
QUANTIFY: A framework for resource analysis
and design verification of quantum circuits

Oumarou Oumarou
Department of Informatics

Clausthal University of Technology,
38678 Clausthal-Zellerfeld, Germany

Alexandru Paler
Institute for Integrated Circuits
Johannes Kepler University,

4040 Linz, Austria

Robert Basmadjian
Department of Informatics

Clausthal University of Technology,
38678 Clausthal-Zellerfeld, Germany

Abstract—Quantum resource analysis is crucial for designing
quantum circuits as well as assessing the viability of arbitrary
(error-corrected) quantum computations. To this end, we in-
troduce QUANTIFY, which is an open-source framework for
the quantitative analysis of quantum circuits. It is based on
Google Cirq and is developed with Clifford+T circuits in mind,
and it includes the necessary methods to handle Toffoli+H and
more generalised controlled quantum gates, too. Key features of
QUANTIFY include: (1) analysis and optimisation methods which
are compatible with the surface code, (2) choice between different
automated (mixed polarity) Toffoli gate decompositions, (3) semi-
automatic quantum circuit rewriting and quantum gate insertion
methods that take into account known gate commutation rules,
and (4) novel optimiser types that can be combined with different
verification methods (e.g. truth table or circuit invariants like
number of wires). For benchmarking purposes QUANTIFY
includes quantum memory and quantum arithmetic circuits.
Experimental results show that the framework’s performance
scales to circuits with thousands of qubits.

I. INTRODUCTION

Quantum computing promises to solve practical problems
from chemistry, biology, cryptography in a more efficient and
swiftly manner than traditional computing. Having demon-
strated that quantum computational supremacy is achievable
[1], the next step is to perform the first error-corrected
experiments in order to pave the way to large scale error-
corrected quantum computations using for instance NISQ
(Noisy Intermediate-Scale Quantum) devices. To this end, a
vast amount of research effort is invested in the technological
realisation of quantum computers. Significant progress has
been achieved in designing and realising quantum computers
[1] as well as implementing quantum algorithms [2].

Analogous to traditional computing paradigm, the quantum
algorithms can be expressed as quantum circuits. And similarly
to the classical world, efficient circuit design is one of the
most challenging phases during the realisation of a computing
system. Additional costs are incurred if a circuit’s design is not
the result of a thorough and correct analysis of the algorithm
that is going to be executed. In the case of quantum computing,
quantum circuit design methods have received considerable
attention. Nevertheless, realistic quantum resource estimations
[3] and circuit optimisations are of vital importance for
industrially relevant quantum computations. It is within this
context that, to the best of our knowledge, there is no generic,
robust and scalable software framework to support synthesis,

Fig. 1. The four step types of QUANTIFY can be executed almost in any
order by forming a pipeline workflow.

analysis, optimisation and verification of quantum circuits with
respect to cost metrics relevant to non-error-corrected and
error-corrected computations.

This paper introduces QUANTIFY, which is an open-source
platform with an agile and robust design. QUANTIFY paves
the way towards a more efficient and scalable automated
design tool for quantum circuits, because its most important
features are: (1) the capability to perform quantum circuit
optimisations driven by the insights obtained through circuit
analysis, (2) optimisation methods that are coupled to feedback
loops that include verification procedures, (3) flexible gate
transpilation mechanisms, in particular for reversible gate
decomposition, and (4) analysis and optimisation methods
designed specifically for quantum circuits protected by the
quantum surface error-correcting codes. Moreover, QUAN-
TIFY can be applied to existing circuits, and it can be used
to synthesise new circuits, as well.

The rest of this paper is organised as follows: In Section II,
the steps of circuit synthesis, transpilation, optimisation, and
verification as well as analysis are presented. The implemen-
tation details of QUANTIFY by considering the step-wise
design are given in Section III. The experimental results are
demonstrated in Section IV. Section V concludes the paper.

II. QUANTIFY

QUANTIFY is an open-source framework1 for the quanti-
tative (e.g. numerical) resource analysis of quantum circuits.

