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Abstract—Medical cyber-physical systems are a new trend
of software controlled physical systems that are increasingly
common in medical domains. With rapid developments in medical
science and computer technology, safety verification and simula-
tion becomes more challenging. This paper introduces a general
model for medical injection systems, which can be used for formal
verification, simulation/testing, and computing the Area Under
the Curve (AUC) metrics, using Satisfiability Modulo Theories
(SMT) over Reals. An algorithm of computing constrained AUC
for measuring drug exposure with relative baseline, is presented
based on the proof of unsatisfiability. We demonstrate that our
model can efficiently solve these problems using the state-of-the-
art SMT solver dReal.

Index Terms—Satisfiability Modulo Theories, Medical Cyber-
System, Timed System.

I. INTRODUCTION

Medical cyber-physical systems are a new trend of software
controlled physical systems that are increasingly common
in medical domains. These systems are becoming more and
more popular in medical therapy. Medical service is more
efficient and convenient for doctors and patients, while they
offer the opportunities for medical experts and doctors in
studying the treatments and in communicating with patients.
Therefore, patients can benefit from the automation of treat-
ment process, which improve therapy effectiveness, lifestyle
quality and reducing cost. However, with rapid developments
in medical science and computer technology, medical cyber-
physical systems are becoming more and more precise and
complex, and more real-time reactions of the patient during
treatment are sampled and analyzed. Due to the complexity
of the systems and a low tolerance for faults in the medical
environment, validation and verification of medical cyber-
physical systems are crucial [1]. Specifically, the challenges of
verifying medical systems mainly come from timed and hybrid
properties. Similarly to all cyber-physical systems, medical
systems are mostly about the intersections of computations
and physical actions. To create the mathematical models of
the entire systems, formal methods that combine both discrete
and continuous dynamics are required.

Formal methods have been widely used in checking the
properties and reliabilities of hybrid systems, which are mod-
eled using abstract mathematical representations. The main
advantage of formal methods comes from the mathematical
precision for reasoning the correctness of system models.

Timed Automata plays a big role in modeling and verifying
the timed systems [2]. Particularly for medial systems such as
drug administration system, such methods model the behavior
of the system using formal representation by employing Timed
Automata extended with Tasks (TAT). Tools such as UPPAAL
[3] and its extension TIMES [4] have been successful in
verifying cyber-physical systems in many domains. Model
checking based on satisfiability theories have also been applied
to timed systems [5]. For example, dReal [6] is demonstrated
to successfully verify biology systems by solving Satisfiability
Modulo Theories (SMT) problems over the reals with a wide
range of nonlinear functions, such as ordinary differential
equations (ODEs) [7]. The main advantages of using SMT
over reals comparing to real-time model checkers are: a) for
the systems with frequent changes between different dynamics,
SMT performs much faster; b) if an unsafe state exists in the
system, SMT offers the proof of unsatisfiability that provides
the information of where and why the unsafe state appears.

To precisely model medical systems, a realistic drug re-
sponse model has to be used. Various clinical studies show
that responsiveness to the treatment with drugs depends on
the concentration of the drug in the blood that depends on
patients, drug dose, and intake time interval. Pharmacokinetics
(PK) [8] is a branch of pharmacology focused on studying
the drug disposition in the human body. For many drugs, the
concentration in the blood of a patient is highly related to
its effectives. Pharmacodynamics (PD) [9] is the study of the
biochemical and physiological effects of drugs on the body.
Therapeutic Drug Monitoring (TDM) [10] is the approach that
unifies the PK-PD knowledge, which shows that drugs with
explicit PK-PD relationships and a narrow therapeutic range
may be easily under- or overdose. Hence, it is important to
develop an approach that generates safety guidance for medical
injection using a precise drug response model, such as the
drug administration system [11]. In addition, Area Under the
Curve (AUC), as well as AUC in the baseline measurements
(constrained AUC), are commonly used to assess the extent of
exposure of a drug [12]. Measuring these two metrics is very
important in pharmacokinetics analysis.

