
To appear at ISVLSI 2021

A Microarchitecture Implementation Framework for
Online Learning with Temporal Neural Networks

Harideep Nair
Electrical and Computer Engineering

Carnegie Mellon University
harideep.nair@sv.cmu.edu

John Paul Shen
Electrical and Computer Engineering

Carnegie Mellon University
jpshen@cmu.edu

James E. Smith
Electrical and Computer Engineering

University of Wisconsin (Emeritus)
Carnegie Mellon University (Adjunct)

jes@ece.wisc.edu

Abstract—Temporal Neural Networks (TNNs) are spiking neu-
ral networks that use time as a resource to represent and process
information, similar to the mammalian neocortex. In contrast to
compute-intensive deep neural networks that employ separate
training and inference phases, TNNs are capable of extremely
efficient online incremental/continual learning and are excellent
candidates for building edge-native sensory processing units. This
work proposes a microarchitecture framework for implementing
TNNs using standard CMOS. Gate-level implementations of three
key building blocks are presented: 1) multi-synapse neurons, 2)
multi-neuron columns, and 3) unsupervised and supervised online
learning algorithms based on Spike Timing Dependent Plasticity
(STDP). The proposed microarchitecture is embodied in a set of
characteristic scaling equations for assessing the gate count, area,
delay and power for any TNN design. Post-synthesis results (in
45nm CMOS) for the proposed designs are presented, and their
online incremental learning capability is demonstrated.

Index Terms—temporal neural networks, online learning

I. INTRODUCTION

Current computing demand for training Deep Neural Net-
works (DNNs) is doubling every 3.4 months [20]. Moore’s
law, at best, is only doubling every 2 years. The gap between
increasing computing demand and what computing hardware
can provide is widening at the rate of 8x per year. This calls for
new paradigms and new types of hardware that are orders of
magnitude more efficient for performing human-like sensory
processing and online learning [22]. Neuromorphic temporal
neural networks appear to exhibit such potential.

Temporal Neural Networks (TNNs) [24]–[26] strive to
achieve not just the behavior/function of biological neural
networks but also their structure/organization. TNNs adhere
to biological plausibility with the goal of achieving brain-like
capability and efficiency. Fig. 1 highlights the distinctive neu-
romorphic attributes of TNNs. TNN components communicate
via spikes like all Spiking Neural Networks (SNNs) [15],
[19]. However, TNNs belong to a special class of SNNs that
encode and process information in temporal form using precise
spike time relationships, unlike most SNNs that use spike
rates [4], [10], [23] for information encoding and processing.
TNNs also employ a form of local learning called Spike
Timing Dependent Plasticity (STDP) [7], as opposed to global
backpropagation and stochastic gradient descent commonly
used in DNNs [13] and SNNs [2], [14], [17].

TNNs fueled by STDP are capable of learning in an online,
incremental, continual fashion [25], [26] and therefore provide

Figure 1: Neural Network Taxonomy

a promising technology for building sensory processing units
in mobile/edge devices. The efficacy of TNNs in performing
unsupervised time-series clustering for various edge-native
applications such as anomaly detection, healthcare monitoring,
etc. has been shown in [3]. This work builds on recent work
in [24] which lays the foundation of TNNs as space-time
computing networks based on a rigorous space-time algebra.
In [25], [26] it is proposed that one can implement a silicon
neocortex capable of brain-like online learning by examining
the organization of biological neural networks to formulate an
analogous architecture for TNNs. We follow this approach by
focusing on direct hardware implementation of TNNs.

This work explores the practical feasibility of direct hard-
ware implementation of TNNs using standard digital CMOS
technology. In a direct implementation, hardware clock cycle
is used as the basic time unit for temporal processing, i.e.,
time itself is not stored as a binary value but implicit in the
clock. We define a TNN microarchitecture and implement its
key building blocks: 1) multi-synapse neurons, 2) multi-neuron
columns and 3) STDP (unsupervised) and R-STDP (supervised
with reward) online learning algorithms. We present their gate-
level designs along with characteristic scaling equations for
estimating the area, power and delay for any arbitrary TNN. A
distinct feature of the proposed framework is a novel synapse
design that integrates weight storage with synaptic processing,
thereby eliminating the need for a separate weight storage. To
the best of our knowledge, this is the first work that presents a
microarchitecture framework for directly implementing TNNs
capable of online learning.

ar
X

iv
:2

10
5.

