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Abstract—Advances in technology have enabled tremendous
progress in the development of a highly connected ecosystem
of ubiquitous computing devices collectively called the Internet
of Things (IoT). Ensuring the security of IoT devices is a
high priority due to the sensitive nature of the collected data.
Physically Unclonable Functions (PUFs) have emerged as critical
hardware primitive for ensuring the security of IoT nodes. Ma-
licious modeling of PUF architectures has proven to be difficult
due to the inherently stochastic nature of PUF architectures.
Extant approaches to malicious PUF modeling assume that a
priori knowledge and physical access to the PUF architecture
is available for malicious attack on the IoT node. However,
many IoT networks make the underlying assumption that the
PUF architecture is sufficiently tamper-proof, both physically
and mathematically. In this work, we show that knowledge
of the underlying PUF structure is not necessary to clone a
PUF. We present a novel non-invasive, architecture independent,
machine learning attack for strong PUF designs with a cloning
accuracy of 93.5% and improvements of up to 48.31% over an
alternative, two-stage brute force attack model. We also propose
a machine-learning based countermeasure, discriminator, which
can distinguish cloned PUF devices and authentic PUFs with an
average accuracy of 96.01%. The proposed discriminator can be
used for rapidly authenticating millions of IoT nodes remotely
from the cloud server.

I. INTRODUCTION AND MOTIVATION

Evolution of technology has resulted in a highly connected
ecosystem of ubiquitous computing devices that work together
seamlessly to collect, process and analyze large amounts of
data to aid in human-centric decision making. Collectively
called the Internet of Things (IoT), the collection of wearable
devices, sensors and embedded systems (to name a few) have
enabled automated decision making for improving quality
of life. Given the highly integrated nature of IoT devices,
adversarial attacks can lead to high levels of security and
trust issues. Ensuring the security of IoT devices is a high
priority due to the sensitive nature of the collected data [1],
[2]. However, this comes with it a set of challenges: (1) IoT
devices are typically resource-constrained, thus requiring high
energy efficient security protocols; (2) their highly distributed
nature can provide easy physical access to the node and (3)
the highly connected nature of IoT framework requires fast
and secure security protocols.

Traditional approaches to cryptography, while effective,
have not proven to be sufficiently lightweight and fast for IoT
device authentication. Thus, hardware-based security protocols
have emerged as viable alternatives for IoT device registration
and authentication. Recent efforts have shifted to leveraging
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Fig. 1. Typical IoT architecture is illustrated here. The dashed lines indi-
cate IoT device authentication protocols. IoT device enrollment is done by
populating and authenticating CRPs “K” times.

the inherent randomness induced in silicon devices during
the manufacturing process as the secret key, opposed to the
traditional binary key stored in silicon devices, which can
be susceptible to physical attacks. Such approaches, called
Physically Unclonable Functions (PUFs), have helped provide
a higher level of security against direct physical attacks. This
alleviates the need for costly physical protection measures.
PUFs have become increasingly popular and have been used
for IoT device authentication [3]–[7] and other security tasks
[8], [9].

Silicon-based PUF devices [8] are easily fabricated, physical
structures that leverage the stochastic nature of the manufactur-
ing process to create physically unclonable, unique identifiers
for each manufactured unit. This typically results in a one-
way function. Given an electronic stimulus, the response of
a PUF device is an unpredictable, repeatable function. This
response identifies each device with a unique signature. This
interaction is termed as the Challenge-Response Pair (CRP),
where the challenge is the external stimulus and the PUF’s
reaction is termed as the response.

Using PUFs for IoT security protocols typically involves
an initial enrollment phase and an authentication protocol
during the actual data exchange. Figure 1 illustrates the typical



architecture of an IoT network and the generic enrollment
protocol. A typical IoT network consists of remote, resource-
constrained data nodes (N1, N2, N3 . . . Nk) connected to static
server nodes (S1, S2, S3 . . . Sn) that transfer the acquired data
to the cloud using routers (R1, R2, R3 . . . Rm). The data is
transmitted from the routers to the cloud using a network
gateway. IoT edge nodes can range from simple sensors to
complex systems with processor, memory, communication etc.
Strong PUFs implemented in complex IoT nodes are subject
to attacks, which is the focus of this work. When a data node
is added to the IoT network, an enrollment phase is executed
to create a CRP database for the PUF within the data node.
This database of CRPs is used in the authentication phase
when two nodes corresponding to the same server node want
to communicate. The common server node authenticates both
data nodes, generates security key pairs and helps secure key
sharing.

