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Abstract—Real-time aging prediction for nanoscale integrated
circuits (ICs) is a crucial step for developing prevention and
mitigation actions to avoid unexpected circuit failures in the
field of operation. Current practices for predicting aging-related
performance degradation in ICs consist of recording the operat-
ing conditions (e.g. workload, temperature, etc.) throughout ICs’
usage time and building a learning model that maps historical
operating conditions to actual performance degradation. While
some operating conditions such as IC workload can be readily
recorded using existing on-chip structures (e.g. registers), other
operating conditions such as historical temperature values may
not be available for real-time aging degradation prediction. In
this paper, we develop a novel real-time IC aging prediction
scheme using a set of on-chip sensors that can accurately
record historical operating condition parameter values, which
will in turn be used for aging-related performance degradation
prediction. Experimental results show that by using a machine
learning based prediction model and the notion of equivalent
aging time, we can achieve accurate aging degradation prediction
with the proposed on-chip sensor structure.

I. INTRODUCTION

The performance degradation of an IC due to aging phe-
nomena will result in serious reliability and safety concerns
especially when ICs are deployed in safety-critical applica-
tions. Moreover, cumulative performance degradation over
time would lead to complete device failure as a result of
extensive usage. Thus, developing real-time aging degradation
monitoring and prediction approaches is of paramount impor-
tance to enhance IC lifetime safety and to prevent unexpected
run-time failures due to aging.

Various approaches have been proposed for predicting real-
time IC performance degradation. The key concept for such
prediction scheme is to build a predictive model that maps
usage time and operating conditions under which the IC had
been used to the performance degradation level. The operating
conditions that may affect IC performance degradation rate
include voltage bias, temperature, workload distribution, etc.
Once the historical operating conditions and usage time are
obtained, we can use different techniques for predicting IC
performance degradation, including look-up tables [1], aging
sensors [2], electromagnetic signature [3], or machine learning
models [4], [5]. The predicted IC performance degradation
level can be then used to guide aging mitigation/compensation
actions, such as adaptively changing maximum operating
frequency, bias voltage [6], or by giving warnings on circuits
with timing guardband violation [2]. Those aging prediction
approaches often assume that operating condition parameters
stay stationary over time. A recent study in [7] showed that
time-variant operating condition parameters can be efficiently
taken into account in the prediction scheme using the notion
of equivalent aging time [8].

The major assumption in the aforementioned aging predic-
tion techniques is that historical operating condition parame-
ters, such as voltage bias, temperature, workload distribution,
etc. are already available and can be readily used in the
prediction model. While some operating condition parameters
such as workload distribution can be sampled using on-chip
structures such as registers, other parameters such as historical
temperature values are in general not available. The inclusion
of various on-chip aging sensors has been proposed to fa-
cilitate detection of aging-related failures [9], [10]. However,
these on-chip aging detectors are designed to monitor aging
degradation on the integrated aging-sensors without mapping
sensors’ degradation to actual device performances. Thus, the
impact of device performance-specific operating conditions
(e.g. workload distribution) on aging cannot be efficiently
taken into account by these aging detectors.

In this work, we propose a novel approach for real time IC
aging prediction using a set of on-chip sensors and machine
learning techniques. The key concept of the proposed approach
is to collect historical operating condition parameter values
from on-chip sensors, and feed them into a machine learning
model for accurate prediction of aging-related performance
degradation. Unlike previous on-chip aging and temperature
sensor implementations which are also subject to aging degra-
dation depending on the environmental condition as well as
their activity rates (i.e., how frequent the sensor is on or off),
we proposed to implement a smart control mechanism for our
temperature sensor so that it is only powered on when sensing
the actual environmental parameter values on the device. We
show in our experimental results that aging degradation on the
on-chip sensors is negligible while achieving accurate aging
prediction for IC performances.

II. BACKGROUND ON IC AGING

Aging mechanisms result in performance deterioration
and subsequent failure of digital circuits over time. The
mechanisms include Negative-Bias Temperature-Instability
(NBTI), Hot-Carrier Injection (HCI), Time-Dependent Di-
electric Breakdown (TDDB), and Electro-Migration (EM).
Among all, NBTI and HCI are the two key influences in the
performance deterioration of digital circuits. Both procedures
contribute to increased switching and path-delays [11].

