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Abstract—Noisy, intermediate-scale quantum computers come
with intrinsic limitations in terms of the number of qubits
(circuit “width”) and decoherence time (circuit “depth”) they
can have. Here, for the first time, we demonstrate a recently
introduced method that breaks a circuit into smaller subcircuits
or fragments, and thus makes it possible to run circuits that
are either too wide or too deep for a given quantum processor.
We investigate the behavior of the method on one of IBM’s 20-
qubit superconducting quantum processors with various numbers
of qubits and fragments. We build noise models that capture
decoherence, readout error, and gate imperfections for this
particular processor. We then carry out noisy simulations of the
method in order to account for the observed experimental results.
We find an agreement within 20% between the experimental
and the simulated success probabilities, and we observe that
recombining noisy fragments yields overall results that can
outperform the results without fragmentation.

Because of rapid technological progress, quantum processors

of increasing quality and size are becoming available, whether

of the superconducting [1] or of the trapped-ion [2] type.

Despite this steady improvement, these noisy, intermediate-

scale quantum (NISQ [3]) devices are still limited in both their

number of qubits (with, e.g., 53 qubits [4]) and their coherence

time. Both constraints prevent one from performing quantum

algorithms that require a large number of qubits or operations.

Peng et al. [5] recently proposed a method to circumvent this

limitation. Basing their method on tensor-network techniques,

they showed how to decompose a circuit with a large quantum

volume [6] into smaller subcircuits with quantum volumes

compatible with NISQ devices.

Here, we show the first practical implementation of this

method on an actual 20-qubit quantum device for a

Greenberger-Horne-Zeilinger (GHZ) type of test circuit with

a qubit count of up to 24 and various fragments sizes. Rather

than focusing on large qubit counts, we investigate the extent

to which this method can deal with decoherence in smaller

circuits through experimental runs and noisy simulation of this

decoherence. To this aim, we establish a precise noise model

of IBM’s 20-qubit Johannesburg processor using available

calibration data, and we use the model to simulate the exper-

imental results. This noisy simulation allows us to quantify

and explain the experimental results we obtain, and it paves

the way to a noise-aware optimization of this fragmentation

technique.
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Figure 1. Fragmenting procedure for a m = 6-qubit circuit. Qubit with index
n is cut after the first controlled-NOT (CNOT) gate. Panels (b) and (c) show
the resulting two fragments.

I. METHODS: CIRCUIT FRAGMENTATION AND NOISE

MODELING

A. Basics of circuit fragmentation

The execution of a quantum circuit on an m-qubit quan-

tum computer yields measurements in the form of bitstrings

{(b0 . . . bm−1), bi ∈ {0, 1}} whose probability is given by

Born’s rule, p(b0, . . . bm−1) = |〈b0, . . . , bm−1|U |ψ0〉|2, where

|ψ0〉 is the initial state of the quantum register (here |0〉⊗m)

and U is the unitary operation defining the quantum circuit. U
is composed of a sequence of local unitary operations called

quantum gates that can be represented as the vertices of a

graph. If the underlying graph can be broken into discon-

nected components or “fragments” upon removal of edges,

the circuit’s probability distribution p(b0, . . . bm−1) can be

computed from the suitably modified probability distributions
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of the fragments [5]. For instance, the circuit in Fig. 1(a) is

represented by a graph that separates into two disconnected

components (light gray [A] and dark gray [B]) when removing

a single edge (here on qubit with index n between the

two CNOT gates). In this configuration, the full probability

distribution can be computed as

p(b0 . . . bm−1) = (1)
∑

α=X,Y,Z

∑

bb′∈{0,1}2

γbb
′

α pαA(b0 . . . bn−1; b
′)pαB(b; bn . . . bm−1)

with γbb
′

X = 2δbb′ − 1, γbb
′

Y = −γbb′X and γbb
′

Z = 2δbb′ .
Here, pαA(b0 . . . bn−1; b

′) denotes the probability of measur-

ing the bitstring (b0 . . . bn−1, b
′) when measuring the final

state of fragment A along axis α for qubit n (Fig. 1(b)),

while pαB(b; bn . . . bm−1) is the probability of getting bitstring

(b, bn . . . bm−1) after preparing the first two qubits (q, qn) (the

first two qubits of fragment B) in the (|00〉+ |11〉) /
√
2 Bell

state and measuring the final state of fragment B with the

ancilla qubit measured along axis α (Fig. 1(c)). This procedure

can be repeated recursively to break the circuit into ever

smaller fragments.