Security Assumptions: Following the protocols established
in [10], extant IoT networks using PUF authentication [3]–[7]
make the following underlying assumptions: (1) cloning a PUF
architecture, either physically or mathematically is a difficult
problem, (2) an adversary has unrestricted physical access
to the communication channel, (3) the challenge-response
characteristics of the PUF within the data IoT node is an
implicit property and is not accessible to an adversary and (4)
the attacker can obtain access to the database of CRPs through
malicious software attacks, though explicit knowledge of the
secret keys. Given these security assumptions, the goal of the
adversary becomes straightforward: it must be able to spoof
the server nodes into accepting a malicious node on behalf
of the original data nodes without actual possession of the
node in question. Any physical intrusions can compromise
the integrity of the PUF and hence render the attack futile.
The underlying stochastic nature of PUFs and the above
constraints lend itself to a solid security protocol that can be
hard to breach. However, advances in machine learning have
led to a vast majority of the non-invasive attacks explored.
Machine learning-based approaches can be characterized by
the application of a learned mathematical model on a collected
subset of valid CRPs. The curation of such data is typically
assumed to be an eavesdropping protocol. Prior works, espe-
cially the pioneering work of Rühmair et al [11], have shown
great success in cloning PUFs, gaining cloning accuracy of
up to 99.99%. Such success does come with a caveat - the
underlying architecture must be known a priori, either through
invasive physical intrusions or explicit architecture knowledge.

Today’s IoT nodes are designed such that they are tamper-
proof [12] [13] which makes it difficult or impossible for
micro-probing. Even if the attacker is successful in micro-
probing, given the myriad of PUF architectures in literature,
extracting information on the underlying PUF architecture is
extremely difficult. Hence, earlier ML-based PUF attacks with
the assumption of knowing underlying architecture are either
not practical or extremely difficult to stage. In this work,
we present, for the first time, an ML-based attack that does
not require PUF architecture information. We also present a
countermeasure for this attack that can be effectively used to

remotely evaluate an IoT node’s trust level.
To overcome such limitations, we focus on an architecture

independent attack, that assumes no prior knowledge of the
PUF architecture in the system. We show that observed
CRPs are sufficient to improve cloning accuracy of a strong
PUF irrespective of the underlying architecture. The attack
can simulate PUF network without knowing underlying PUF
architecture. To evaluate the effectiveness of our approach, we
compare against a brute force attack model (Section III) that
leverages the current advances in PUF-architecture cloning.
We leverage architecture-specific-cloning [11] through a cas-
caded framework of (1) PUF architecture identification, (2)
employ architecture specific cloning models, and (3) evaluate
the prediction accuracy of the model by combining the archi-
tecture classification accuracy and the cloning accuracy in a
harmonic mean.

Inspired from the pioneering work of Goodfellow et al [14]
on Generative Adversarial Networks (GANs), we propose a
machine learning-based defense, a discriminator, to identify
the possibility of cloning using any ML-based attack non-
invasive attack. Extant countermeasures [15], [16] to ML-
based cloning have focused on creating complex, cloning
resistant PUF architecture. As we enter into a more realizable
IoT ecosystem, complex PUF architectures may not be suitable
for lightweight IoT systems. Hence, we propose a lightweight,
probabilistic identification of cloning through machine learn-
ing. To the best of the authors’ knowledge, this is the first
such framework for the non-invasive attack of PUF-based IoT
network authentication schemes and a proposed mechanism
to differentiate original PUFs from cloned ones. In short, our
paper makes the following novel contributions:
• propose a non-invasive, architecture independent cloning

attack on string PUFs,
• show that a brute force attack on strong PUFs to identify

the PUF architecture for cloning is increasingly complex
and hence not trivial for feasible cloning, and

• propose a probabilistic, discriminator model to bolster
the security of the CRP protocol by identifying possible
instances of cloning attacks.