NBTI Aging: A PMOS transistor is affected by NBTI when
a negative voltage is applied to its gate. Depending on its
operating condition, a PMOS transistor encounters two phases
of NBTI. The first phase (stress) happens when the transistor
is on. Here, at the Si-SiO2 interface positive interface traps
are created, leading to an increase in the transistor’s thresh-
old voltage. The second phase (recovery) happens when the



transistor is off. In the recovery process, the threshold voltage
drift occurred during the stress stage recovers partially. The
NBTI effects depend on the transistor’s physical parameters,
supply voltage, temperature, and stress time [11].

HCI Aging: HCI happens as hot carriers are inserted into
the dielectric gate during the transistor switching and stay
there. HCI is a switching operation that degrades the circuit
by changing the threshold voltage and the drain current of
transistors under stress. HCI mainly affects NMOS transistors.
The threshold voltage drift caused by HCI is sensitive to the
number of transitions occur at the transistor gate input. The
HCI rate depends on the temperature, clock frequency, period
of use, and the activity factor of the transistor under stress,
i.e., the ratio of the cycles the transistor is switching and the
total number of cycles the device is utilized [11].

III. PRIOR WORK ON IC AGING PREDICTION

The aging degradation of IC performances is influenced by
a variety of its environmental factors such as supply voltage,
temperature, workload distribution, stress time, etc. In [12], a
worst-case scenario of IC environmental factors was consid-
ered for estimating aging related performance degradation. A
lookup table-based failure prediction method was proposed in
[1] by considering random changes in the system workload
and supply voltages in the aging estimation. However, lookup
table-based techniques may not be suitable for large-scale
devices. A guardband technique was proposed in [2] which
predicts circuit failure using aging sensors to capture impact of
IC aging based on observation of timing guardband violation.
In [3], aging effects in ICs were predicted by electromagnetic
signatures which require expensive external equipment.

In [4], [5], machine learning-based aging failure prediction
techniques were proposed. In these techniques, a model was
trained using a set of training samples that included operating
condition parameter values such as workload and temperature,
and aging indicator values such as delays of critical paths in
a digital circuit. Once the aging prediction model is trained,
it can then be used to predict aging degradation under new
operating conditions. Traditional machine learning-based ag-
ing prediction approaches assume static operating condition,
i.e., the condition parameters such as temperature under which
the IC is operated are assumed to be constant between time
0 and time t when the prediction is performed. In a recent
study in [7], time-variant operating condition parameters were
taken into account in the prediction scheme using the notion
of equivalent aging time [8] which considers time-variant
information of operating conditions under which the IC is
deployed. Note that historical time-variant operating condition
parameters were assumed to be available a priori in [8] for
aging degradation prediction.

Once the aging degradation is predicted by a given predic-
tion model, then actions for compensating aging degradation
can be taken by adaptively changing maximum operating
frequency [6], supply/bias voltage [13], device architecture
[14], or by giving warnings on circuits with timing guardband
violation [2]. Different dynamic adaptation techniques were
explored in [15], including microarchitectural adaptation and
dynamic voltage/frequency scaling.

We propose a novel technique for real-time IC aging predic-
tion that combines both on-chip sensing techniques to collect
time-variant historical environmental parameters and machine
learning prediction model. We will show the details of our
proposed technique in the following section.

IV. PROPOSED APPROACH

Figure 1. Overview of the proposed approach.

We show the implementation of our on-chip temperature
and workload sensors. We discuss how the machine learning
models can be used to accurately predict the aging-induced
performance degradation using historical operating condition
parameter values collected from our proposed on-chip sensors.

A. Proposed sensor-based aging prediction scheme
Fig. 1 shows an overview of the proposed sensor-based

aging prediction scheme. As shown, we first train a supervised
model fj that maps the n operating condition vector (e.g.
temperature, workload distribution, etc.) O = [o1, . . . , on]
to the j-th IC aging indicator (e.g. path delay value) dj :
fj : O 7→ dj , j = 1, . . . ,M , where M is the total number
of considered IC performances used as aging indicators. In
this work, we use a multivariate adaptive regression splines
(MARS) model [16] to learn the function fj :

dj = fj(O, t) = a0 +

M∑
i=1

ai ·Bi(O, t) (1)

where a0 is the intercept, ai is the slope parameter, t is
the usage time under O, and Bi(O, t) is the i-th basis
function. Note that the form of a basis function can be a
hinge function or an interaction product of different hinge
functions. The main reason for using a MARS model for
our performance degradation training is that MARS model
provides interpretable coefficients that can be used to quantify
the contribution of input variables and their interactions on
the performance degradation. This characteristic will assist
process and test engineers in identifying and further mitigating
aging degradation sources. Furthermore, the fact that MARS
model can handle both continuous and discrete inputs makes
it suitable for digital IC performance prediction.