The main contributions of this paper are as follows:

o We introduce a general model for medical injection sys-

tem, which can be applied to both simulation and formal
verification, using SMT over Reals. The mathematical



three-compartment pharmacokinetics model is used for
drug response in the abstract timed model, which is one of
the most precise pharmacokinetics models for simulating
drug response.

o The model is demonstrated that it can efficiently and
precisely simulate the medical injection process. The
model can formally prove(disprove) if the expected drug
concentration-time objectives are reachable with given
injection actions, and return sat (unsat). This is done
by checking bounded §-Satisfiability[13]. The proof of
unsatisfiability is generated if it returns unsat, which
indicates the unreachable state(s) and the corresponding
time location(s).

e The proposed model computes AUC and constrained
AUC simultaneously during the verification or simulation
process. For computing constrained AUC, we introduce
an algorithm based on proof of unsatisfiability of SMT
over reals.

II. PROBLEM FORMULATION

A timed system is defined with the finite set of continuous
clocks T and a set of constraints over the clocks. Mostly, the
constraints are represented as conjunctions, disjunctions, and
negations of expressions over the clocks. Each transition in
such system is labeled by a constraint over the state or clock
values, namely guard, which indicates the condition to trigger
the transition. Each state is constrained by an invariant, which
restricts the possible values of the clocks for being in the state,
which can then enforce a transition to be taken. The following
notations are used for problem formulation.

Let a timed system be a tuple A=(S, T, Inv, E, ACT, init).

e T is a finite set of clocks. t; € T, and t; € R*, i € [O,n].

o S is a finite set of states. s; € S is the state at it" time.

o Inv is the associated invariant for each state.

o E is a finite set of transitions, where e; is a tuple (s;, s,

g, act, T;—; ), e; € E. The state changes from s; to s;
over a set of clocks T;_,;. g is the guard of transition e;,
and act is the action of e;.

o ACT a finite set of actions the system made.

o init is the initial values of all the parameters for encod-

ing the system.

In this work, the state S are the concentrations of different
compartments. The clock set T = [0, ¢,,]. The action set ACT
are the inputs that triggers the transitions. Simulation and
AUC calculation can be achieved with the same formulation
of formal verification.

Problem 1: The medical therapy objectives O in
concentration-time format and the injection actions AC7T, are
provided by the doctor or electronic drug system. Let the upper
bound clock be t,, and the initial states be sg, and O={(c;,,
tig)s (Ciys ti))s wn (Cijs ti;)}. Each element of O is a pair of
concentration! and time, V ti; < tp. The verification goal is
checking if all the objectives in O can be reached by system
A with given actions AC7T. This can be done by checking

lcij is a comparison function, e.g., ¢;, < 0.01 or ¢;,==0.01.

the following: V¢, € T, checking if O C (S, T) according
transitions E; if O is a subset of (S, T), the system is safe;
otherwise, the system is unsafe.

Simulation and AUC calculation can be achieved by replac-
ing O. For simulating the system, O=(g, t > t,), i.e., asking
if the system can reach the clock of ¢,, without any constrains,
which is always safe. According to the definition of AUC [14],
the AUC of the concentration C equals to AUC= fot " %dt.

Problem 2: Let the upper bound clock be ¢,, and the initial
states be sg. Given the system A, the injection actions ACT,
and a concentration lower bound [, we define AUCynger
to be the area above the concentration curve but below the
bound [. Similarly, we can define AUC,., if an upper bound
concentration limit is given. Such concentration bounds can be
provided by the doctors for medical therapy or by the medicine
researchers for drug analysis. AUC,,gerr and AU Cyye, are the
two types of constrained AUC considered in this paper. One
example of AUC,nder is shown in Figure 1 with a lower
bound limit [=0.002, where ¢, is the first clock when the
concentration is lower than [ and ¢, is the first clock when
the concentrations are higher than [. Note that [ could be time
continuous function, or a relative drug exposure baseline [12].
Then, AUC,4er can be computed as
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Fig. 1: Example of constrained AUC.