13
26

2v
2 

 [
cs

.A
R

] 
 2

 J
un

 2
02

1



Figure 2: Temporal Encoding and Processing

II. TNN ORGANIZATION AND OPERATION

A. Temporal Encoding and Processing

A distinctive attribute of TNNs involves the use of tempo-
ral encoding, wherein information is represented by relative
timings of spikes. In a TNN, computation occurs in volleys
or waves of spikes. A volley consists of at most one spike
per synaptic input. As shown in Fig. 2, two clocks are used.
The unit clock is the finest temporal resolution and is also
the synchronizing clock used in the digital hardware. The
gamma clock (inspired from the biological gamma cycles [6])
frames the computing window and is the time required for a
column to communicate and process a spike volley and update
synaptic weights. This implementation studied here uses 3
bits of precision for temporal encoding and synaptic weights.
Spikes in a volley are implemented as unit time pulses, a form
of unary encoding, and volleys are separated using gamma
clock cycles. With unary encoding, it takes up to 7 time units
to encode a 3-bit value. Allowing additional time to process
a spike volley, the gamma cycle is extended to 15 time units.
This is explained in further detail in Section III-B.

B. Key TNN Building Blocks

The most fundamental TNN building block is a neuron. As
shown in Fig. 3a, each neuron has p synaptic inputs and one
output. Each synaptic input carries a synaptic weight, which is
updated locally based on the relative timing of the incoming
spike to that synapse and the outgoing spike from the asso-
ciated neuron body. The rules for updating synaptic weights
constitute the STDP learning method - the key building block
that imparts TNNs their functionality. Through STDP, a neuron
learns an input feature by adapting its synaptic weights to
closely match the corresponding input pattern.

The smallest operational building block is a column which,
in itself, is a fully-functional TNN. As shown in Fig. 3b, a
column is a stack of q parallel neurons. Every neuron in a
column shares the same set of p inputs, known as a receptive
field. A p×q synaptic crossbar contains p×q synaptic weights,
each of which is updated by STDP. On the output side of the
q neurons, one winner-take-all (1-WTA) lateral inhibition is
performed by selecting the earliest spiking neuron from among

(a) Neuron: p Synapses, STDP (b) Column: q Neurons & WTA

Figure 3: Key TNN Building Blocks

the q neurons as the one winner. Output spiking is disabled
for non-winning neurons. This introduces competition among
the neurons and enables the column to learn a set of distinct
features local to its input receptive field.

This paper presents the CMOS implementation of a neuron
(Section III) and a column (Section V). In Section IV, STDP
rules for updating synaptic weights are discussed. The baseline
STDP method is unsupervised. We also introduce a variation,
called reinforcement STDP, which is similar to the reward
modulated STDP in [18]. Post-synthesis and online learning
evaluations are performed in Sections VI and VII respectively.

III. NEURON IMPLEMENTATION

This work adopts the widely used Spike Response Model
[11] SRM0. This section presents the components of this
excitatory neuron model and their detailed gate level designs.

A. Synaptic Response Functions

A synapse connects the axon (output) of a pre-synaptic
neuron and a dendrite (input) of the post-synaptic neuron.
An SRM0 neuron takes multiple input spikes and generates
a response function for each spike based on its corresponding
synaptic weight. All the individual response functions are then
added to form the neuron’s membrane potential. When (and if)
the membrane potential crosses a threshold, the neuron fires an
output spike on its axon. In this work, we adopt the ramp-no-
leak (RNL) function for its temporal computational benefits
and implementation efficiency [15], [25]. The RNL function
increases by a unit step at every time unit until it reaches its
peak and then remains constant until it is reset prior to the
next computation cycle. The “ramp” allows responses from
different synapses to be distributed temporally based on the
synaptic strengths (weights), which proves to be particularly
powerful for TNNs that operate temporally. The no-leak model
is based on arguments that the leak is primarily a reset
mechanism [7], [16]. For silicon implementations, there are
simpler ways to reset at the end of each gamma cycle.

