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Abstract—The advent of IoT has enabled the design of con-
nected and integrated smart health monitoring systems. These
smart health monitoring systems could be realized in a smart
home context to render long-term care to the elderly population.
In this paper, we present the design of a wearable health moni-
toring system suitable for older adults in a smart home context.
The proposed system offers solutions to monitor the stress,
blood pressure, and location of an individual within a smart
home environment. The stress detection model proposed in this
work uses Electrodermal Activity (EDA), Photoplethysmogram
(PPG), and Skin Temperature (ST) sensors embedded in a smart
wristband for detecting physiological stress. The stress detection
model is trained and tested using stress labels obtained from
salivary cortisol which is a clinically established biomarker for
physiological stress. A voice-based prototype is also implemented
and the feasibility of the proposed system for integration in
a smart home environment is analyzed by simulating a data
acquisition and streaming scenario. We have also proposed a
blood pressure estimation model using PPG signal and advanced
regression techniques for integration with the stress detection
model in the wearable health monitoring system. Finally, the
design of a voice-assisted indoor location system is proposed
for integration with the proposed system within a smart home
environment. The proposed wearable health monitoring system
is an important direction to realize a smart home environment
with extensive diagnostic capabilities so that such a system could
be useful for rendering long-term and personalized care to the
aging population in the comfort of their home.

Index Terms—Internet of Things (IoT), Machine Learning,
Physiological Stress, Cortisol, Physiological Signals, Blood Pres-
sure, Mild Cognitive Impairment (MCI), Location Detection.

I. INTRODUCTION

Advancement in medical sciences has increased life ex-
pectancy to a significant extent. In this context, the population
group with age 60 and older is the fastest-growing, which
is projected to grow by 56% by the end of 2030 [1]. Older
adults are susceptible to transition to several chronic illnesses
which results from long-term abnormalities that usually go
unnoticed until they result in irreversible health conditions.
A smart home environment with preventive and diagnostic
capabilities is pivotal in reducing the burden on caregivers, cost
of assisted living facilities, and support the concept of ”Aging
in Place”. Moreover, the ability to monitoring and managing
one’s health promotes a sense of independence which improves
the quality of life for older adults [2].

One such long-term harmful element of our daily living
is stress. Repeated exposure to stress can cause abnormal-
ities in cardiovascular activity, premature aging, increased

chance of infection, cognitive impairment, anxiety disorder,
and altercation in the functioning of the immune system [3]
[4]. Although stress is an unavoidable aspect of our daily
life, designing technological solutions to monitor and manage
stress can significantly reduce the long-term negative effects
of stress [5] [6] [7]. Similarly, other effects of stress that tend
to develop over years without any specific symptoms such
as Hypertension and Mild Cognitive Impairment (MCI) lead
to their own set of problems. Hypertension, which is one of
the results of chronic stress, is a serious health problem and
is considered as the gateway to severe health problems such
as heart failure, vision loss, stroke, and complications related
to kidney [8]. Mild cognitive impairment, which can lead
to more serious conditions such as Dementia, has also been
linked with chronic stress [9]. In this context, indoor location
detection capability is identified as a key functionality for
activity recognition which is a critical aspect of the diagnosis
of mild cognitive impairment [2] [10].

In this work, we propose a wearable health monitoring
system that is capable of monitoring stress and blood pressure
along with an indoor location detection system suitable for a
smart home environment.

The contribution of this work is as follows:

• A smart wristband-based stress detection framework for
older adults with cortisol, which is an established clinical
biomarker of physiological stress is proposed. Further,
the proposed framework is prototyped in voice-assisted
consumer end devices.

• A blood pressure estimation model using PPG signal
is proposed. The proposed model is validated using the
MIMIC database and is suitable for integration into a
smart home environment.

• A voice-based indoor location detection system suitable
for integration in a smart home environment is proposed.

The paper is organized as follows: Section II will present
the overview of the proposed wearable health monitoring
with a brief discussion on the various components of the
proposed system. Section III will discuss the work on stress
detection and its incorporation in a smart home setting with
voice capabilities. Section IV will present the work on blood
pressure estimation using PPG signal. Section V will present
the work on the proposed indoor location detection system.
Finally, VI will conclude the work.
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Fig. 1. Overview of the proposed wearable health monitoring framework in a smart home environment

II. OVERVIEW OF THE PROPOSED WEARABLE HEALTH
MONITORING SYSTEM

The overview of the proposed system is shown in Figure
1. The proposed system consists of edge computation, cloud
computation, and user interaction.