With this procedure, a wide and deep quantum circuit can be

fragmented into smaller circuits that can be run on a NISQ

processor. However, doing so comes at a cost, in terms of the

number of individual subcircuits to be run, that is exponential

in the number of removed edges or “cuts” [5].

In this work, we focus on the GHZ-type circuit shown

in Fig. 1(a). The resulting maximally entangled state,
(

|0〉⊗m/2|1〉⊗m/2 + (−)(m/2)%2|1〉⊗m/2|0〉⊗m/2
)

/
√
2, is

very sensitive to decoherence and is therefore a good test

case for investigating the resilience of the method on noisy

processors.

B. Noise modeling and simulation

To simulate the behavior of the method on noisy processors,

we model the processor errors by combining three error

sources: decoherence of the amplitude damping and dephasing

types during qubit idling (inactive) periods, readout errors, and

gate imperfections.

We set the amplitude damping, dephasing, and readout er-

rors using calibration data supplied on the IBM Quantum

Experience platform. Averaging over the 20 qubits of the

chip, we find T1 = 65µs, T2 = 70µs, and a readout error

rate of γ = 4.1%. The T1 and T2 processes are modeled

by the combination of the amplitude damping (AD) and

pure dephasing (PD) quantum channels defined by the Kraus

operators

K
A.D
0 =

[

1 0

0
√

1− pA.D
τidle

]

,KA.D
1 =

[

0
√

pA.D
τidle

0 0

]

,

K
P.D
0 =

[

1 0

0
√

1− pP.D
τidle

]

,KP.D
1 =

[

0 0

0
√

pP.D
τidle

]

,

where τidle is the duration of the idling period during which the

noise acts, pA.D
τidle = 1− e−τidle/T1and pP.D

τidle = 1− e−2τidle/Tϕ ,

with 1
Tϕ

= 1
T2

− 1
2T1

. To determine the idling durations,

we assume the following durations for the gates: 200 ns

for the CNOT gate, and 20 ns for the single-qubit gates.

As for the readout errors, we choose to model them as a

single-qubit relaxation (amplitude damping) process during

the measurement time. The corresponding 2-outcome positive-

operator valued measure (POVM) has elements {E, I −E},

with

E =

(

0 0
0 1− γ

)

,

where γ = 1 − e−tmeas/T1 . We check that the measurement

duration tmeas we infer from the experimental calibration error

rate γ, namely tmeas = 2.75µs, is consistent with usual values

for this duration.

We model the gate imperfections using a simple depolarizing

noise channel following each one-qubit gate, with Kraus

operators

K
D
0 =

√

1− pD(1)I,

K
D
i =

√

pD(1)σi, i = 1, 2, 3

where σi denote the Pauli spin matrices. For the two-qubit

(CNOT) gates, we use the tensor product of the above depo-

larizing channel to mimic two-qubit errors after each CNOT

gate. We adjust the depolarizing probabilities pD(1) and pD(2) to

have the error channels match given average process fidelities

F (1)
avg and F (2)

avg (as defined in e.g [7]) or equivalently average

errors ǫ
(1)
avg and ǫ

(2)
avg (with Favg = 1 − ǫavg). ǫ

(1)
avg and ǫ

(2)
avg

are themselves fixed using the qubit-averaged calibration error

rates supplied by IBM Quantum Experience, ǫ
(1)
avg = 0.041%

and ǫ
(2)
avg = 0.202%.

We use the obtained Kraus operators to simulate the noisy

evolution combined with fragmentation. Prior to the noisy

simulation, the circuit is compiled to comply with the target

processor’s qubit connectivity graph using the Atos Quantum

Learning Machine (QLM)’s dedicated Nnizer plugin. This

results in longer circuits owing to the (optimized) insertion

of SWAP gates whenever needed. The noisy simulations are

carried out on the QLM using density-matrix-based simula-

tions.

II. RESULTS

We implemented the circuit fragmentation procedure and

tested it on an experimental qubit platform, IBM’s 20-qubit Jo-

hannesburg processor, comprising superconducting transmon

qubits arranged in a two-dimensional grid. We accessed this

processor via the IBM Quantum Experience cloud platform

and used the Qiskit programming framework to describe the

circuits. As a proxy for the quality of the final result, we

calculated the following sum of probabilities

Psuccess ≡ p
(

|0〉⊗m/2|1〉⊗m/2
)

+p
(

|1〉⊗m/2|0〉⊗m/2
)

, (2)

which is unity in the absence of any noise.