B. Synapse Modeling

Fig. 4 shows the block diagram for the proposed SRM0
neuron implementing RNL response function. Its operation
consists of three main stages: 1) temporal arrival of input



Figure 4: SRM0 Neuron with RNL Response Function

spikes, 2) serial thermometer readout of RNL response func-
tions based on the corresponding synaptic weights, and 3)
binary accumulation of thermometer-coded response functions
into the membrane potential. Synapses are implemented as
finite state machines (FSMs) operating as binary counters. If
the maximum weight is wmax, the number of counter bits
is ceiling(log2(wmax + 1)). The counter has three modes,
two controlled by STDP (described in Section IV): increment
(up to wmax) and decrement (down to 0). The third readout
mode is controlled by the input pulse. Readout mechanism is
meticulously integrated into the same FSM used for storing
synaptic weight and is described below.

As will become apparent, synapses dominate hardware
complexity and hence the synapse design must be highly
optimized. Our approach uses a pulse of width wmax + 1.
The input pulse directly controls the counter readout. When
the leading edge of an input pulse occurs (0→1 transition),
the weight counter is decremented and an output of 1 is
emitted each unit clock cycle until the counter reaches 0. This
essentially converts the binary weight value in the counter to a
serial thermometer code. After the counter reaches 0, it wraps
around to wmax and continues to count down until the trailing
edge of the input pulse (1→0 transition) when the weight in
the counter is restored to its original value. Thus, once an input
spike arrives, readout takes an additional 7 cycles. (Although
we assume wmax = 7 in this paper, this technique can be
generalized to any wmax.) STDP (Section IV) takes another
cycle. These coupled with 7 cycles for encoding give rise to
a gamma period of 15 clock cycles.

In summary, a synapse and its weight are implemented with
a counter FSM that can 1) increment, saturating at wmax; 2)
decrement, saturating at 0; and 3) wrap-around decrementing,
emitting an output of 1 prior to wrapping around and then a 0
thereafter. Note that this synapse design preserves the original
weight value while doing RNL readout, which eliminates the
need of a separate SRAM for weight storage and access.

C. Neuron Body

The neuron body is implemented as a parallel counter
that adds the thermometer coded weights coming from the
synapses, cycle by cycle, thereby accumulating the membrane

Figure 5: Neuron Body with 16 Synapses

potential as a sum of RNL response functions. When (and if)
the parallel counter output reaches the threshold θ, an output
spike is emitted during that cycle.

Based on Parhami [21], the membrane potential accumulator
can be efficiently implemented using ripple carry adders by
integrating a (p-1)-input parallel combinational counter and
a (log2p + 1)-bit adder into one design. Fig. 5 shows the
design for a 16-input accumulator, with integrated output
spike generation. For a p-input accumulator, p-1 inputs are
accumulated into a (log2p)-bit output, which is then added to
the previous stored (log2p+1)-bit value from the register with
the one remaining input bit acting as carry-in. Note that the
configuration in Fig. 5 allows all adder inputs to be efficiently
utilized and is most optimal when p is a power of 2.

The accumulating register is initialized with (signed 2’s
complement) -θ at every gamma cycle, which eliminates the
need for any comparator for output spike generation. The
(log2p + 1)th bit of the output indicates if the accumulated
body potential has crossed the threshold and triggers a 3-bit
counter to generates an 8-cycle wide pulse (output spike).

IV. STDP & R-STDP IMPLEMENTATION

STDP is a distinctive feature of TNNs. STDP learning
is unsupervised and local to each synapse. It can perform
inference and online continual learning at the same time. In
this work, we propose an STDP design that is both effective in
learning and implementable using standard CMOS technology.

A. Proposed STDP Update Rules

Our learning method is a customized version of the classic
Spike Timing Dependent Plasticity (STDP) [1]. STDP is
implemented locally at each synapse as shown in Fig. 6.
The proposed STDP learning rules are summarized in Table
I. Here, x(t) and z(t) represent input and output spiketimes
respectively. ∆w denotes change in weight and B(µ) represents
a Bernoulli random variable with probability µ.