The training samples used for the proposed prediction model
as shown in (1) can be obtained from circuit aging simulation.
There are mainly two phases in the training of the MARS
model, namely the forward learning phase, and the backward
phase. In the forward learning phase, the basis functions are
added by searching over all possible combinations of variables
of hinge functions until convergence is reached (e.g., the
residual error becomes smaller than a predefined threshold
value). The search can be done using brute force method
or heuristic approach to speed up the searching [17]. Then
in the backward phase, the model is pruned by removing



basis functions with the smallest increase in generalized cross-
validation error. The goal of this phase is to remove the least
effective basis functions to avoid overfitting.

In case of deviation of the prediction model fi due to
Process Variations (PV), as shown in Fig. 1, we employ
a calibration technique to compensate the effect of PV on
previously learned fi. In the calibration, the relative circuit
performance deviation from the nominal value is calculated
at the time of manufacturing, which will serve as a basis
for calibrating PV-related deviation over time. Details on PV
calibration can be found in [7].

Once the basic prediction model is learned and calibrated
for PV, we employ an aging prediction technique for time-
variant operating conditions based on the notion of equivalent
aging time. In order to implement such technique, we need to
collect historical time-variant operating condition parameters
on a regular basis, which is done by our proposed on-chip
sensors as shown in the bottom right part of Fig. 1. Specifi-
cally, the implemented sensors record the operating condition
vector O(t) = [o1(t), . . . , on(t)], where each parameter oi is
expressed by its own function oi(t) and n denotes the total
number of operating condition parameters. Then the recorded
O(t) will be fed into our aging prediction technique for time-
variant operating conditions for accurate real-time prediction
of circuit aging as shown in Fig. 1.

B. Temperature sensor implementation

Fig. 2(a) shows a block diagram of the deployed temperature
sensor inspired by [18]. It includes a low-cost Ring Oscillator
(RO) structure to record the sensed temperature, where the
frequency of the RO is proportional to ambient temperature
of the sensor. The RO includes a chain of even number
of inverters (N ) and one NAND gate to initialize the RO.
RO’s output frequency is determined based on the size of
the underlying inverter-based delay chain and the delay of the
included wires, inverters and the deployed NAND gate.

As gate delays in the RO are affected by its ambient
temperature, the RO’s oscillation frequency is changed in
different temperatures. Fig. 2(b) depicts the RO output in
10◦C and 75◦C when the sensor is fresh (i.e., age=0). In this
figure, the frequency of R1 is 1

2η and 1
2β in 10◦C and 75◦C,

respectively. The RO’s output feeds the clock signal of the
counter circuitry shown in blue in Fig. 2(a). Thereby, with
the change of temperature, the counting rate will change and
another value (10-bit in our design) is stored in the sensors’
register (shown in green) representing the current temperature.
Note that the recorded value is not a binary representation of
temperature, yet it has a correlation with it [18].

In the ideal scenario, the RO’s frequency is only a function
of its ambient temperature. However, in practice, the RO-based
temperature sensors are also affected by aging [19], [11], i.e.,
the RO output frequency and in turn the frequency of the
counter’s clock are subject to change during the field of oper-
ation due to aging degradation. This may result in metastability
in the register storing the counter output (shown by the green
block in Fig. 2(b) as its data input (i.e., counter’s output)
and clock signal (fed by external clock Clk) may change in
a very short time-interval, i.e., setup- or hold-time violation

(a) RO-based temperature sensor.

(b) Ring Oscillator’s output in different temperatures (age=0). The η and
β values are not shown to make the waveform technology oblivious.

Figure 2. Deployed sensor circuitry.