1https://github.com/quantumresource/quantify

ar
X

iv
:2

00
7.

10
89

3v
1 

 [
qu

an
t-

ph
] 

 2
1 

Ju
l 2

02
0

https://github.com/quantumresource/quantify


From a practical and realistic perspective, the resources re-
quired to execute a quantum circuit, with or without error-
correction, include the number of physical qubits. The number
of physical qubits is determined by the so-called width of
the computation [3]. The amount of time for operating the
physical qubits is determined by the depth of the computation.
The depth time is also a reflection of execution performance.
Moreover, both the number of physical qubits (width) and
execution performance (depth) influence on the total energy
consumed to perform the computation [1].

The resource analysis results are relevant only if the circuits
under study are correct. Consequently, analysis has to be
supported by methods that guarantee a certain degree of
correctness for the quantum circuit design and implementation.
It has to be ensured that the analysed circuits are conforming
to a given design specification. For example, when optimising
a quantum adder, the circuit obtained after each optimisation
step should be correct with respect to some criteria. As a
result, QUANTIFY was developed to include novel methods
to achieve a flexible array of verification criteria which range
from functional (e.g. truth table) to structural (e.g. circuit-level
characteristics) conditions.

QUANTIFY fulfils two requirements: from a design per-
spective, it is agile and generic, and from an execution
perspective it is responsive and robust. Agility and generality
are reflected in the fact that new features and methods, as well
as quantum circuits for benchmarking purposes, can be added
on the fly. Responsiveness and robustness are supported within
the framework by carrying out the analysis of the circuits in
a reasonable amount of time (even for very large numbers of
qubits, as illustrated in the Results section), and the correctness
of the outputs can be validated in the sense of cross-checked
against a specification.

To this end, the architecture of QUANTIFY is designed in
a, by now classical, workflow manner that consists of four
step types (e.g. Fig. 1): (1) circuit synthesis, (2) gate level
transpilation (e.g. translation from one gate set into another),
(3) circuit optimisation and (4) analysis and verification. The
advantage of such a step-wise workflow-design is the fact that
each step (a) is independent of the others, (b) can be enhanced
with new features, and (c) its correctness and execution time
can be adequately validated and computed respectively. The
steps are designed such that these can be arranged in a
processing pipeline: the output of one step serves as input
to another step. Thus, during a quantum circuit analysis and
optimisation procedure, each of the four step types can be
repeated multiple times and can be executed in an arbitrary
order. Each step type is described in the following.

A. Step 1: Circuit Synthesis

QUANTIFY can be applied to any Cirq circuit, meaning
that the entire circuits and examples library of Cirq can be
used for analysis and verification. Moreover, QUANTIFY in-
cludes state-of-the-art synthesis methods for quantum random
access memory (QRAM) circuits, such as Bucket Brigade
(BB), Large Depth Small Width (LDSW), and Small Depth

Large Width (SDLW). Arithmetic circuits, such as adders and
multipliers, are included with QUANTIFY as well.

B. Step 2: Gate Level Transpilation

Once a circuit is synthesised, its gates can be transpiled
from one quantum gate set to another. For example, arithmetic
circuits are very often formulated using Toffoli+H gates or
even more general MPMCT (Mixed Polarity Multiple Control
Toffoli) gates. Transpilation is in general performed from one
gate set into Clifford+T, because on the one hand that is the
gate set that captures most of the physical quantum hardware
instructions, and on the other hand those gates are supported
by the quantum error-correcting codes (e.g. the surface code).
Consequently, QUANTIFY provides various methods of tran-
spilation into Clifford+T gates. In the following, the terms
decomposition and transpilation are used interchangeably.

Toffoli gates are transpiled into Clifford+T by using phase
polynomial decompositions of the Toffoli gate [4]. QUAN-
TIFY includes, to the best of our knowledge, the most relevant
state-of-the-art and frequently used Toffoli gate decomposi-
tions, such as the ones from [4] and [5]. MPMCT transpilation
is based on the classic method from [6]: every MPMCT of n
qubits and m control qubits can be equivalently presented by
a circuit consisting of 4(m − 2) Toffoli gates. Once Toffoli
gates are obtained, their Clifford+T decomposition is chosen
from the dictionary of supported ones.