A. Edge Computation

The hardware components required on the edge side are
a smart wristband, for recording physiological signals for
stress and blood pressure monitoring, a companion app for
integrating the physiological signals, and perform simple com-
putations such as instantaneous heart rate, and mean skin
temperature. The integrated signals are then synced to the
smart home cloud server through WiFi for stress level, and
blood pressure prediction. The edge hardware component also
includes a user tag and a location tag, which are used for
location detection. These tags communicate with the smart
home cloud server using an HTTP request.

B. Cloud Computation

The cloud computation unit performs the signal processing,
feature extraction, and training the machine learning model
for stress prediction and blood pressure estimation. The cloud
infrastructure also hosts storage module, voice enabling skills,
and the indoor location detection algorithm.

C. User Interaction

Users can obtain feedback from the system regarding their
stress level, blood pressure, and location using a voice-assisted
mobile application or voice-assisted smart speaker.

III. PROPOSED SMART WRISTBAND BASED STRESS
DETECTION FRAMEWORK FOR OLDER ADULTS WITH

CORTISOL AS STRESS BIOMAKER

In this section, we will discuss the proposed design of a
smart wristband-based stress detection framework. The frame-
work consists of a smart wristband with EDA, PPG, and
ST sensors embedded in it. Four signals EDA, BVP (Blood
Volume Pulse), and IBI (Inter Beat Interval), and ST are
obtained from the three sensors. BVP and IBI are obtained
from a PPG sensor using a proprietary algorithm on the
device. The objective of this work is to classify between
stress and not-stress state using features from these four
signals. The stress reference is obtained from salivary cortisol
measurement, which is a well established clinical biomarker
for measuring physiological stress. Further, the proposed stress
detection model is prototyped in a consumer end device with
voice capabilities, so that users can receive feedback on their
vitals and stress levels by querying on voice-enabled consumer
devices such as smartphones and smart speakers.

A. Experimental Setup

40 healthy adults with mean age 73.625 ± 5.39 (28 females
and 12 males) were used for this study. Before participation,
the participants were screened for any existing conditions
that might affect their response to the study. TSST (Trier
Social Stress Test) [11] was used as the experimental protocol
for the study. The study consisted of a Waiting period, Pre-
Stress (PS) period, Anticipatory Stress (AS) period, Stress
period (consisting of a speech and mental math task), and two



recovery periods. The timeline of the experimental protocol is
shown in Figure 2

Fig. 2. TSST experimental protocol

During the study, physiological signals are recorded starting
from PS to the first recovery period. Salivary cortisol samples
are collected using a cotton swab placed under the participant’s
mouth for about 2 minutes. Salivary cortisol samples are
collected during the time points T1, T2, T3, T4, and T5 which
are 20 minutes apart.

B. Signal Processing and Feature Extraction

EDA signal is sampled from EDA sensor at 4 Hz, BVP
from PPG at 64 Hz, and ST from Skin temperature sensor at
4 Hz. IBI signal is obtained by removing wrong heartbeats
from BVP signal using an on-device proprietary algorithm.
EDA, BVP, and ST signals were processed and integrated
along with the IBI signal. No processing is performed on
the IBI signal as it is already a processed signal obtained
from the device. Subsequently, features are extracted from
the four signal streams using a running window length of 90
seconds and an overlap of 45 seconds. A total of 18 features
were extracted from EDA, 17 from BVP, and 6 features
each from IBI and ST signal. Detailed information about the
method of feature extraction is available at [12]. A supervised
feature selection method was to select statistically significant
features for stress level classification, and a total of 27 features
were selected. Out of the 27 selected features, 11 features
were from EDA and BVP, and 2 from IBI, and 3 from ST
signals. These features were used for training and testing the
machine learning classifier to distinguish between stress and
not-stressed states.

C. Results and Analysis

The objective of the analysis is to quantify the effectiveness
of integrating features from multiple signal streams to improve
the performance of the classifier in distinguishing between the
stress and not-stress states. The performance is evaluated using
F1-score, micro and macro average F1-scores, ROC score, and
overall accuracy.