Based on Eq. 1, the problem is to find the clocks t, and ?,,.
We introduce an algorithm that obtains such clocks based on
a proof of unsatisfiability in Section IV.

III. BACKGROUND
A. Three-Compartment Model

Mathematic models of a human body are created to study
physiologic or pharmacologic kinetic characteristics. The com-
partment model can simulate the biologic processes involved
in the kinetic behavior of a drug after it has been introduced
into the body, leading to a better understanding of its phar-
macodynamic effects []. Mostly, one compartment model is
not sufficient to represent the pharmacokinetics of a drug.
A two- and three-compartment model have wider applica-
bilities. In this work, we use three-compartment to represent
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Fig. 2: Three-Compartment pharmacokinetics model. Injection could be taken in either central compartment C1, such as blood injection, or

tissue compartment C', such as muscle injection.

the pharmacokinetics of a drug, specifically using Michaelis-
Menten elimination model [15][16]. The abstract model is
shown in Figure 2, including central compartment, tissue, and
deep tissue compartment sub-models. The three-compartment
represents a drug that is distributed most rapidly to a highly
perfused central compartment such as blood and brain. This
is also the compartment which takes the injection. The drug
is distributed less rapidly to the tissue compartment such
as muscle, and very slowly to the deep tissue compartment,
containing such poorly perfused tissue as bone and fat. The
deep tissue compartment may also represent tightly bound
drug in the tissues.

After the injection, it is first distributed to the central
compartment C;. There is then redistribution to tissue com-
partment Cy with good perfusion, with further redistribution
to the poorly perfused deep tissue C3. The rates of infusion,
k12, ko1, k13, k31, depend on the rate of transfer between the
various theoretical compartments of the body. Elimination
(drug clearance) only happens at the central compartment, with
rate kig.

The model is described using ordinary differential equations
(ODEs) [15]. In general, there are two dynamic models of
three-compartment model for modeling an injection system,
i.e., distribution model and injection model. The distribution
dynamic model represents the distribution and dilution of the
injection, as shown in Eq. 2 (', C5, and C'5 are the concentra-
tion of the central compartment, tissue compartment and deep
tissue compartment, over time ¢. The central compartment
concentration C; depends on the rate of excretion (-k17C)
and the rates of distributing to the other two compartments
(-k12C1-k13C1), and the other two compartments are only
related to C.

d[C
% = —(kio + k12 + k13) - C1 + ka1 - Co + k31 - Cs
d[ciﬂ — k1 Cot iz Ci 2
d[Cs] N
i = k31 03 + k13 Ol

The second dynamic is required to model the concentrations
of the three compartments when an injection is taken. The
difference compared to the distribution dynamic is in the ODE
of C1, shown in Eq. 3 Rjpjcct 18 the rate of drug injection

which is a constant number. The amount of drug injected

:er Rinjectdl = Rinject-At. Note that distribution (dilution)
of the body naturally processes all the time. By adding Ry, ject
in the first ODE of Eq. 3, this model successfully describes the
injection process with distribution. In one injection monitoring
system, there could be more than one dynamic models if the

injection rate can be adjusted.

d[C"

[dtl] = —(kio + k12 + k13) - C1 + k21 - C2 + k31 - C3 + Rinject
dlCa] _

i ko1 - Co + k12 - C1
d[dCt’S] = —k31-Cs+kiz-C1

3)
B. Satisfiability Modulo Theory (SMT)

The Satisfiability Modulo Theories (SMT) problem is a
decision problem for logical formulas with respect to first-
order logic. In other words, SMT departs from treating the
problem in a strictly Boolean domain and integrates dif-
ferent well-defined theories (Boolean variable, bit vectors,
integer/floating arithmetic, reals, etc.) into a DPLL-style SAT
decision procedure [5]. Some of the most effective SMT
solvers that are developed for specific problems. For example,
Boolector [17] is the most efficient SMT solver in solving
bit-level decision problem; Z3 [18] and CVC [19] have been
widely used in verifying software. SMT formulas over the real
numbers can encode a wide range of problems, particularly in
modeling hybrid systems. dReal [6] is the state-of-the-art SMT
solver over reals that can model the verification problem of
hybrid system.