C. Step 3: Circuit Optimisation

The output from previous step, which is the decomposed
gate level presentation of the original quantum circuit of Step
1, is used either to apply further optimisations or to perform
verification (see Section II-D). Thus, in this step reordering as
well as removal of unnecessary gates are performed for the
sake of optimally presenting the quantum circuit under study.
QUANTIFY implements three different types of optimisations
mechanism, which are described in Section III-C.

D. Step 4: Analysis and Verification

After generation and gate-level decomposition of a quantum
circuit, it is possible either to verify the output from Step
2 or Step 3. For the latter case, this ”Verification” step can
serve as a feedback loop back to the ”Optimisation” step to
verify whether the applied optimisations contributed to further
improvements. QUANTIFY provides several metrics which
allows the quantum circuit under study to be verified, such
as the number of Clifford+T (T-count), Hadamard and CNOT
gates as well as the depth of the circuit and the Clifford+T
gates (T-depth). As mentioned above, it is to be noted that the
Steps 2, 3 and 4 of the workflow are not executed sequentially,
such that several iterations can happen based on the feedback
of the verification metrics provided by Step 4.

III. IMPLEMENTATION AND EXAMPLES

The core of QUANTIFY is Google Cirq2 – a Python-based
platform for creating, editing, and invoking Noisy Intermediate

2https://github.com/quantumlib/Cirq

https://github.com/quantumlib/Cirq


TABLE I
COMPARISON WITH OTHER QUANTUM SOFTWARE

Qiskit ProjectQ Q# Revkit Quipper QUANTIFY
Transpilation X X X X X X
Flag Opt. X
Analysis X X X
Invariant Verif. X X

Scale Quantum (NISQ) circuits. We have chosen Cirq due to
its versatility, support of both high- and low-level compilation,
and optimisation methods. The skeleton of QUANTIFY is
implemented in four software components corresponding to
the design from Fig. 1.

QUANTIFY advances the state-of-the-art. Table I is a com-
parison between Quipper [7], Qiskit [8], Q# [9], ProjectQ [10]
and RevKit [11] and the features of QUANTIFY as explained
in the following sections. To the best of our knowledge,
QUANTIFY is the only framework by now that supports
mixing transpilation methods during a circuit pass.

A. Circuits

Circuit synthesis is interconnected with the other compo-
nents of QUANTIFY. For example, the circuit classes expose
a metrics interface, that enables basic resource analysis in a
manner similar to ProjectQ [10] and Q# [9]. This interface can
determine, among others, the following costs: circuit depth, T-
depth, T-, Hadamard-, CNOT-, and qubit-count.

In practice, circuit synthesis scripts are often edited or
extended to obtain circuits conforming to a certain specifi-
cation. It is very useful to automatically ensure that the syn-
thesised circuits are still conforming to a given specification.
QUANTIFY’s robustness with respect to circuit synthesis is
ensured by cross-checking the circuits against cost metrics
such as the T-count for instance. This mechanism increases
the guarantees that no programming bugs or other types of
errors were introduced into the circuits.

The herein presented circuits are not available in Cirq.
For benchmarking purposes, QUANTIFY contains the imple-
mentation of state-of-the-art QRAM circuits such as Bucket
Brigade, Large Depth Small Width (LDSW), and Small Depth
Large Width (SDLW). Arithmetic circuits are available, as
well. The latter are mostly formulated using reversible gates
such as the Toffoli gate, but in practice resource analysis is
concerned with the Clifford+T gate set.

As a result, synthesis and transpilation (see Section III-B)
function as a hybrid: QUANTIFY sythesises an instance of the
corresponding quantum circuit by calling a generic construc-
tor, which takes as a parameter a flag that indicates how to
transpile the initial gates of the circuit. The transpilation type
(see Section III-B) can also be left unspecified, such that the
resulting circuit is not decomposed. Nevertheless, transpilation
can be performed at any time, during or after circuit synthesis.