The feature set is first annotated with the stress labels
obtained from cortisol concentration using the method de-
scribed in [12]. The cortisol concentration is obtained from the
saliva samples using Immunoassay processing. The statistical
summary of the cortisol concentration during T1, T2, T3, T4,
and T5 is shown in Table I.

TABLE I
MEAN AND STANDARD DEVIATION OF CORTISOL CONCENTRATION

DURING EACH TIMESTAMPS.

TimeStamps Mean (ug/dL) SD (ug/dL)
T1 0.185 0.138
T2 0.189 0.133
T3 0.172 0.105
T4 0.154 0.078
T5 0.137 0.069

The feature set is first split randomly into train and test sets
in the approximate ratio of 75-25, such that no two samples
on the train and test set should come from the same subject.
The random forest model was trained and then tested on the
test data. The performance of the classifier in distinguishing
between stressed and not-stressed states is shown in Table II.
From Table II, we can see that when features from multiple
signals are integrated, the performance of the classification
model increases. For example, the F1-score for the stressed
class and not-stressed both increased by 3.4% and 2.53% than
that obtained when using EDA alone. Further, when IBI is
also integrated, a 2.19% increase in the F1-score of the stressed
class is observed and a 5% increase in the F1-score of the not-
stressed class is observed. Finally, when the ST signal is also
integrated, the F1-score of the stressed class further increased
to 2.15%, and the F1-score of the not-stressed class increased
to 5.88%.

Figure 3 shows the ROC curve and the AUC score for the
different combinations of signal streams. It can be observed
that the AUC score is 0.93 when only EDA sensor is used.
The AUC score increases to 0.94 when the PPG sensor is
added and finally when the ST sensor is also added, the
AUC score increased to 0.96. Hence, we can conclude that
a combination of multiple signal streams can more accurately
distinguish between stress and not-stressed states as indicated
by the increase in cortisol concentration.
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TABLE II
PERFORMANCE METRIC FOR DIFFERENT SENSOR COMBINATION.

Sensor Signal Total Selected F1-score F1-score Macro Accuracy
Combination Combination Feature Feature Stressed Non-stressed F1-score (%)

EDA EDA 18 11 0.88 0.79 0.83 84
EDA,PPG EDA,BVP 35 22 0.91 0.81 0.86 88
EDA,PPG EDA,BVP,IBI 41 24 0.93 0.85 0.89 90

EDA,PPG,ST EDA,BVP,IBI,ST 47 27 0.95 0.90 0.92 94

D. Voice-Based Prototype Framework for The Proposed Stress
Detection System

The prototype for the voice-based framework for stress
detection can be visualized from Figure 1. The EDA, BVP, IBI,
and ST signals are transmitted to a companion app using a low
energy Bluetooth connection. The companion app performs
simple computations on individual signal streams such as
visualizing the signal plots and calculating instantaneous heart
rate from the IBI signal. The signal streams are then synced to
the smart home cloud network through a WiFi connection for
further computation. The user can then initiate voice queries
to obtain feedback about their stress levels and other vitals
through a voice assistant mobile phone or smart speakers.

The feasibility of the proposed prototype in transmitting
multiple signals from a wristband in real-time to the compan-
ion app and subsequently to the cloud resource is analyzed
by data streaming scenario. In the data streaming scenario, a
user wore the smart wristband and the signals were streamed
continuously for one and a half hours. After the session
ended, the battery of the smart wristband is only reduced by a
small amount, and the companion app consumed a negligible
percent of the phone’s battery. Moreover, the wristband used
in the experiment can stream data continuously for about 20
hours in streaming mode, and record data continuously for
about 30 hours in recording mode. This shows the feasibility
of the proposed system for realizing a low-power consumer
electronic system for monitoring stress using only a smart
wristband.

IV. PROPOSED BLOOD PRESSURE ESTIMATION
FRAMEWORK USING PPG SIGNAL

In this section, we will discuss the proposed design for the
blood pressure estimation framework using PPG signal. The
proposed work is suitable for integrating into a smart home
environment because the proposed framework uses features
only from wrist-based PPG signal which can be embedded
in a smart wristband for unobtrusive monitoring. Majority
of the research work that has used ECG signal to estimate
blood pressure accurately. However, monitoring ECG signals
requires additional hardware configuration and is not suitable
for continuous unobtrusive monitoring. In this work, we at-
tempt to estimate the systolic and diastolic blood pressure
using only the PPG signal.