IV. MODELING

This section introduces the modeling of the injection sys-
tems, the verification problem and the algorithm of calculat-
ing the constrained AUC, using the non-linear SMT solver
dReal. First, a set of global definitions has to be claimed.
According to Eq. 2 and Eq. 3, these include the definition
of static variables and dynamic variables. The static variables
include distribution, absorption and excretion rate k;;, e.g.,
using syntax "#define k19 0.4;”. The concentration of each
compartment C; and the clock time are defined as dynamic
variables with a bound, e.g., using syntax ”[0, 60] time;”.
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Fig. 3: Generic modeling of injection system with two injection dynamics.

A. Modeling Dynamics in SMT

The main part is the dynamic model, which is the three-
compartment model of the medical injection system. A com-
plete dynamic model must include all the elements retried
in the tuple of the timed automata A (Section II). We first
introduce the SMT model of the distribution dynamic shown
in Eq. 4.

To define a dynamic model, we first declare the label of
the model with a numerical value m (line 1). The transition
between different dynamics is described using the pointer m
of the model. Second, the invariant for the states are defined
(lines 2 and 3), which is a conjunction of logic formulas
which must always hold in a model. For the distribution
dynamic, the invariant define that the concentrations of all the
compartments C; > 0, and there is no absorption (dose=0).
The continuous dynamics of a model by providing a set
of ODEs of the distribution dynamic are included in flow,
where d/dt[C4] represents d[dctl , t is the global variable time.
The first formulas of jump is interpreted as guard, i.e., a
logic formula specifying a condition to make a transition.
Note that this allows a transition but does not force it. The
second argument of jump denotes the target model m of the
triggered transition, and applies to the dynamic variables in the
logic formulas. In this conjunction, C;’ represent the dynamic
variable C’i.

1 mode 1;

2 invt :

3 (and(Cy > 0)(C2 > 0)(Cs > 0)(dose < 0)(dose > 0));

4 flow:

5 d/dt[C1] = — (k1o + k12 + k13)C1 + k21C2 + k31C3;

6 d/dt[C2] = k12C1 — k21C?2; “
7 d/dt[C3] = k13C1 — k31C3;

8 d/dt[z] = 1

9 jump :

10 (guardmodeit)

==> ©2(and(C}| = C1)(C} = C)(Ch = Cs) (&' = x));

An extra dynamic variable 2 is introduced in all the dynamic
model (line 8) to represent the clock. i=time with %:1.
This is because dReal doesn’t support time to be used in
guard. Note that guard is specifically constructed according
to the hybrid system. For example, if the injection will be

taken when the concentration of tissue compartment is equal
to ¢ (e.g., using electronic pump), guard=(and (C2 < ¢)).
If the injection is taken periodically every t,, to model two
absorptions, guard=(and(x < ¢,)(x > t,)(x < 2t,)(x > 2t,)).
In both cases, jump will point to the injection dynamic(s).
Our SMT model is very flexible to model a hybrid system
with both feedback control and human operators.

The difference between the ODEs of injection and dis-
tribution dynamics is C;. However, the SMT model has to
be changed. The invariant condition should be replaced with
dose > 0 in the previous model. Multiple modifications need
to be done in flow. The differential equation of C; is replaced
by line 5 in Eq. 5. An extra dynamic variable y defined with
d/dtly] = Rinject is used for constructing guard, where y
is calculating the amount of drug injected (line 8). Once the
transition is made, we have to reset y in case there are multiple
doses in the hybrid system. For the systems that have various
injection rates Ry jection, We need to create separate injection
model for each of them.