The rest of this paper is organized as follows. We briefly
review extant machine learning attacks on PUFs and corre-
sponding countermeasures in Section II. We describe and eval-
uate a baseline, brute-force approach in Section III, followed
by a description of the proposed attack and discriminator
approach in Section IV. We present our empirical evaluation
of the proposed approach in Section V and conclude with a
discussion on the proposed approach in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we briefly summarize extant work on
machine-learning based attack and prevention techniques in
the strong PUF design.

Strong PUFs: A strong PUF can support a large number
of complex CRPs with physical access to the PUF for a
query such that an attacker cannot generate correct response
given finite resources and time [17]–[19]. While a weak PUF
has only few CRPs which makes it difficult for the attack
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Fig. 2. The proposed attack model on oblivious PUFs architecture. The brute
force attack has an additional PUF architecture detection process as indicated
by the block in red.

and prediction techniques, hence in this paper we consider
strong PUF. The number of CRPs of strong PUFs can grow
exponentially depending on the number of module blocks
available for generating responses for a large number of
corresponding challenges. Error due to noise in the response
of PUF can be minimized using helper data [20], [21]. For
a detailed analysis of constructions and description of strong
PUFs, we refer the reader to [17].

ML Attacks on PUFs: Rührmair et al. [11] proposed
an ML-based attack on strong PUFs based on a predictive
model. The authors were able to clone the functionality of the
underlying PUF given the PUF model by evaluating model
parameters using LR with RProp and ES. Though the method
was quite successful in cloning, the attacker needs to know the
underlying PUF architecture and the corresponding signature
function. While it is reasonable to assume that CRPs can
be obtained by eavesdropping or other interfaces [18], it is
not always possible to ascertain the underlying PUF model
without physical access to the PUF. There have also been other
approaches such as PAC [22] and hybrid methods [23] that
have successfully cloned PUFs using a combination of ML
and invasive techniques.

ML resistant PUFs: The linear additive behavior of Arbiter
PUF (APUF) has made it an ideal target for ML attack. Hence,
higher non-linearity in a given PUF architecture can improve
the uniqueness and randomness with increased defense against
modeling attack. Other approaches to ML resistant PUFs have
been randomized challenges [24], obfuscation [15], sub-string
based challenges [16].

III. BRUTE FORCE ATTACK ON STRONG PUFS

The success of the proposed models by Rühmair et al [11]
allow us to successfully clone strong PUF models with a
prediction accuracy of 99.9%. However, to use it in a non-
invasive manner, we would first need to identify the underlying
PUF architecture, as the approaches in [11] require intimate
knowledge of the PUF architecture such as PUF type, number
of stages and number of XOR gates, to name a few.

To address this, we propose the use of a machine learning
model to identify the PUF architecture through observation of

TABLE I
BRUTE FORCE ATTACK: PUF ARCHITECTURE CLASSIFICATION

PERFORMANCE AND SUBSEQUENT CLONING ACCURACY.

PUF Model PUF Cloning Rate (%)
Classification Rate (%)

APUF 81.49% 77.42%
3 XOR APUF 76.53% 72.71%
4 XOR APUF 65.01% 61.76%
5 XOR APUF 63.57% 60.39%
6 XOR APUF 61.31% 58.25%
LW 3 XOR APUF 76.91% 73.05%
LW 4 XOR APUF 65.37% 62.10%
LW 5 XOR APUF 59.32% 56.33%

the challenge-response pairs, as illustrated in Figure 2. One
major assumption in this approach is that there exists a subset
of challenges C̃ ∈ C that is valid for all PUF architectures
in a given network, where C is the collection of all valid
CRPs. Given the number of PUF architectures and their use
for authentication, this is not an unreasonable assumption.