The following sections will use Fig. 2 to illustrate the
implementation of transpilation, optimisation and verification.

B. Transpilation

Cirq includes a very flexible mechanism to represent quan-
tum gate sets, and this capability is inherited by QUANTIFY.

a0: --------@----@------
| |

a1: --------@----|@-----
| ||

t: ---------X----||---H-
||

toff_a0: --------X|-----
|

toff_a2: ---------X-----

Fig. 2. A Toffoli gate on the qubits named a0, a1 and t followed by two
CNOT gates and a Hadamard gate.

Quantum circuits can be easily transformed from one gate
set into another, during a process called transpilation. Some
transpilation procedures are easier than others. For example, it
is easier to decompose (e.g. express a single gate as a sequence
of multiple gates) than to recompose (the inverse operation of
a decomposition).

QUANTIFY implements two types of reversible gate de-
compositions: MPMCT or Toffoli transpilation method. There
is flexibility with respect to the choice of the qubit ordering
during the decomposition. For example, in the case of Tof-
foli decompositions, two qubits are controls and their order
influences the decompositions and optimisations.

For the circuit example from Fig. 2, if the T-depth of one
decomposition of the Toffoli gate is specified and the ordering
of controls is a0, a1, then the transpiled circuit is Fig. 3.

a0: ---------- @-------------@------T-------@-----------------@-----@-----
| | | | |

a1: --------- @|-----@-------|------T-------|-------@--------@|-----|@-----
|| | | | | || ||

t: ---H-------||-----|@------|@-----T-------|@------|@-------||-----||-HH--
|| || || || || || ||

toff_a0: -----|X-----||@-----||X----T-------||X-----||@------|X-----X|-----
| ||| ||| ||| ||| | |

toff_a1:------|------X||-----X||----Tˆ-1----X||-----X||------|-------|-----
| || || || || | |

toff_a2: -----X-------X|------|@----Tˆ-1-----|@------X|------X-------X-----
| | | |

toff_a3:---------------X------X-----Tˆ-1-----X--------X--------------------

Fig. 3. The Toffoli was decomposed into Clifford+T gates using the
decomposition from [4]. There are three Hadamard gates on qubit t.

C. Optimisation: Flags and Commutations

The optimisation component is responsible for optimising
(e.g. minimising) the circuit under study with respect to a
variety of cost metrics such as CNOT-count, T-count, gate
parallelism, etc. QUANTIFY supports circuit optimisation
heuristics by means of gate patterns.

The framework includes a FlagOptimiser class of optimi-
sation strategies which applies circuit identities, also known
as templates or rewrite rules, only to gates which were
flagged beforehand. The rewrite rules are specified by the
user. In QUANTIFY, CancelCNOT and CancelHadamard are
instances of the FlagOptimiser. The former cancels adjacent
CNOTs and the latter cancels adjacent Hadamard gates (both
the CNOT and the Hadamard are their own inverse operation).

The advantage of a FlagOptimiser is that it can steer the
regions where the optimisations are applied. For example, a
preliminary analysis may indicate that a circuit’s depth can
be minimised by cancelling some neighbouring CNOTs. The
CNOT’s circuit identity to reduce CNOT-count will be applied
automatically only to the CNOTs that were flagged according
to a criteria (e.g. applied to a given set of qubits). Such a



procedure ensures that the structural changes to the circuit
can be tracked through optimisation, and this is a very useful
property during design verification.

Simultaneously, by attaching flags to gates, it is possible
to track how the gates are commuted through the circuit.
Tracking supports the diagnosis and debugging of optimisation
heuristics. Very recently Cirq included the support for flags on
gates, too. Fig. 4 illustrates the result of applying CancelCNOT
and CancelHadamard to the circuit from Fig. 3.

a0: ---------- @-------------@------T-------@--------------
| | |

a1: --------- @|-----@-------|------T-------|-------@------
|| | | | |

t: ---H-------||-----|@------|@-----T-------|@------|@-----
|| || || || ||

toff_a0: -----|X-----||@-----||X----T-------||X-----||@----
| ||| ||| ||| |||

toff_a1:------|------X||-----X||----Tˆ-1----X||-----X||-----
| || || || ||

toff_a2: -----X-------X|------|@----Tˆ-1-----|@------X|-----
| | | |

toff_a3:---------------X------X-----Tˆ-1-----X--------X-----

Fig. 4. On the right hand side of circuit from Fig. 3, two Hadamards and
four CNOT gates were cancelled.