STDP update rules are divided into four major cases,
corresponding to the four combinations of input and output



TABLE I: STDP Update Rules

Input Conditions Weight Update
x(t) 6=∞; x(t) ≤ z(t) ∆w = +B(µcapture) ∗max(F (w), B(µmin))
z(t) 6=∞ x(t) > z(t) ∆w = −B(µbackoff ) ∗max(F (w), B(µmin))
x(t) 6=∞; z(t) =∞ ∆w = +B(µsearch)
x(t) =∞; z(t) 6=∞ ∆w = −B(µbackoff ) ∗max(F (w), B(µmin))
x(t) =∞; z(t) =∞ ∆w = 0

Figure 6: Local STDP Update Process

spikes (represented by x(t) and z(t) respectively) being present
(6= ∞) or absent (= ∞) . When both are present, two sub-
cases are formed based on the relative timing of the input
and output spikes in the classical STDP manner [1]. In effect,
a synaptic weight is incremented (strengthened) if there is an
input spike and it either contributed (Case 1) or can potentially
contribute (Case 3) to the output spike; else it is decremented.

The STDP update function either increments the weight by
∆w (up to a maximum of wmax = 7), decrements the weight
by ∆w (down to a minimum of 0), or leaves the weight un-
changed. The ∆ values (1, 0 or -1) are defined using Bernoulli
random variables (BRVs) with parameterized learning proba-
bilities denoted as B(µ) with a descriptive subscript. F (w) is
a stabilization function (=B((w/wmax)(1−w/wmax))) which
makes the weights ”sticky” at both ends (0 and 7) [8], [9].

B. Proposed STDP Implementation

The proposed STDP logic implementation is shown in Fig.
7. It generates 2 control signals (increment/decrement) at the
output that feed into the synaptic weight counters described
in Fig. 4. Note that STDP updates (and the associated resets)
are performed at the end of a computational cycle (or onset of
next gamma clock); inputs for the new computational cycle
begin a unit clock cycle later. The proposed STDP logic
implementation can be partitioned into three components.

1) Case Generation Logic: The per-synapse case genera-
tion logic compares the synapse’s input spiketime (xi) with its
post-synaptic neuron’s output spiketime (z) and generates 4
control signals corresponding to the 4 cases in Table I. Case
5 is implicitly invoked when none of the other 4 cases is a 1.
The logic equations implemented for the 4 STDP cases are:

• Case 1: (xi ≤ z).(xi).(z) • Case 2: (xi ≤ z).(xi).(z)
• Case 3: (xi ≤ z).(xi ⊕ z) • Case 4: (xi ≤ z).(xi ⊕ z)
Note that ((xi ≤ z)) is implemented here using a much sim-

pler temporal comparator as opposed to a binary comparator.
If z arrives prior to x, the output is 0; else x is allowed to pass.

2) Stabilization Function Logic: This logic selects 1 BRV
from a set of finite BRVs generated by F (w), based on the
synaptic weight. For wmax = 7, there are 6 non-zero BRVs
to choose from. The output bit is generated by an 8-to-1
multiplexer controlled by 3-bit weight.

Figure 7: STDP and R-STDP Logic Implementation

3) Inc/Dec Logic: The inc/dec logic assumes 4 BRV inputs
from the LFSR network corresponding to the four STDP
cases. The max operation in Table I is simply implemented
by ‘OR’ing ‘F’ with min BRV input. The output of the
stabilization logic is used along with the cases from case
generation logic to generate inc and dec outputs.

C. Proposed R-STDP Implementation

This subsection introduces a variation of the proposed STDP
method capable of reinforcement learning (R-STDP) [18] that
uses an external reward signal to drive its learning process in
a desired direction. It involves three forms of reinforcement:

• When the column’s (non-null) output matches the desired
action, reward = ‘1’. It operates as per Table I; except
case 3 results in no synaptic weight update.

• When the column’s (non-null) output does not match the
desired action, reward = ‘-1’. Only Cases 1 and 3 are
performed; for Case 1, weight is actually decremented
instead of incremented.

• When the column produces no output, i.e., no neuron
spikes, reward = ‘0’ and only Case 3 operates.