1 mode 2

2 invt :

3 (and(Cyp > 0)(C2 > 0)(Cs > 0)(dose > 0));

4 flow :

5 d/dt[C1] = — (k1o + k12 + k13)C1 + k21C2 + k31C3 + Rinject;
8 d/dt[y] = Rinject;

10 jump :

11 (and(y > dose)(y < dose))

==> @3(and(C; = C1)...(y' = 0));

(5)
Finally, the initial states of the first model and the safety
goal of the hybrid system have to defined. If the hybrid system
is initialized with model 1, init should start with @1 with all
variables set to 0. goal shares the same syntactic structure
of init. The safety properties can be constructed using the
conjunctions of formulas. For example, line 3 in Eq. 6 is
checking if C5 is in [0.005, 0.01] during time [10, 15]; line 5

checks if C7 < 0.1 is always safe over all the clocks.

B. System modeling

The general system modeling of the injection systems is
shown in Figure 3. The drug response model is built with



one distribution dynamic and two injection dynamics since
there exist two injection rates. The proposed SMT model
can formulate any control units (the injection control) if the
decisions are made based on time and the concentrations. This
is done by modifying guard for each dynamic model formula.
For example, assume that there are two injections with amount
d; and do at t=5 and t=20 over time=[0, 60], using the
injection rates R1 and R2, respectively. The transitions are
model 1 — model 2 — model 1 — model 3 — model 1.
The time condition should trigger the transitions between
model 1, and models 2 and 3. guard of model 1 should
describe x+ == 5 OR =z == 20. However, SMT over the
reals only supports conjunction of formulas. Hence, we need
to model OR using inversion and AND, such that (z=5) Vv
(x=20) — (z # 5) A (z # 20). The SMT formula is

jump : (not(and(z < 5)(z > 5)) (and(z < 20)(xz > 20)))

Similarly, the control decisions made based on concentra-
tion, or the combination of concentration and time, can be
modeled using the same approach.

1 nit : @Ql(and(Cp = 0)(C2 = 0)(C2 = 0)(z = 0));

2 goal : Ql(and

3 (and(Cs > 0.01)(Ca < 0.005)(z > 10)(z < 15))
(and(C3 > 0.003)(C3 < 0.001)(z > 20)(z < 25))
(and(Cy < 0.1))

(and(...)))

C. Area Under Curve (AUC) and Constrained AUC

To compute AUC of the three concentrations, we just need
to add three dynamic variables and differential equations in
all the models. AUC; are the dynamic variables of AUC of
ith concentration. According to the definition of AUC, the
derivative of AUC is the concentration function, which can be
simply represented using Eq. 7.

©6)

(oI

d/dt[AUCl] =Cq; d/dt[AUCQ] = Cy; d/dt[AUCg] = Cjs; (@)

As mentioned in Section II Figure 1, to compute constrained
AUC, t, and t, that indicates the bounded clocks of the
error regions are required. Once bounded clocks are available,
constrained AUC can be computed by adding the Eq. 1 into
the hybrid model. Note that multiple error regions may exist.
Hence, we introduce an algorithm that iteratively collects the
bounded clocks by using the proof of unsatisfiability generated
by dReal (with option —proof), shown in Algorithm 1.

The algorithm takes the SMT formula of the system 1,
the error bound [ as inputs and generates the bounded clocks
of the error regions. The algorithm includes two global goal
formulas for 1, g and ¢’ indicating safe and unsafe. First,
the algorithm checks if there exists an error state by checking
if ¢ is always safe with error bound [ (line 4). If there is no
error state over time, the algorithm will be terminated. If there
exit error states, the algorithm will start collecting the bounded
clocks (lines 7-16). In each iteration, it first extracts the starting
clock of the error region, t;, by extracting the smallest clock in

the proof. Note that the proof can be generated iff the problem
is unsat. Hence, goal of v is complemented. The proof of unsat
includes the starting clock of error region for g’, which is the
ending clock of the error region for g. Once i iteration is
done, goal is reset to g, and the initial time t;,;; is set to t;
such that time:[t;7 t,,] in the next iteration. This makes sure
that the next iteration skip all the previous collector regions.
The bounded clocks (t¢, t;) be returned if there is no more
error region (lines 7 and 17).