A. Identifying PUF architectures

Given the set of challenges C̃, we can observe the set of
valid responses Rci for each PUF architecture ci ∈ Cpuf ,
where Cpuf is the set of all known PUF architectures described
in Section II. Hence, the objective of the classification is to
learn a function fc which maximizes the probability

argmax
C̃i∈C̃

P (ci|C̃i, Rci) (1)

where the objective is the find the PUF architecture ci given
the challenge C̃i, and the subsequent response Rci . We use
the following machine learning models as the basis for the
function fc(·): logistic regression, artificial neural network,
and random forests.

B. Empirical Evaluation

We evaluate the performance of the proposed brute force
attack to identify the architecture of eight (8) common strong
PUF architectures. We use a fixed number of randomly sam-
pled 100 CRPs for evaluation for each PUF architecture for a
total of 800 CRPs. We report average results from 5 different
runs, with the test set sampled randomly each time. We curate
a set of 100, 000 CRPs for training the classification model.

As can be seen from Table I, identifying the PUF architec-
ture from an observed set of CRPs is not a trivial task. Even
with 100% cloning accuracy for a given PUF architecture,
identifying the said architecture requires a large set of CRPs
for training a model. The maximum performance that we were
able to obtain was using the logistic regression model, which
took 100 iterations to converge resulting in the maximum
classification rate for Arbiter PUF architecture. There was
a large confusion among different design variations of each
PUF type. The prediction rate for XOR PUFs decreased as
the complexity of the architecture increased.

While the average cloning accuracy can be as high as
77.42% (for the Arbiter PUF), the numbers can be misleading
in practice. The performance of the two-stage attack model
is rather low, considering the practical gap between the intra



and inter Hamming Distance of PUF CRPs, this prediction
rate cannot be considered to be successful cloning.

IV. ARCHITECTURE INDEPENDENT PUF MODELING

In this section, we describe our proposed approach for a
PUF-independent attack model on various PUF architectures
by exploiting the CRP authentication protocol. We begin with
a discussion on the use of machine learning models to capture
the underlying correlation between challenge-response pairs
to model the randomness unique to a given PUF architecture.
We then follow with a discussion on defending against such
attacks using complementary machine learning models.

A. Attack Model

Each PUF is made unique through a digital signature char-
acterized by its response to a given challenge. This signature
is representative of the randomness encoded in its state due to
manufacturing variations and other physical disorders. In order
to compromise the integrity of the CRP protocol, one has to
model this randomness to generate a response representative of
the PUF’s signature. There are two approaches to this problem:
a model-based solution and a model-agnostic solution. The
model-based solution, explored in [11], attempted to capture
this randomness through modeling the characteristics of a PUF
using domain knowledge (PUF architecture) and characteris-
tics (delay model, thermal response characteristics, etc.). Thus,
the attack consists of regression of the model’s parameters.

We, however, consider an architecture independent approach
to the solution by disregarding the need for a characteristic
equation for the PUF. We postulate that the challenge and
subsequent response of any given PUF is representative of
its characteristic function. Thus, modeling the dependency
between the various features of a given challenge along with
the target response allows us to capture the randomness
of a given PUF architecture. To this end, we use several
approaches to capture the dependency between the challenge
and response pairs of various PUF architectures. Since the
underlying dependency is not known to be linear or non-linear,
we explore several different machine learning models that
characterize the dependency with a linear decision boundary
(logistic regression) or with a non-linear decision boundary
(random forest and artificial neural networks).

The attack model consists of learning the optimal function
that maps the given n-bit challenge C = c1, c2, . . . , cn to an
appropriate output response R ∈ {−1, 1} with a probability
p(R|C). The objective of the attack model is to learn the
function f : C → R such that the difference between the
generated and actual response of the PUF is minimized. Hence
the best attack model is characterized by the search for the
optimal function f given by

argmin
(Cs,Rs)

E[(f̂(C)− f(C))2] (2)

where f̂(C) is the characteristic function of the given PUF
architecture and (Cs, Rs) represents the space of all known
challenge-response pairs obtained through the eavesdropping
protocol. We search for the optimal function f(C) through
the characteristic equation of the different machine learning
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models defined above. For example, in a logistic regression
model, f is defined as

f = argmax(σ(R× d(~w,C))) (3)
where ~w is a learned vector that represents the decision
boundary (d) for the logistic regression model and σ is the
logistic function.

