearly as the
input size increases. Hence, the inner product calculation part,
i.e., XNOR array and APC, is dominant in an APC-based
neuron, and the area, power, and energy of the entire APC-
based neuron cell also increase at the same rate as the inner
product part when the input size increases.

We observe that the error is normally distributed with a
mean value of 0. In this paper, we denote absolute error as the
absolute standard deviation of error’s distribution. For different
bit-stream lengths, the result, as Fig.4 (e) shows, agrees on the
intuitive observation that a longer bit stream can reduce the
absolute error of calculation. Moreover, more inputs lead to
larger absolute error. The absolute error increases logarithmi-
cally with respect to input size. The improvement due to the
increase of bit-stream length is non-linear but independent of
the input size. Longer bit-stream length helps to reduce the
error, but this improvement decreases and converges when bit-
stream length gets longer than 1024. Designers should consider
the latency and energy overhead caused by long bit streams;
the convergence of improvement trend helps designers achieve
the desired trade-off between accuracy and overhead.

Similarly, we investigate the performance of the MUX-
based neuron with respect to its input size. Fig.5 (a), (b),
(c), and (d) show the results of the number of inputs versus
the area, path delay, energy, power, and absolute error with
respect to the input size. Based on observation on the absolute
error the MUX-based neuron can achieve, as shown in Fig.5
(e), when the input size exceeds 64, the absolute errors with
different bit-stream length approach 1, which is about 100%
error compared to correct value range. Then we plotted the
chart for input size from 8 to 64 only. With input size increase
linearly, the absolute error increase in a linear pattern. The
reason is that MUX addition selects only one bit at a time



Fig. 4. Input size versus (a) area, (b) path delay, (c) energy, (d) power, and (e) absolute error with different bit-stream lengths for APC-based neuron

Fig. 5. Input size versus (a) area, (b) path delay, (c) energy, (d) power, and (e) absolute error with different bit-stream lengths for MUX-based neuron

TABLE I
COMPARISON BETWEEN APC-BASED NEURON AND MUX-BASED

NEURON USING 1024 BIT STREAM

APC-based neuron MUX-based neuron
Input size 16 32 64 16 32 64

Absolute error 0.15 0.16 0.17 0.29 0.56 0.91
Area (µm2) 209.9 417.6 543.2 110.7 175.3 279.8

Path delay (ns) 2.20 4.00 4.20 0.52 0.70 0.68
Power (µW ) 80.7 95.9 130.5 206.5 242.9 271.2
Energy (fJ) 177.4 383.7 548.1 110.0 169.1 238.9

and ignores the rest of the bits, leading high absolute errors
when input size is large. Furthermore, as APC-based neuron
performs, longer bit streams can reduce absolute error. The
improvements are independent of input size; the improvements
with respect to bit-stream length are logarithmic. When the bit-
stream length is increased large enough, the absolute error will
not be reduced significantly. In general, MUX-based neuron
gains larger absolute error compared to APC-based neuron,
which suggests MUX-based should be applied to more error-
tolerant arithmetic operations. In addition, one can observe
from Fig.5 (a), (c), and (d) that as the number of inputs
increases, area, power, and energy of the MUX-based neuron
all tend to increase. The synthesis result also shows the path
delay for a neuron increases approximate linearly when we
enlarge the input size with the same stride. These are because
the MUX-based neuron with more inputs requires more XNOR
gates and MUXes for inner product calculation, and more
states in the FSM (K = 2·n) to compute the activation. Hence,
the increased hardware components result in more area, power,
path delay, and energy in the neuron cell.

we compare the performance between APC-based neuron
and MUX-based neuron using a fixed bit stream length equal
to 1024 under different input sizes, as shown in Table.I.
Clearly, APC-based neuron is more accurate but occupies more
area than MUX-based neuron. Besides, as APC is slower than
MUX, the latency of APC-based neuron is larger than MUX-
based neuron, which causes APC-based neuron to consume
more energy than MUX-based neuron for one calculation. As
for the power performance, an APC-based neuron has less
switching (due to the long latency) and larger area than the

MUX-based neuron, resulting in less dynamic power, more
leakage power, and less overall power.