Algorithm 1 Constrained AUC

Input: Hybrid system formula ) in SMT

Input: Error bound [, time = [0, ¢,]

Output: Bounded clocks of unsafe region with error bound I.
1: g: 1 is infeasible (safe); g’: [ is feasible (unsafe);
2: goal=g;

3: tinit = 0; 1=0;

4: if V t; € time, (¢ — goal) is always SAT then

5: ty = t, = null,

6

7

8

: end if
: while 3 ¢; € time, (¢ — goal) is UNSAT do
: Extract ¢, from the proof of unsat;
9: tinit = 0; goal=g’;
10: if 3 ¢; € time, (¢ < goal) is UNSAT then

11: Extract ¢;, from the proof of unsat;
12: else

13: ty=tn;

14: end if ]

15: i++; goal=g; tinit=ty;

16: end while
return t% and t;, Vi,

V. EXPERIMENTAL RESULTS

The experimental results are conducted on MacOS with 2.3
GHz Intel Core i7 x4 with 16 GB memory. We solve the
hybrid SMT formulas using dReal[6] in the single-thread [6].
Algorithm 1 is implemented in C++ using dReal as a black-
box that generates the proof of unsat. We demonstrate our
approach using the example used for illustrating the injection
system modeling in Section IV. The system has a time bound
[0, 60] hours and has two injections triggered by time=5 and
time=20. To show the complete results of all the states up to
time=60, the goal is set as goal: @1 (x > 60);.

The results are included in Figure 4. The z-axis represent
the time. Left-hand y-axis represents the concentrations C1,
C5, and C'5. Right-hand y-axis represents the AUC of each
concentration. All the results are time continuous with interval
0.005 second defined the precision of the SMT solver (with
option —precision). The runtime of generating all the results
in Figure 4 is less than 15 seconds. If a set of concentration-
time objectives O are provided by the users, the goal has to
be modified using Eq. 6. Mostly, checking the satisfiability of
O takes less CPU time than simulating over all the clocks.
This is because the SMT solving process will be terminated
as soon as an unsafe state Synsqfe is detected. For example, if
O includes Cy < 2e~* for clocks in [20, 25], the solver will
return unsat and terminate at the first clock that Cy > 2e~4,
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Fig. 4: Continuous results of the concentrations and area under curves
(AUCs) generated by dReal up to time = 60 hours.

We show the result of computing the constrained AUC of
C5 using the same system, shown in Figure 5. The runtime
overhead of Algorithm 1 compared to the original SMT
formulas varies on the error bound function [. If the given
exposure baseline (error bound ) is a linear function, such as
I = le™*, Algorithm 1 computes the constrained AUC with
almost no runtime overhead. A non-linear function [ could
significantly increase the runtime complexity, which mainly
comes from the SMT solver dReal. As shown in Figure 5,
there are two error regions indicated by the bounded clocks
ty? and t;°. We can see that AUCy(Cy < le™?) is a time
continuous function, and its value increases iff the clocks are
in [t}.t,;] and [£2,t2].
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Fig. 5: Constrained AUC: AUCc, with error bound [ = le™*.

VI. CONCLUSION

This paper presents an efficient formal model that can
solve the formal verification, simulation, and measurements of
medical injection systems using Satisfiability Modulo Theories
over Reals. We demonstrate that the proposed model can be
used to model an injection system with actions performed
by electronic injection system or human. The experimental
results show the capabilities of our model in verification,
simulation, and measuring the drug Area Under the Curve
(AUC) and constrained AUC metrics. Using the state-of-the-art

SMT solver dReal, our model produces high precision results

over a wide clock range with only a few seconds.
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