In effect, desired behavior is reinforced and undesirable
behavior is repressed using a single global reward signal. Note
that R-STDP is still applied locally to each neuron and is
typically deployed in the final layer of a TNN. The logic
modifications for R-STDP are minimal and straightforward
as highlighted in Fig. 7. reward is a 2-bit signal (which
encodes ‘-1’, ‘0’ and ‘1’ as ‘11’, ‘00’ and ‘01’ respectively).
Unsupervised STDP is invoked when reward is ‘10’.

The implemented STDP/R-STDP learning rules are capable
of performing extremely efficient online incremental learning
(see Section VII). To the best of our knowledge, such gate-
level hardware-efficient implementations of STDP/R-STDP
rules for TNNs have not been presented or published before.

V. COLUMN IMPLEMENTATION

A column is a fundamental functional unit in TNNs [25],
[26], much like ALUs in von-Neumann computers. As shown
in Fig. 3b, a p×q column contains q excitatory neurons and a



Figure 8: WTA Inhibition for a Column of q Neurons

synaptic crossbar connecting the p inputs to the q neurons via
p×q synapses. A column supports unsupervised learning via
STDP or supervised learning via R-STDP, followed by WTA
lateral inhibition to assist in weight convergence. A single
column supported by STDP/R-STDP and WTA becomes a
fully operational TNN, capable of performing online continual
learning and inferencing. Columns can be used to create larger
TNNs by stacking multiple columns to form a multi-column
layer, and by cascading multiple layers into a multi-layer TNN.

Winner-take-all (WTA) inhibition is a distinctive feature of
a column that selects the first spiking neuron and allows its
output spike to pass through intact, while nullifying other
neurons’ outputs. Fig. 8 shows the logic diagram for 1-
WTA inhibition across q neurons in a column. The inhibition
operation is performed by a latch-based less-than-or-equal
temporal comparison unit. The first spike is found through
a large ‘OR’ gate, or a tree of small OR gates, (performing
a temporal ’min’ function) and is fed back through a latch
which holds the signal at 1 until the next gamma cycle. Any
input pulse coming to the latch after this signal is blocked, so
only the first spikes are passed. Tie breaking is implemented
by selecting the spiking neuron with the lowest index.

VI. MICROARCHITECTURE FRAMEWORK EVALUATION

Scalable neuron and column designs are implemented in
System Verilog; synthesis results are generated using open-
source 45nm Nangate standard cell library [12] and Synopsys
tools. Hardware design is evaluated in terms of area (A),
critical path delay (D), computation time (T) and power (P).
T is the time taken to process one input (one gamma cycle).

A. Gate-Level Characteristic Scaling Equations

We derive characteristic scaling equations (Table II) for A,
D (neuron), T (column) and P based on gate count (’AND’
equivalents) and number of signal transitions, parameterized
in terms of number of neurons (q) and number of synapses
per neuron (p). The procedure is as follows: 1) Gate count is
used as a surrogate for area and static power. 2) Number of
gates in the critical path is used for D; T is derived using the
gamma period, T = 15 ∗ D. 3) Number of gate transitions
is used for dynamic power. These equations can serve as a

TABLE II: Characteristic scaling equations for A, D/T and P
for a neuron with p synapses and a p×q column.

Metrics Neuron Column
A 102p+ 8log2p+ 36 102pq + 8qlog2p+ 44q + q2

D / T 6log2p+ 4 90log2p+ 60
Pstatic 102p+ 8log2p+ 36 102pq + 8qlog2p+ 44q + q2

Pdynamic 204p+ 185log2p+ 241 204pq + 185qlog2p+ 257q + 2q2

TABLE III: A, T and P (in 45 nm CMOS) for three column
sizes of 64×8, 128×10, 1024×16, with STDP and R-STDP.

Synapses x Gate Area Comp. Power
Neurons Count [mm2] Time [ns] [mW]

STDP
64 × 8 51,824 0.05 28.95 0.25

128 × 10 128,658 0.13 32.40 0.62
1024 × 16 1,639,020 1.65 42.30 7.96

R-STDP
64 × 8 54,384 0.05 28.95 0.26

128 × 10 135,058 0.14 32.40 0.65
1024 × 16 1,720,940 1.75 42.30 8.36

powerful tool for design space exploration, as they can help
estimate the hardware complexity of arbitrary TNN designs.