B. Evaluation of design allocation algorithm
We use LeNet-5 DCNN as a case study in this experiment to

evaluate our budget-driven algorithm to optimize a stochastic
computing based DCNN. Neurons in LeNet-5 DCNN layers
are configured as 784(28 × 28) − 11520(20 × 24 × 24) −
2880(20 × 24 × 24) − 3200(50 × 8 × 8) − 800(50 × 4 ×
4) − 500 − 10. The MNIST handwritten digit image dataset
[28] consisting of 60,000 training data and 10,000 testing data
with 28x28 grayscale image and 10 classes is used in the
experiments. The synthesis results are gathered as mentioned
in Section III-B1 using Synopsys Design Complier with the
45nm Nangate Open Cell Library [27].

We first listed several different configurations to implement
each DCNN layer as Table.II shows. We fed these configura-
tions into our algorithm given the budget constraint and eval-
uated the design score, defined as Eqn.(2), for the optimized
configuration of the DCNN. To validate our algorithm, we
optimized the DCNN with three different optimization targets
as an example, i.e., area, power, and energy, given correspond-
ing network-wise constraints. The energy is approximately
positively proportional to power; we set the weight for energy
as 0 and use power to represent energy approximately. In the
experiment, three example cases were studied, where case 1
emphasized area and the rest emphasized power.
• Case1: Score1 = Area2·Power

1−Err and Area ≤ 5mm2

• Case2: Score2 = Area·Power2
1−Err and Power ≤ 2W

• Case3: Score3 = Area·Power2
1−Err and Energy ≤ 4µJ

As shown in Table.III, the proposed joint optimization
algorithm picked configuration 4, 7, and 14 for case 1, 2,
and 3, respectively. Under certain given constraints, some
configurations are not valid, which is filtered out by the
algorithm. For comparison, we calculated the scores for those
configurations which are not optimized when they are valid
(configuration 1, 2, 9, 12). We have conducted a separate
exhaustive search, and verified the selected configurations by
the proposed algorithm are the best. One can observe from



TABLE II
EXAMPLE CONFIGURATIONS

Configuration Bitstream Length Layer 1 Layer 2 Layer 3
1 1024 MUX MUX MUX
2 1024 MUX MUX APC
3 1024 MUX APC MUX
4 1024 MUX APC APC
5 1024 APC MUX MUX
6 1024 APC MUX APC
7 1024 APC APC MUX
8 1024 APC APC APC
9 512 APC MUX APC
10 512 APC APC MUX
11 512 APC APC APC
12 512 APC APC APC

...
13 256 APC APC MUX
14 256 APC APC APC

...

TABLE III
EXAMPLES OF CONFIGURATIONS EXPLORED AND GENERATED BY THE

ALGORITHM

Configuration Error (%) Area(mm2) Power (W) Energy (uJ) Score 1 Score 2 score 3
1 21.7 3.18 3.08 2.85 38.56 – 38.56
2 11.9 3.69 3.03 4.21 38.50 – –
4 8.7 4.56 2.75 5.44 37.70 – –
7 4.3 7.20 1.77 7.63 – 95.80 –
9 4.7 6.83 2.01 3.96 – – 28.84

12 9.4 6.83 2.01 1.98 – – 30.34
14 2.0 7.70 1.72 2.36 – 104.24 23.29

... ...

the Table.III that the picked configurations have the lowest
score whereas other configurations are invalid or have larger
scores. Also being observed from Table.III, our algorithm
gives the best trade-off between network accuracy and design
parameters (with the highest scores in all the cases).

VI. CONCLUSION

This paper introduced hardware implementation for Deep
Convolutional Neural Network using stochastic computing.
Each distinct stochastic computing based neuron in DCNN is
analyzed. A two-step joint optimization algorithm is proposed
that given design budgets, re-structuring the SC-based DCNN
can achieve optimized hardware footprint with a relative high
network accuracy performance. Experimental results showed
with restricted design requirements, the optimized SC-based
implementation for DCNN achieved the lower error rate with
the least design resources requested.
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