Another type of QUANTIFY optimiser is the Commuta-
tionOptimiser. It is also based on circuit identities, but the
goal is to commute gates, as shown for example in Fig. 5. A
CommutationOptimiser tries to commute as many gates of a
particular type towards a certain region of the circuit, without
cancelling those gates. The CommuteTGatesToStart optimiser
is based on the circuit commutativity between the control of a
CNOT and T gates, and moves the T gates as far as possible
to the left hand side of the circuit by commuting them with
CNOT controls. Afterwards, a hypothetical FlagOptimiser
could re-compose neighbouring T gates into S gates.

Combining the CommutationOptimiser with a FlagOpti-
miser is useful to determine the correctness of the optimisation
heuristics. Such a method helps answering questions such as:
were the gates correctly reduced? Why is a particular number
of gates being reduced? An example is illustrated in Fig. 5.

f f
---@-----------@---@---@---T- ---T---@-----------@---@---@---

| | | | | | | |
---X---H---H---X---X---X----- -------X---H---H---X---X---X---
\___________________________/ \_____________________________/

a) b)
f f f f

---T---@------@---@---@--- ---T----@---@---
| | | | | |

-------X------X---X---X--- --------X---X---
\________________________/ \______________/

c) d)

Fig. 5. Example of using a CommutationOptimiser and a FlagOptimiser:
a) Initial circuit; b) A CommutationOptimiser will move the T gate towards
the input region; the two Hadamard gates are flagged (cf. the f symbol); c)
The FlagOptimiser cancels the flagged H gates, and the flag is transferred to
the two surrounding CNOT gates. d) The two flagged CNOTs are cancelled
and the flag is transferred to the surrounding T and CNOT gates. The two
currently flagged gates cannot be cancelled.

D. Analysis: Gate Distribution and Resource Estimation

Circuit analysis is used for both steering optimisation
heuristics (such as the FlagOptimiser), and also as an integral
part of the verification procedures (see following section). For
the examples from Fig. 3 and Fig. 4, QUANTIFY returns that
the number of CNOTs was reduced from 18 to 14.

QUANTIFY includes also more detailed analysis methods,
such as the distribution of T gates into the circuit [12]. By
analysing how T gates are arranged in a circuit (i.e. the
moment and time at which these are applied effectively in the
circuit), it is possible to perform optimal scheduling of the T-
state distillation procedures imposed by the surface code [3].

E. Verification: Exhaustive and Invariant Checking

The goal of verification is to guarantee that the circuits
which were compiled and optimised are correct. The design of
a quantum circuit includes many aspects, and correspondingly
the verification methods are devised for a wide range of
purposes. For the verification of structural properties, QUAN-
TIFY includes the InvariantCheckingOptimiser. This kind of
optimiser is a unique feature of QUANTIFY, and verifies that
a given criteria remains invariant throughout the optimisation
procedure. For example, when minimising a circuit’s T-count,
the counts of other gate types, such as Hadamard, is expected
to be an invariant and not change. The InvariantCheckingOp-
timiser is, compared to the method presented in [13], a more
relaxed type of verified optimisation because it does not use
formal proofs to determine the correctness of the optimisation
method. Bugs or other problems within the optimisation proce-
dure can be diagnosed if the value of the invariance criteria is
changing. For the example of Fig. 4, where the Hadamard- and
CNOT-counts are minimised, the invariant is the T-count: at
each optimisation step there is a single T gate in the circuit. As
mentioned before this functionality is unique to QUANTIFY,
compared to the existing quantum frameworks development,
which makes the debugging an easier task hence making it an
excellent choice especially for scientific purposes.