Figure 3. Waveforms in age=50 months. The γ value is not shown to make
the waveform technology oblivious.

occurs. This effect cannot be avoided during the design time
by considering another clock frequency for the register since
the aging degradation in RO’s output and counter’s clock
frequency can be changed with arbitrary operating conditions
later during the field of operation. To resolve this issue, as
shown in Fig. 2(a), we have added a control circuitry in the
clock path of this register. This circuitry prevents metastability
and in turn setup- and hold-time violations in the related
register by clocking the register in a specific time interval
during which its data input is constant (previously loaded in
the register input). Note that the register shown in green is
enabled when the second counter (in red) counts up to a value
stored in the Fixed-Value2 location. At this point of time, the
value of C1 is read and is used in the following clock cycles as
a temperature representative. In fact, the value of Fixed-Value2
can be stored in a non-volatile memory during the design time.
In this circuit, the register input (C1) gets stable one clock
cycle before the register clock input to prevent metastability.

Fig. 3 shows the intermediate signals in a 50 month old
sensor operating in 75◦C. The frequency of R1 will be 1

2γ
after 50 months of aging in 75◦C. Accordingly, C1 is changed
in the rising edge of R2 if the second counter value (in red) is
less than Fixed-Value1 stored in a non-volatile memory cell.



Figure 4. Embedded circuitry to extract workload data of a M+1 input circuit
to be used in our machine learning models for predicting aging effects.

As discussed earlier, to minimize the impact of aging on
the temperature sensor itself, we implemented a smart control
mechanism for our temperature sensor so that it is only
powered on when sensing the actual environmental parameter
values on the device. As shown in Fig. 2(a) when signal PwC
(Power Control) that controls the embedded switch is ‘0’, the
power of all underlying components is off, so they are not
aged, otherwise all components can be functional. Thereby,
by controlling PwC, we can turn on the sensor when needed.

C. Workload sensor implementation
As discussed in Sec. IV-A, device workload is another

important operating condition parameter that affects the aging-
induced IC performance degradation rate, as the duration of
having the value of “0” or “1” in the underlying transistor
changes when running different workloads. The workload
parameter in our prediction model is expressed as the number
of primary inputs that get the value of “1” in each clock cycle.
To efficiently extract the workload, we propose to implement
an on-chip structure for computing the Hamming Weight (HW)
(i.e., number of “1” values) of primary inputs in each clock
cycle using a small tree of full adders. Fig. 4 depicts the
circuitry needed to calculate the HW of primary inputs using
a tree of adders (here, our circuit has M + 1 primary inputs.)

D. Model prediction under time-variant operating conditions
Once the time-variant operating condition parameters O =

[o1, . . . , on] are extracted from the on-chip sensors, we can use
them to perform time-variant aging degradation prediction. As
discussed in Sec. IV-A, during the model training stage, we
train and calibrate M functions to predict M IC performances
from the operating condition vector O. To this end, we propose
to approximate continuous time domain operating condition
vector O(t) to discrete time domain Õ(t) using piecewise-
constant approximation derived from Riemann sum [20]:

O(t) ≈ Õ(t) = [O1(t
∗
1), O2(t

∗
2), · · · , ON (t∗N )] (2)

where Oi(t
∗
i ) denotes the constant approximation of the

function O(t) in the i-th time interval: Oi(t
∗
i ) =

[o1(t
∗
i ), . . . , on(t

∗
i )]. For example, the left rule can be used

to approximate the value of Oi(t∗i ) at the left endpoint t∗i
in the i-th interval. The total number of intervals N can be
determined by the following optimization scheme:

minimize N

subject to
∫
|O(t)− Õ(t)|2 < ε (3)

where ε is a user-defined threshold value. Once Õ(t) is
estimated, we then use it to predict aging degradation under
time-variant operation conditions based on equivalent aging
time [8], [21]. Algorithm 1 shows the detailed steps for time-
variant aging prediction scheme.

Algorithm 1 Time-Variant Aging Prediction
1: procedure TIME_VARIANT_PREDICTION
2: Train the function dj = fj(O, t) using simulation samples,

calibrate the model for process variations
3: Select the total number of intervals N
4: Set inputs Õ(t) = [O1(t

∗
1), O2(t

∗
2), · · · , ON (t∗N )]

5: Set i = 1, j = 1, ti,equ = 0, t∗N+1 = tend
6: Select desired prediction time t in the i-th time interval
7: Compute equivalent prediction time tp = ti,equ+(t∗i+1−t∗i )
8: Aging prediction of the j-th performance at the end of the
i-th interval: dj,i = fj(Oi, tp)

9: If i < N
10: Equivalent aging time computation: ti+1,equ =

g(dj,i, Oi+1)
11: i = i+ 1
12: While i < N , repeat steps 6-12
13: j = j + 1
14: While j < M , repeat steps 2-14
15: end procedure

V. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the proposed approach
using five different ISCAS’89 benchmarks. We used Synopsys
Design Compiler and PrimeTime for logic synthesis and
extraction of time-critical paths at 45-nm technology using
the open-source Nangate library [22]. We consider the delays
of timing critical paths as our aging indicators. These are the
paths whose delay if degraded by 20% during the course of
aging would possibly cause circuit failure.