B. Discriminator Model

The modeling of the internal randomness of a given PUF
architecture puts the integrity of the CRP-based authentication
into question. Hence, it becomes critical that we are able
to differentiate between the original PUF and an adversarial
attack, such as one described in Section IV-A. To this end, we
introduce a mathematical model that is able to discriminate
between an original and a cloned PUF called the discriminator
model, as illustrated in figure 3. The discriminator decides
whether each instance of the response belongs to the actual
PUF or a malicious attacker. As seen in figure 3, the discrim-
inator model takes in the response of the original PUF along
with the response of the PUF cloned with several ML attacks
as the input to predict whether the PUF is an original or a
cloned and returns the probabilities. The cloned part of the
response is shown in red. The output of this discriminator is a
single scalar value D(C), indicative of an adversarial attack.
The value D(C) is a probability function that maps a given
response (R) to the distribution belonging to either the original
PUF (f̂(C)) or an attacker (f(C)) for a given n-bit challenge
C. Hence, the optimal discriminator model is given by

D?(C,R) =
p(f̂(C)

p(f(C)) + p(f̂(C))
(4)

where D?(C,R) is a mathematical model that maps the
response R for a given challenge (C) into the probability space
of either the original PUF (f̂ (.)) or the attack model (f(.)).
Again, we explore the use of well-known machine learning
models as the basis for our discriminator mathematical model.

The search space for the optimal discriminator is similarly
characterized by the optimization function defined in Equation
2. However, the search is represented by the discriminator
to distinguish between the original PUF’s response and an
adversarial attack.

C. Search for Optimal Attack-Discriminator Model

The search space for the optimal attack model and discrim-
inator model is defined by the optimizer functions defined in
Equation 2 and its subsequent adaptation for the discriminator,
respectively. We employ a simple grid search algorithm to find



TABLE II
ML MODEL ERROR ESTIMATION FOR CLONING AND DISCRIMINATOR AND

CLONING TIME

PUF Model Cloning Error (%) Discriminator Error (%) Cloning Time

APUF 6.50% 12.66% 0.002 sec
3 XOR APUF 8.20% 1.18% 70:85 sec
4 XOR APUF 10.70% 4.03% 1:38 min
5 XOR APUF 9.00% 3.84% 62:48 min
6 XOR APUF* 10.70% 0.50% 240 min
LW 3 XOR APUF 12.00% 8.66% 1:59 sec
LW 4 XOR APUF 12.50% 5.22% 30:58 min
LW 5 XOR APUF* 17.00% 3.69% 180 min
Average 10.83% 4.97%

*Note that in the literature [11] [9], the maximum number of XORs used is
6. It is known that 6 XORs is sufficient to give a strong PUF.

the optimal attack model (f(.)) from a given set of possible
models (F ). The attack models space, F comprises of all
transformation functions that satisfy the condition f : C → R.
We restrict the search space to the given three machine learn-
ing models: Logistic Regression (LR), Random Forest (RF),
and Neural Network (NN). We also ensure that the optimal
discriminator is chosen from a set of discriminative function
G(.) ∈ Gs, where Gs is the collection of all discriminative
functions that optimize the probability function defined in
Equation 4. Again, we restrict the search space to the three
aforementioned models. While the grid search suffers from
the curse of dimensionality and does not scale to large search
spaces of F and Gs, limiting the number of plausible functions
allows us to exhaustively search for the optimal discriminator
for a given attack model and a target PUF. Additionally, the
grid search is a reasonable approach given that it can be
embarrassingly parallel.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Following experimental setup by [11], we report the upper
bound of attacker and discriminator accuracy in a supervised
setting. We consider three strong PUF architectures (Arbiter,
XOR and Lightweight), while each of them contains three
stages (64, 128, and 256) and the number of XOR is limited
to (3, 4, and 5) for both XOR and Lightweight PUFs. This
gives us a total of 24 different strong PUF architectures for
validating the efficacy of the proposed method.