Truth table verification is an exhaustive verification method
that ensures that the quantum circuit is performing the spec-
ified input-output transformations. Due to its exponential
complexity, this method does not scale for large circuits,
but can be used, for example, for circuit identities within
the Commutation- and FlagOptimisers. Moreover, truth table
verification can be easily applied to reversible circuits, because
these are based exclusively on Toffoli gates, which are tightly
related to Boolean logic. For the more quantum-computing-
like Clifford+T circuits, truth table verification is not straight-
forward, but methods relying on stabiliser truth tables [14], or
probabilistic quantum circuit simulations using tensor network
simulators [15] may be used. In QUANTIFY, the exhaustive
reversible circuit simulation uses the standard quantum circuit
simulator provided by Cirq, and tensor network simulation is
provided through the Cirq interface to QFlex [15].

IV. SYNTHESIS AND OPTIMISATION OF EXTREMELY
LARGE CIRCUITS

The responsiveness of QUANTIFY was benchmarked for
the ”Synthesis” and ”Optimisation” steps, because these are
the most resource intensive ones. We used the QRAM Bucket
Brigade circuits from [16], due to their interesting property that
their number of wires q increases exponentially with linear
address lengths n, such that q = n + 2n+1 + 5. The goal



of this section is to empirically show that QUANTIFY has
the necessary baseline performance to synthesise and optimise
circuits consisting of tens of thousands of qubits.

More performance can be unlocked by improving CPU-
responsiveness of the underlying Cirq platform. Interestingly,
while monitoring the hardware resources during the execution
of the experiments, we observed that QUANTIFY is CPU-
intensive (see Sections IV-B and IV-C). This is in contrast to
the assumption that memory would be a bottleneck due to the
type of QRAM circuits chosen to investigate. QUANTIFY is a
CPU-intensive framework, because it is based on Google Cirq
(see Section III), which is, for the moment, optimised for ease-
of-use instead of speed (e.g. not parallelised). We expect that
data structures specialised for quantum circuit representation,
such as [17], will improve drastically the overall execution
time of QUANTIFY.

A. Configuration

The experimental evaluation was focused on: a) execution
time and b) memory usage. To this end, we use two scenar-
ios: 1) ”Synthesis” is performed for QRAM circuits where
2 ≤ n ≤ 19; 2) ”Synthesis & Optimisation” is carried out on
circuits having 2 ≤ n ≤ 12.

To the best of our knowledge, QUANTIFY is the first
framework shown to support realistic synthesis and optimi-
sation of arbitrary large-scale quantum circuits. Note that
for an address size of n ≥ 10 qubits, this corresponds to
QRAM circuits of thousands of gates and wires. Previous
works, such as [18], included a restricted set of gate level
optimisations and the optimisation heuristic was not flexible.
As detailed in Section III-C, QUANTIFY is flexible with
respect to optimisation heuristics.

The experiments were executed on an Intel i7-7700K
[19] quad-core machine with 32 GB of RAM, running a
Ubuntu 19.04. QUANTIFY has not been parallelised for
multi-threading or multi-core technologies. For fair results,
we pinned QUANTIFY to one of the cores of the processor
(through the Linux command taskset), shielded that specific
core from background tasks of the operating system (through
the Linux command shield), and set the CPU governor to
performance, such that the core is always at its highest
frequency (in our case 4.2 GHz).

B. Execution Time

Figs. 6 and 7 illustrate the results of the carried out
experiments for the case of ”Synthesis” (blue line) as well
as ”Synthesis & Optimisation” (orange line). The X-axis
represents the total number of qubits q (e.g. input address
qubits+ancillae) in the circuit, such that it is presented in linear
and logarithmic scales for Figs. 6 and 7 respectively. The
Y-axis represents the execution time (in seconds), such that
it is presented in logarithmic scale. The subfigure in Fig. 6
illustrates the results obtained when 2 ≤ n ≤ 9.