A. Processing and Feature Extraction

The data used for building and validating the model is
extracted from the MIMIC database [13]. Out of the 72 records
available, 20 records were selected to build and validate
the model. The records were selected according to selection
criteria described in [14]. Two types of data were extracted
depending on the size. These are short-term data that consists
of 30 minutes of data from each record and long-term data that
consists of 3 hours of data from each record. The 3 hours of
data are selected randomly as a unit of one-hour data segments
from the beginning, middle, and end of the record.

Algorithm 1: Proposed Data Preprocessing Algorithm
Input : Raw PPG signal stream
Output: Processed PPG signal stream

1 Filter Order=N;
2 Cutoff Frequency=Wn;
3 for all subjects do
4 ppg subject← extractPPGstreamforsubject;
5 ppg mean← mean(ppg subject);
6 ppg subject← ppg subject− ppg mean;
7 end
8 df pleth← concatenate(ppg subject);
9 df pleth← detrend(df pleth);

10 df npleth← normalize(df pleth);
11 df modpleth← df npleth%mean(df npleth);
12 df npleth← df npleth− df modpleth ;
13 df pleth filtered←

butterworth(df npleth,N,Wn);

The data is processed according to the preprocessing Al-
gorithm 1 [14]. After signal processing, the processed signal
streams is decomposed into their first and second derivative
and the Fourier transform of the PPG signal, the first derivative
of Fourier transform and the second derivative of the Fourier
transform. Hence, the original PPG signal is decomposed
into six signal streams including the original PPG signal.
A total of 106 features were extracted from the PPG signal
and its derivatives. Detailed information on feature extraction
can be referred from [14]. Subsequently, a supervised feature
selection method is used to select important sets of features
that can most accurately model the relationship between the
features from the PPG signal and the systolic and diastolic
blood pressure. The top 20 important features ranked by
the selection algorithm were identified. Out of the top 20



TABLE III
PERFORMANCE ANALYSIS FOR SBP PREDICTION

MLP Regressor DT Regressor AdaBoost(DT) AdaBoost(MLP)
Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term

MAE 11.29 16.20 2.34 2.56 1.69 2.07 22.05 19.59
SD 12.35 15.51 5.42 6.00 4.52 5.97 14.85 15.66

% MAE 36 23 87 86 93 91 13.8 17

TABLE IV
PERFORMANCE ANALYSIS FOR DBP PREDICTION

MLP Regressor DT Regressor AdaBoost(DT) AdaBoost(MLP)
Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term

MAE 5.23 6.6 1.69 1.55 1.32 1.15 11.01 12.77
SD 9.12 8.51 6.74 6.41 6.40 4.05 13.89 16.38

% Error 67 54 94 93 97 96 45 39

features, the top 8 features were the statistical measure of the
spectral characteristic of the PPG signal. These features are
the maximum, minimum, skewness, kurtosis, mean and root
mean square of the frequency and maximum and minimum
of peak amplitude. The remaining 12 features were strictly
statistical measures from the PPG signal and its derivatives.
All of the 12 statistical features were measures of spread,
that is standard deviation, variance, maximum, and minimum.
Statistical features from Fourier transform and its derivatives
were not found to be important by the selection algorithm.

It is interesting to note that the maximum and minimum
of PPG and its first and second derivatives were all among
the 12 statistical features and the 8 characteristic features
also contained maximum and minimum of frequency and
peaks. Hence, we have used the maximum and minimum
of frequency, peaks, PPG signal, PPG signal first derivative
and PPG signal second derivative to build a feature set of 10
features.

B. Results and Analysis

The performance is evaluated using mean absolute error,
standard deviation, and percentage of error less than 5 mmHg.
The performance of four different regression models was
evaluated on the test set. The four regressors are MLP (Multi-
Layer Perceptron) regressor, DT (Decision Tree) regressor,
AdaBoost regressor with MLP as the base estimator, and
AdaBoost regressor with DT as the base estimator. The results
for systolic and diastolic blood prediction for both short-term
and long-term data are shown in Table III and Table IV in
terms of Mean Absolute Error (MAE), and Standard Deviation
(SD).