From our gate-level analysis for a single neuron, synapses
(including STDP) constitute almost 90% (50% synaptic FSM
and 40% STDP logic) of the entire neuron complexity while
the neuron body accounts for the remaining 10%. In a single
column, neurons constitute almost the entirety of column
complexity; WTA incurs negligible cost (less than 1%).

B. Post-synthesis Evaluation of Column Designs

Area, power and critical path delay are obtained directly
from Design Compiler, and computation time is derived as
earlier. We use the low power process corner for synthesis
with operating frequency of 100 kHz and voltage of 0.95 V.

Table III presents 45 nm post-synthesis results for three
column configurations for STDP and R-STDP learning rules:
1) a small 64×8 column; 2) a medium 128×10 column; and
3) a large 1024×16 column. The gamma cycle for the large
1024×16 column with around 1.7M gates is 42.3 ns (23.64
MHz). It has an area and power footprint of 1.65 mm2 and 7.96
mW with STDP in 45nm, less than 1% of the area and power
budget of typical mobile SoCs. Note that the overhead for R-
STDP is minimal; it increases die area and power by only 5%
relative to STDP while adding supervision to learning.

VII. ONLINE INCREMENTAL LEARNING

In contrast to the typical epoch-based training with global
back-propagation, STDP is an online local learning method
that processes inputs in a streaming manner targeting online
real-time applications. This section uses a subset of MNIST,
with images resized from 28×28 to 16×16, to illustrate online
incremental learning for TNNs. Because our focus is on online
learning, the standard MNIST benchmark protocol for offline
training/testing does not apply. From our experiments, using
just a single (256×10) column and resized MNIST, several
interesting capabilities of TNNs can be observed.

1) Online Classification via Centroid Formation: Fig. 9a
shows the synaptic weights converged to the 10 class



(a) Trained for Digits 0 - 9 (b) Trained for Digits 0 - 8

Figure 9: Synaptic weight matrices converge to image
centers resembling MNIST digits in 10,000 samples.

Figure 10: Online Incremental Learning: STDP learns a
previously unseen input number ’9’ within 500 examples.

centroids via R-STDP, which resemble the corresponding
digits. This shows the efficacy of R-STDP in driving the
weights towards class centroids.

2) Fast Training Convergence: The synaptic weights in Fig.
9a and Fig. 9b converged after approximately 10,000
training samples, which implies that TNNs can learn very
quickly and can generalize from small datasets.

3) Online Incremental Learning: In this experiment, super-
vised R-STDP training is first performed with only 9
classes (0 to 8) by hiding the digit ’9’, resulting in the
converged weights shown in Fig. 9b. Then the digit ’9’
is introduced in the input sequence without labels to
illustrate the ability to dynamically learn a previously
unseen class in an unsupervised fashion. As shown in
Fig. 10, the synaptic weights converge to the digit ’9’
after only about 500 testing samples via STDP.

Thus, online incremental learning enables a TNN to adapt to
new input data not seen before during the original (offline)
training. Continual learning allows a TNN to keep learning
and improving its performance concurrently with inference.

VIII. CONCLUDING REMARKS

Previous works in [3], [5], [8], [18], [25], [26] have shown
that TNNs can achieve online brain-like sensory processing
and learning for vision and time-series applications. This
work proposes a microarchitecture framework for directly
implementing arbitrary TNNs using the building blocks: neu-
rons, columns and online STDP/R-STDP learning. This work
demonstrates the hardware implementation feasibility of TNNs
using off-the-shelf CMOS technology and design tools, and
represents an initial step in a promising direction for future

research. The implementation results in this work should be
viewed as a first opportunistic attempt, using existing design
methods and tools. There are promising innovations, including
custom macro cells and novel synthesis tools, that can be
developed to further enhance the proposed design framework.

REFERENCES

[1] G. Bi and M. Poo, “Synaptic modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic strength, and postsynaptic
cell type,” Journal of neuroscience, vol. 18, 1998.