As mentioned previously, ”Synthesis” is faster than ”Syn-
thesis & Optimisation”, and as a result Figs. 6 and 7 include
more sample points for the ”Synthesis” scenario. We observed

Fig. 6. Execution times for the ”Synthesis” and the ”Synthesis & Optimi-
sation” scenarios. The logarithmic Y-axis represents the execution time in
seconds, and the X-axis represents the total number of qubits/wires in the
resulting circuit. The encapsulated box provides more details on the first part
of the global chart.

Fig. 7. Execution times for the ”Synthesis” and ”Synthesis & Optimisation”
scenarios. The Y-axis and the X-axis represent the execution time in seconds
and the total number of qubits/wires in the resulting circuits respectively.

that for the ”Synthesis” step (see Figs. 6 and 7), QUANTIFY
is satisfyingly responsive, taking less than a second for a total
number of qubits q between 15 and 1038 (e.g. 2 ≤ n ≤ 9). It
had an execution times of 1.26, 2.52 and 5.13, 11.1, 24.24,
59.31, 181.61, 718.57, 3039.98, and 12782.44 seconds for
the case of n = 10, ..., 19 respectively. With respect to the
combination of ”Synthesis & Optimisation” steps (see Figs. 6
and 7), QUANTIFY executed in a very short amount of time,
with less than a second for number of qubits q between 15
and 74 (e.g. 2 ≤ n ≤ 5). The execution time increases linearly
with respect to the number of qubits, with values of 2.92, 13.2,
72.66, 457.38, 3252.13, 24459.8 and 186536.9 seconds for the
case of n = 6, ..., 12 respectively.

There is strong evidence that the reason behind the high
execution times is: a) the lack of specialised data structures
in Cirq, and b) the missing parallelisation. We conjecture that
straightforward optimisations will have significant speed-ups.

C. Memory Usage

Fig. 8 illustrates the memory usage of QUANTIFY. The X-
axis represents the total number of qubits q in the circuit for
2 ≤ n ≤ 19. The Y-axis represents the memory usage (in GB).
The experiments were carried out for the case of ”Synthesis”
and ”Synthesis & Transpilation” steps in order to assess
the memory footprint of QUANTIFY. During Transpilation,



Fig. 8. Comparison between the measured and derived models of the
memory usage of QUANTIFY for large number of qubits by considering
both ”Synthesis” and ”Synthesis & Transpilation” scenarios.

Fig. 9. Comparison between the measured and derived models of the
memory usage of QUANTIFY for small number of qubits by considering
both ”Synthesis” and ”Synthesis & Transpilation” scenarios.

the Toffoli gates of the benchmarked QRAM circuits were
decomposed into Clifford+T.

From the obtained experimental results, for each of the
case study we derived a model by fitting a linear function to
the measured memory footprint. The accuracy of the derived
models is illustrated in Figs. 8 and 9 both for the case of
”Synthesis” (blue line (measured) vs red points (derived)) and
”Synthesis & Transpilation” (gray line (measured) vs yellow
points (derived)) steps. For large number of qubits, our derived
models are accurate. We ensure that the derived models reflect
the reality accurately by calculating the root mean squared
error: 4.866×10−3 for the ”Synthesis”, and 1.431×10−2 for
”Synthesis & Transpilation”.

There is also a constant memory overhead of 0.16 GB.
We speculate that this overhead is due to Cirq and its loaded
libraries. Finally, we noticed that the amount of information
generated for the ”Synthesis & Transpilation” step is about 5
times more than that of only ”Synthesis” one. This factor may
be due to the Toffoli transpilation to the Clifford+T.

V. CONCLUSION

QUANTIFY is a framework for the analysis and verifi-
cation of quantum circuits. It is open sourced and based
on Google Cirq. QUANTIFY includes flexible and novel
optimisation methods, and it supports also the preparation
and analysis of quantum circuits compatible with the surface
code error correction. We benchmarked the performance of
QUANTIFY using QRAM circuits. At the same time, for
additional benchmarking purposes, the framework includes

arithmetic circuits. QUANTIFY can within seconds synthesise
and optimise circuits with thousands of qubits. Future work
will include expanding and adding new optimisation and
analysis capabilities, as well increasing the scalability and
robustness of the framework. QUANTIFY will include all the
necessary tools for realistic resource estimation of surface code
protected quantum circuits.