We used HSPICE MOSRA to evaluate the effect of NBTI
and HCI aging for a period of 8 years with a time step of
2 months. The number of considered critical paths in each
benchmark is shown in the parentheses in the 1st column of
Table I. The operating condition vector considered in this study
is: O = [α, T ], where α denotes the workload distribution
parameter which is the average percentage value X% of
primary inputs getting the value of ’1’ in each clock cycle
where X ∈ {1, 25, 50, 75, 99}, and T denotes the operating
temperature. We conducted Monte Carlo (MC) aging simula-
tions for each benchmark considering a Gaussian distribution
for transistor gate length L: 3σ = 10%; threshold voltage
VTH : 3σ = 30%, and gate-oxide thickness tOX : 3σ = 3%.

A. Temperature sensor performance without aging degradation

As shown in Sec. IV-C, the workload sensors extract binary
workload data from the primary inputs of a device. Thereby,
it is very unlikely that the workload sensor performances
are impacted by aging degradation. Thus, we focus on the
temperature sensors in this study to investigate the impact
of aging degradation on the on-chip sensors. Fig. 5 shows a
numerical example of the temperature sensor output plotted as
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Figure 5. Example of temperature sensor output vs. temperature values.

a function of applied ambient temperature values without aging
degradation. The 10-bit output values (output “O” in Fig. 2(a))
expressed in decimal numbers and the applied ambient tem-
perature values are plotted in Y- and X-axis, respectively. We
randomly sampled more than 30 temperature values in the
range of [10, 75]◦C as our ambient temperature sample values,
and for each sample we recorded the temperature sensor’s 10-
bit output and converted it to decimal number. As Fig. 5 shows
our temperature sensor output perfectly captures the changes
in the ambient temperature with all the scatter points aligned
in a straight line. A simple coefficient of determination value
between temperature sensor output and ambient temperature
is calculated as 0.997, which confirms the accuracy of the
temperature sensor. Hereafter, we will use the temperature
sensor output values as the temperature values in the training
and validation of our aging prediction model.

B. Temperature sensor performance with aging degradation
We then performed aging simulation with our temperature

sensors to study the impact of aging on the proposed temper-
ature sensor implementation. We ran aging simulations using
HSPICE MOSRA for a period of 8 years with a time step
of 2 months. The aging simulation was performed 4 times
for the following 4 temperature values applied across the 8
years’ of simulated aging: 10◦C, 25◦C, 50◦C, 75◦C. We then
repeated the same aging simulation for 5 iterations in an MC
simulation by considering the process variation parameters
discussed previously. Figures 6(a)-(d) show the temperature
sensor output values plotted as a function of usage time for the
4 considered applied temperature values. Each sub-figure from
Fig. 6(a)-(d) also contains the 5 MC samples generated from
our MC simulations. It can be observed that our temperature
sensor performances are very reliable w.r.t. usage time and
experience almost no aging degradation. The main reason for
such promising result is that by using the proposed smart
control mechanism for our temperature sensors as discussed
in Sec. IV-B, we only turn on the temperature sensors when
needed, i.e. once every 2 months in our case. Thus, the impact
of aging degradation on temperature sensors is minimized.
Note that the sensor performance deviation caused by process
variations can be easily calibrated as discussed in Sec. IV-A.

To illustrate the advantages of our proposed temperature
sensor implementation with smart control as compared to
existing approaches without smart control [9], [10], we per-
formed the same aging degradation analysis for our tempera-
ture sensors, without smart control this time, i.e., the tempera-
ture sensors are turned on throughout 8 years. The results are
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Figure 6. Temperature sensor output aging degradation with smart control for
applied temperature value of (a) 10◦C (b) 25◦C (c) 50◦C, and (d) 75◦C.
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Figure 7. Temperature sensor output aging degradation without smart control
for applied temperature value of (a) 10◦C (b) 25◦C (c) 50◦C, and (d) 75◦C.

shown in Figures 7(a)-(d). It can be clearly observed that the
aging degradation is very pronounced this time, which would
result in inaccurate device performance predictions, especially
with long usage time and high aging degradation.