[2] S. Bohte, J. Kok, and H. La Poutre, “Error-backpropagation in tempo-
rally encoded networks of spiking neurons,” Neurocomputing, 2002.

[3] S. Chaudhari, H. Nair, J. M. Moura, and J. P. Shen, “Unsupervised
clustering of time series signals using neuromorphic energy-efficient
temporal neural networks,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 7873–7877.

[4] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

[5] M. Dong, X. Huang, and B. Xu, “Unsupervised speech recognition
through spike-timing-dependent plasticity in a convolutional spiking
neural network,” PloS one, vol. 13, no. 11, p. e0204596, 2018.

[6] P. Fries, D. Nikolić, and W. Singer, “The gamma cycle,” Trends in
neurosciences, vol. 30, no. 7, pp. 309–316, 2007.

[7] R. Guyonneau, R. VanRullen, and S. J. Thorpe, “Neurons tune to the
earliest spikes through stdp,” Neural Computation, vol. 17, 2005.

[8] S. R. Kheradpisheh, M. Ganjtabesh, and T. Masquelier, “Bio-inspired
unsupervised learning of visual features leads to robust invariant object
recognition,” Neurocomputing, vol. 205, pp. 382–392, 2016.

[9] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“Stdp-based spiking deep convolutional neural networks for object
recognition,” Neural Networks, vol. 99, pp. 56–67, 2018.

[10] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-yolo: spiking neural
network for energy-efficient object detection,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020.

[11] W. Kistler, W. Gerstner, and J. Hemmen, “Reduction of the hodgkin-
huxley equations to a single-variable threshold model,” Neural compu-
tation, vol. 9, 1997.

[12] J. Knudsen, “Nangate 45nm open cell library,” CDNLive, EMEA, 2008.
[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, 2015.
[14] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural

networks using backpropagation,” Frontiers in neuroscience, 2016.
[15] W. Maass, “Networks of spiking neurons: the third generation of neural

network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.
[16] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual

features through spike timing dependent plasticity,” PLoS computational
biology, vol. 3, 2007.

[17] H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” IEEE transactions on neural networks and learning
systems, vol. 29, no. 7, pp. 3227–3235, 2017.

[18] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, and
T. Masquelier, “Bio-inspired digit recognition using reward-modulated
spike-timing-dependent plasticity in deep convolutional networks,” Pat-
tern Recognition, vol. 94, 2019.

[19] T. Natschläger and B. Ruf, “Spatial and temporal pattern analysis via
spiking neurons,” Network: Computation in Neural Systems, 1998.

[20] OpenAI, “AI and Compute,” https://openai.com/blog/ai-and-compute/.
[21] B. Parhami and C.-H. Yeh, “Accumulative parallel counters,” in Con-

ference Record of The Twenty-Ninth Asilomar Conference on Signals,
Systems and Computers, vol. 2. IEEE, 1995.

[22] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai. corr
abs/1907.10597 (2019),” arXiv preprint arXiv:1907.10597, 2019.

[23] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, p. 95, 2019.

[24] J. E. Smith, “Space-time algebra: A model for neocortical computation,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018.

[25] J. E. Smith, “A neuromorphic paradigm for online unsupervised clus-
tering,” arXiv preprint arXiv:2005.04170, 2020.

[26] J. E. Smith, “A temporal neural network architecture for online learning,”
arXiv preprint arXiv:2011.13844, 2020.


	I Introduction
	II TNN Organization and Operation
	II-A Temporal Encoding and Processing
	II-B Key TNN Building Blocks

	III Neuron Implementation
	III-A Synaptic Response Functions
	III-B Synapse Modeling
	III-C Neuron Body

	IV STDP & R-STDP Implementation
	IV-A Proposed STDP Update Rules
	IV-B Proposed STDP Implementation
	IV-B1 Case Generation Logic
	IV-B2 Stabilization Function Logic
	IV-B3 Inc/Dec Logic

	IV-C Proposed R-STDP Implementation

	V Column Implementation
	VI Microarchitecture Framework Evaluation
	VI-A Gate-Level Characteristic Scaling Equations
	VI-B Post-synthesis Evaluation of Column Designs

	VII Online Incremental Learning
	VIII Concluding Remarks
	References