The average cloning error, the discriminator error and the
cloning time is shown in Table II. We report average results
over 5 different runs for each PUF architecture. From Table
II, we can see that on average, a strong PUF can be cloned
with a cloning error of 10.83% irrespective of its underlying
architecture of the PUF. The discriminator error shows that
the obtained response is either from the original PUF or from
the cloned PUF with an error of 4.97%. The aging of the PUF
[25] affects the delay characteristic which produces a different
pattern of the responses compared to the compromised node. It
can seen that the cloning time is reasonable, particularly given
the complexity and stochastic nature of the considered PUFs.
We discuss the performance of our approach on different PUF
architectures in detail below.

Arbiter PUF: As seen from Figures 4(a) and 5(a), modeling
attack on the exact number of stages for arbiter PUF can be
accurately guessed (93.5%) for a combination of NN(CM) and
LR(DM). However, with a single ML model (RF), the discrim-

inator prediction accuracy improves to (94.4%) compared with
combined NN(CM) and LR(DM).

XOR PUF: Figures 4(b) and 5(b) show the ML models
performance for three (3) XOR PUF. While the combined
NN(CM) and NN(DM) models are capable of capturing the
PUF parameters 91.8% of the time, we are able to make use of
combined NN(CM) and LR(DM) to get discriminator accuracy
up to 98.8%. It can be seen from Figures 4(c) and 5(c) that
the single NN model performance is markedly higher (89.3%)
in modeling attack compared to all other combinations for
four (4) XOR PUF. Similarly, the combined NN(CM) and
LR(DM) outperforms others in discriminator prediction with
95.9% accuracy. As shown in Figures 4(d) and 5(d), our
trained single ML model (LR) notably improves modeling
attack accuracy about 91.0% for five (5) XOR PUF. The
discriminator accuracy improves up to 96.2% for combined
RF(CM) and NN(DM). Finally, for six (6) XOR PUF in
Figures 4(e) and 5(e), the combined LR(CM) and RF(DM)
can achieve up to 89.3% and 100% for modeling the attack
and discriminator, respectively.

Lightweight PUF (LPUF): For LPUF, we evaluate our
method on 3-, 4-, and 5-XOR PUF. With supervised exper-
iment for LPUF with three (3) XOR, the single LR model can
achieve modeling accuracy up to 88.0% while that for dis-
criminator, the single RF outperforms all other combinations
by 91.7% as shown in Figures 4(f) and 5(f). Figures 4(g) and
5(g) show modeling and prediction accuracy for LPUF with
four (4) XOR. In this case, the single NN improves cloning
accuracy by 87.5% and the combined LR(CM) and RF(DM)
improves the discriminator performance by 94.8%. Finally, we
apply the proposed method for LPUF with five (5) XOR as
shown in Figures 4(h) and 5(h). For a single NN model, the
cloning accuracy is 83.0% and the discriminator prediction can
improve by 96.3% the combined RF(CM) and LR(DM).

VI. CONCLUSION

In this work, we introduced an efficient architecture-
independent machine learning based approach for cloning
strong PUFs. We also introduce a novel discriminator model
to identify cloned and original PUFs with a high degree of
confidence. We also introduce a search-based approach for
identifying the optimal discriminator model for a given cloned
PUF using three common ML models. Extensive experiments
show the efficacy of the proposed approach. For future work,
we will extend this method for control PUFs and explore
ensemble meta-algorithms.
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Fig. 4. Comparison of cloning and discriminator accuracy for different PUFs architecture with combinations of ML models. Single bar represents average
accuracy for 64, 128, and 256 stages. Along X-axis, X(Y) defines X model is used for Y task where Y can be cloning (CM) or discriminator (DM).
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Fig. 5. Comparison of cloning and discriminator accuracy for different PUFs architecture under single ML model. Single bar represents average accuracy for
64, 128, and 256 stages. Along X-axis, X(Y) defines only X model is used for Y where Y defines both cloning (CM) and discriminator (DM) tasks.
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