C. Benchmark device aging degradation prediction

To train the aging prediction model, we generated a sample
set of 2,000 devices by sampling the input space [O, t] using
the LHS method. We sampled each model input parameter
in the following ranges α = [0, 1], T = [25, 75], t = [0, 8yrs]
with T expressed in Celsius degree. We then randomly split the
2,000 samples into equal training and validation sets to build
the prediction model fj(O, t), as shown in Equ. (1). The root
mean square error (RMSE) for the validation set averaged on
all considered critical paths in each benchmark is below 2%.
Once the basic models fj are learned, they are validated, and
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Figure 8. Aging prediction plot for a path delay in s5378 under scenario 3:
(a) normalized aging degradation, and (b) prediction plot for this path.

Table I
AGING PREDICTION RESULTS UNDER TIME-VARIANT OPERATION

CONDITIONS IN SCENARIO 3.
Benchmark RMSE RMSE RMSE

(# of critical paths) Proposed model SVM [5] RNN
s510 (21) 1.15% 4.38% 4.32%

s1494 (57) 1.19% 4.41% 4.33%
s5378 (392) 1.15% 4.59% 4.45%
s9234 (179) 1.18% 4.62% 4.68%

s15850 (180) 1.23% 4.71% 4.64%

calibrated for process variations as shown in Sec. IV-A. To
show the effectiveness of the proposed approach for predicting
aging degradation on time-variant operating conditions, we
generated the following scenario: four temperatures: 25◦C,
10◦C, 75◦C, 50◦C applied at the time intervals [0, 2yrs], [2,
4yrs], [4, 6yrs], [6, 8yrs], respectively, during the 8 years.

We then determine the number of time intervals as N = 4
using the optimization procedure outlined in (3). Thus, the
equivalent aging time is computed three times according
to Algorithm (1). We consider 5 different α values α =
1%, 25%, 50%, 75%, 99% under the same time-variant tem-
perature profile for the 8 years: 25◦C, 10◦C, 75◦C, 50◦C
applied in the time intervals [0, 2yrs], [2, 4yrs], [4, 6yrs],
[6, 8yrs], respectively. Fig. 8(a) shows the normalized aging
degradation for a path delay in s5378 under the operating
conditions applied in this scenario. It can be observed that
there is only one sharp increase in the path delay at the 4th

year, since the only sharp temperature increase in this scenario
was applied in the 4th year (from 10◦C to 75◦C), while the
temperature value changes between all other consecutive time
intervals were a temperature decrease (from 25◦C to 10◦C
at the 2nd year, and from 75◦C to 50◦C at the 6th year),
which resulted in even lower aging degradation rate. The 2nd

column in Table I shows the averaged prediction RMSE from
all critical paths and all α values for each of the benchmarks
using the proposed approach.

For comparison with the state of the art prediction tech-
niques, we also applied two other techniques for predicting the
same path delay values, namely the Support Vector Machine
(SVM) regression model [5], and the fully Recurrent Neural
Network (RNN) model which is very efficient in capturing
dynamic behavior for a time sequence [23]. The prediction
results using the two techniques are shown in the 3rd and
4th columns in Table I. It can be observed that the proposed
model consistently outperforms the state of the art models with
approximately 3% less in RMSE values, as the sharp increase
of aging degradation rate at the 4th year would result in large

prediction error if equivalent aging time was not considered in
the prediction. Fig. 8(b) shows the aging prediction plot using
the proposed approach for the same path from Fig. 8(a). It can
be observed that the proposed model can accurately predict
aging degradation under time-variant operating conditions.

VI. CONCLUSIONS
We proposed a novel approach for real time IC aging predic-

tion using on-chip sensors and machine learning techniques.
We collected historical operating condition parameter values
from on-chip sensors, and fed them into a machine learning
model for accurate prediction of aging-related performance
degradation. Our proposed sensors are only powered on during
collection of operating condition parameter values so that their
aging-related degradation is minimized. Experimental results
show that our approach outperforms existing methods in terms
of aging prediction accuracy under different scenarios of time-
variant operating conditions.
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