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[2] P. J. Coles, S. Eidenbenz, S. Pakin, A. Adedoyin, J. Ambrosiano,
P. Anisimov, W. Casper, G. Chennupati, C. Coffrin, H. Djidjev et al.,
“Quantum algorithm implementations for beginners,” arXiv preprint
arXiv:1804.03719, 2018.

[3] A. Paler, D. Herr, and S. J. Devitt, “Really small shoe boxes: On realistic
quantum resource estimation,” Computer, vol. 52, no. 6, pp. 27–37,
2019.

[4] P. Selinger, “Quantum circuits of t-depth one,” Physical Review A,
vol. 87, no. 4, p. 042302, 2013.

[5] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time t-depth optimiza-
tion of clifford+ t circuits via matroid partitioning,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 10, pp. 1476–1489, 2014.

[6] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical review A, vol. 52, no. 5, p. 3457,
1995.

[7] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: a scalable quantum programming language,” in Proceedings
of the 34th ACM SIGPLAN conference on Programming language design
and implementation, 2013, pp. 333–342.

[8] R. LaRose, “Overview and comparison of gate level quantum software
platforms,” Quantum, vol. 3, p. 130, 2019.

[9] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q# enabling
scalable quantum computing and development with a high-level dsl,” in
Proceedings of the Real World Domain Specific Languages Workshop
2018, 2018, pp. 1–10.

[10] D. S. Steiger, T. Häner, and M. Troyer, “Projectq: an open source
software framework for quantum computing,” Quantum, vol. 2, p. 49,
2018.

[11] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “Revkit: A toolkit for
reversible circuit design.” Multiple-Valued Logic and Soft Computing,
vol. 18, no. 1, pp. 55–65, 2012.

[12] A. Paler and R. Basmadjian, “Clifford gate optimisation and t gate
scheduling: Using queueing models for topological assemblies,” in
2019 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), 2019, pp. 1–5.

[13] K. Hietala, R. Rand, S.-H. Hung, X. Wu, and M. Hicks, “A verified
optimizer for quantum circuits,” arXiv preprint arXiv:1912.02250, 2019.

[14] A. Paler and S. J. Devitt, “Specification format and a verification method
of fault-tolerant quantum circuits,” Physical Review A, vol. 98, no. 2, p.
022302, 2018.

[15] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas, and
S. Mandrà, “A flexible high-performance simulator for verifying and
benchmarking quantum circuits implemented on real hardware,” NPJ
Quantum Information, vol. 5, pp. 1–16, 2019.

[16] O. Di Matteo, V. Gheorghiu, and M. Mosca, “Fault-tolerant resource
estimation of quantum random-access memories,” IEEE Transactions
on Quantum Engineering, vol. 1, pp. 1–13, 2020.

[17] A. Paler, A. G. Fowler, and R. Wille, “Faster manipulation of large
quantum circuits using wire label reference diagrams,” Microprocessors
and Microsystems, vol. 66, pp. 55–66, 2019.

[18] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated
optimization of large quantum circuits with continuous parameters,” npj
Quantum Information, vol. 4, no. 1, pp. 1–12, 2018.

[19] Intel Core i7-7700K Processor, accessed March, 2020). [Online].
Available: https://ark.intel.com/content/www/us/en/ark/products/97129/
intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html

	I Introduction
	II QUANTIFY
	II-A Step 1: Circuit Synthesis
	II-B Step 2: Gate Level Transpilation
	II-C Step 3: Circuit Optimisation
	II-D Step 4: Analysis and Verification

	III Implementation and Examples
	III-A Circuits
	III-B Transpilation
	III-C Optimisation: Flags and Commutations
	III-D Analysis: Gate Distribution and Resource Estimation
	III-E Verification: Exhaustive and Invariant Checking

	IV Synthesis and Optimisation of Extremely Large Circuits
	IV-A Configuration
	IV-B Execution Time
	IV-C Memory Usage

	V Conclusion
	References