For short-term analysis, it can be observed that AdaBoost
Regressor with Decision Tree as the base estimator performs
the best both for SBP and DBP prediction with an MAE of
1.69 and SD of 4.52 for SBP and an MAE of 1.32 and SD of
6.40. For long-term analysis, it can be observed that AdaBoost
Regressor with Decision Tree as the base estimator performs
the best for both SBP and DBP prediction with an MAE of
2.07 and SE of 5.97 for SBP prediction and an MAE of 1.15

and SE of 4.05 for DBP prediction. Hence, the performance
results showed that the AdaBoost Regressor with decision
tree as the base estimator performed best in estimating blood
pressure values for both short-term and long-term data. Based
on the results, it can be concluded that the proposed model
based on a single signal (PPG) is able to estimate systolic
and diastolic blood pressure with significantly high accuracy.
A single sensor, single probe measurement of PPG signal is
ideal for wearable devices adding convenience to the user.
This approach is suitable for integrating the blood pressure
estimation model in the proposed wearable framework for
health monitoring within a smart home environment.

V. PROPOSED VOICE ASSISTED INDOOR LOCATION
DETECTION SYSTEM

In this section, we will discuss the working and implemen-
tation of the proposed indoor location detection system. The
location detection system consists of location detectors that
communicate with the smart home cloud server via HTTP
requests. The proposed location detector uses an ultrasonic
sensor to detect the presence of an object within a specific
range. In Figure 1, the location detectors are represented
as user tag and location tag. The idea is that when a user
tag comes in the detection range of the location tags, both
the tags sends HTTP request to the server. In our prototype
implementation of the location detection system, the location
detector is designed by programming the HC-SR04 ultrasonic
sensor Arduino ESP8266 with a WiFi module (Figure 4) to
speak to the smart home cloud server.

The workflow of the proposed location detection system is
illustrated in Figure 5. When the caregiver needs to search for
a user’s location, the smart speaker is activated with a voice
command with the user’s information. The voice skill is then
invoked to check if the record exists in the cloud storage.
If the record exists, then a command is issued to the cloud
server that hosts the location detection algorithm with the
user’s information. The server also maintains a look-up table
which is used to map the index of the user tag the patient is
wearing with the location tag. After getting the index of the



Fig. 4. Design of the proposed location detection system

tag that needs to be searched, the server simultaneously looks
for an HTTP request from both the location tags and user tags
matching the requested index. On receiving HTTP requests,
timestamps t1 and t2 is generated.
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Fig. 5. Workflow of the proposed location detection system(ILDA=Indoor
Location Detection Algorithm)

If the time stamp matches within the tolerable error range,
the index of the user tag and the index of the corresponding
location tag is appended to form a message string with fields
i tag and i loc. This message string is then sent to the user
upon request. The overall process is explained in detail in [10].
In our implementation, we have fixed the error tolerance factor
as 5 sec as it was found to be the optimum number to account
for the delays and false response. The implemented system
has been able to identify the person and the location in most
of the requests and no false response.

VI. CONCLUSION

In this work, we have proposed a wearable health moni-
toring system suitable for older adults within a smart home
environment. The system is designed for monitoring stress,
blood pressure, and the location of older adults living in a
smart home environment. We have proposed a stress detection
framework using a smart wristband embedded with EDA,
PPG, and ST sensors. The stress model was trained using
ground truth obtained from salivary cortisol which is a clin-
ically established biomarker for physiological stress. Results
show that the proposed stress detection system was able to

distinguish between stressed and not-stressed states with a high
degree of accuracy using features from all four signal streams.
Further, a voice-based framework is also prototyped to analyze
the feasibility of the proposed stress detection system for
integration in a smart home environment.

A blood pressure estimation framework using only PPG
signal is also proposed. Results and analysis showed that the
proposed blood pressure estimation framework is suitable for
integration into a smart home environment for continuous and
unobtrusive monitoring. Finally, the implementation of the
proposed voice-based indoor location system is also presented.
Analysis of the prototype implementation indicates the poten-
tial of the proposed location detection system could be used
as a suitable choice for activity aware applications which is
critical in the diagnosis of MCI.

The proposed wearable health monitoring system could be
used to monitor stress levels along with other subtle effects
of stress such as hypertension, and cognitive decline. Such a
system will be especially suitable for older adults because it
will empower older adults for aging in place while ensuring
they receive proper care. Realizing a smart home environment
with extensive diagnostic capabilities is important to render
long-term care to the aging population. This work is an
important direction towards realizing this objective.
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