The experimental and noisy simulation results for up to 30

qubits are shown in Fig. 2. This figure includes the statistical
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Figure 2. Success probability as a function of circuit size (number of qubits)
for various numbers of fragments using IBM’s Johannesburg processor (circles
and solid black lines) and Atos QLM noisy simulation (squares and dashed
blue lines). The black numbers next to the black circles indicate the maximum
fragment size (in number of qubits) for the given number of fragments and
qubits.

error bars (standard error of the mean) on the probabilities

after recombination. These errors originate from the finite

number of shots (8192) per fragment. We computed them

using resampling. Because of the large number of shots, they

are comprised within the size of the datapoints and therefore

do not appear on the graph.

The one-fragment case (top-left panel), corresponding to run-

ning the original circuit without fragmentation, will serve as

our reference curve. It displays a marked decrease in the

success probability as the number of qubits increases. For

all fragment numbers, the values obtained for the success

probability obtained experimentally and with noisy simulation

agree within 20% (in absolute values). In particular, discon-

tinuities and even some of the sign changes of the slope

of Psuccess are captured by noisy simulations. The drops in

success probability in going from a fragment size of 5 to

a fragment size of 6 (and similarly 10 to 11 and 15 to 16)

are easily accounted for by the topology requirements of the

chip (in the absence of qubit relabeling, running a fragment

of size 6 will require introducing SWAP gates to perform a

CNOT gate between qubits of indices 4 and 5, which are

not nearest neighbors on the chip). The noisy simulations

tend to overestimate the success probability compared to the

experimental results. Uncaptured phenomena such as temporal

and spatial (crosstalk) noise likely account for the discrepancy.

Remarkably, both experimental and noisy simulation results

show that increasing the number of fragments allows us to

reach reasonable success probabilities as the circuit sizes

increase: thus, the success rate drop after 4 qubits for the one-

fragment case only occurs for circuit sizes of 8 and 16 qubits

when breaking the circuit into 2 and 4 fragments, respectively

(for the 6-fragment case, the experimental values show a drop

after 18 qubits, while the noisy simulation show the same drop

after 24 qubits). Thus, the method makes it possible not only

to perform computations for circuit sizes exceeding the chip’s

size (see, e.g, the m = 22, 24, 30 runs), but also to obtain

better success probabilities for smaller circuit sizes.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership

Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC05-00OR22725. This

research also used the resources of the Argonne Leadership

Computing Facility, which is DOE Office of Science User

Facility supported under Contract DE-AC02-06CH11357. Yuri

Alexeev, Zain H. Saleem, and Martin Suchara were supported

by the DOE, Office of Science, under Contract DE-AC02-

06CH11357. The compilation and noisy simulations were

performed using Argonne National Laboratory’s and Atos

Quantum Laboratory’s Quantum Learning Machines.

REFERENCES

[1] M. Kjaergaard, M. E. Schwartz et al., “Superconducting Qubits:
Current State of Play,” Annual Review of Condensed Matter Physics,
vol. 11, no. 1, pp. 031 119–050 605, Mar. 2020. [Online]. Available:
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031119-050605

[2] C. D. Bruzewicz, J. Chiaverini et al., “Trapped-ion quantum
computing: Progress and challenges,” Applied Physics Reviews,
vol. 6, no. 2, p. 021314, Jun. 2019. [Online]. Available:
http://aip.scitation.org/doi/10.1063/1.5088164

[3] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available:
http://dx.doi.org/10.22331/q-2018-08-06-79

[4] F. Arute, K. Arya et al., “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct.
2019. [Online]. Available: http://dx.doi.org/10.1038/s41586-019-1666-5

[5] T. Peng, A. Harrow et al., “Simulating large quantum circuits
on a small quantum computer,” Mar. 2019. [Online]. Available:
http://arxiv.org/abs/1904.00102

[6] A. W. Cross, L. S. Bishop et al., “Validating quantum
computers using randomized model circuits,” Physical Review A,
vol. 100, no. 3, p. 032328, Sep. 2019. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevA.100.032328

[7] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures
to compare real and ideal quantum processes,” Physical Review

A, vol. 71, no. 6, pp. 1–15, Aug. 2005. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.71.062310

https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031119-050605
http://aip.scitation.org/doi/10.1063/1.5088164
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1038/s41586-019-1666-5
http://arxiv.org/abs/1904.00102
http://dx.doi.org/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.71.062310

	I Methods: circuit fragmentation and noise modeling
	I-A Basics of circuit fragmentation
	I-B Noise modeling and simulation

	II Results
	References

