arXiv:2106.13995v1 [quant-ph] 26 Jun 2021

Fast quantum circuit simulation using hardware
accelerated general purpose libraries

Oumarou Oumarou
Department of Informatics
Clausthal University of Technology,
38678 Clausthal-Zellerfeld, Germany

Abstract—Quantum circuit simulators have a long tradition
of exploiting massive hardware parallelism. Most of the times,
parallelism has been supported by special purpose libraries
tailored specifically for the quantum circuits. Quantum circuit
simulators are integral part of quantum software stacks, which
are mostly written in Python. Our focus has been on ease of use,
implementation and maintainability within the Python ecosystem.
We report the performance gains we obtained by using CuPy, a
general purpose library (linear algebra) developed specifically for
CUDA-based GPUs, to simulate quantum circuits. For supremacy
circuits the speedup is around 2x, and for quantum multipliers
almost 22x compared to state-of-the-art C++-based simulators.

I. INTRODUCTION

Quantum circuit simulation is receiving increased attention
due to its applicability in the training of variational models of
computation. For example, the parameters of a computational
model can be adapted by simulating the circuit output values,
computing the value of an error function and then updating
the parameters such that the error function is minimised.
Quantum circuit simulation is also used during the analysis of
small-scale quantum circuit fault-tolerance or other structural
properties. Furthermore, quantum circuit simulation has also
become an important part of the quantum literacy efforts [[14],
because those tools (most of the times games) use simulators
in the background.

Quantum circuit simulators are integral part of quantum
software stacks. Most of the quantum software is built using
Python, and our focus has been on ease of use, implementation
and maintainability within the Python ecosystem. We were
interested in building a high performance quantum circuit
simulator using off the shelf, general purpose high perfor-
mance libraries. The advantage of such libraries is their longer
life compared to special purpose libraries and tools: due to
their wide applicability there exists a larger community of
developers and the risk of abrupt development interruption
is minimised. Moreover, bugs and issues are discovered and
repaired faster.

GPUs are no longer exotic hardware for general purpose
computations: supercomputers and cloud infrastructures (e.g.
Google Colab) use GPUs on a daily basis. Moreover, various
types of GPU-based quantum circuit simulators have been
developed (see the Related Work section). Nevertheless, due
to the conflicting library versions and constraints in terms of
programming languages (e.g. Python vs C++) or frameworks

Alexandru Paler
Department of Compute Science
Transilvania University,
500036, Brasov, Romania

Robert Basmadjian
Department of Informatics
Clausthal University of Technology,
38678 Clausthal-Zellerfeld, Germany

(e.g. Cirq [1], Qiskit [2], PennyLane [6]) it is not always
straightforward to use a GPU-based quantum circuit simulator.

A. Background

There are two challenges related to quantum circuit simu-
lation: a) simulating quantum circuits as fast as possible; b)
simulating the largest possible number of qubits. The latter is
exponentially difficult, because the state of an n-qubit circuit
is described by a 2"-sized complex vector called amplitudes,
and each moment of a circuit’s execution is represented by a
2™ x 2™ complex matrix. For these reasons, arbitrary quantum
circuits of at most 30 qubits can be simulated with consumer
grade computers. For example, the simulation of a 42-qubit
circuits would require 64TB RAM, which would easily occupy
the memory of a supercomputer. Simulating all the amplitudes
at once is specific for the so-called Schroedinger-type quantum
simulators. The simulation time of these simulators grows
linearly with the number of gates in the circuit.

There are ways to avoid storing the entire state in the RAM
[16], but there still seems to be a limit on the maximum
number of qubits that a classical computer can hope to
simulate in a universal arbitrary quantum computer. These
are Feynman-type simulators, e.g. [[19|], where only a few
individual amplitudes are computed as the sum of the circuit
paths that contribute to the value. The simulation time with
these simulators grows exponentially with the size of the cir-
cuit. There are also hybrid techniques (state-vector simulators
combined with path-sum simulators) which were used, for
example, for the simulation of the supremacy circuits [19].

B. Related Work

This work focuses solely on a Schroedinger type simulator
to be used on GPUs. Such simulators were proposed and
implemented as early as [3]], [11]. However, their focus has
not been on high performance computing and more capable
simulators where the communication overhead was also anal-
ysed and modelled were implemented, for example, in [8],
[10]. Nevertheless, the fast advancement of GPU performance
combined with the ever faster CPU-GPU interconnects meant
that training variational quantum circuits on a laptop (RAM
capacity permitting) [6] became feasible. One of the state of
the art GPU-based simulators for such a task is Qulacs [[17].



We have witnessed how GPUs became standard building
blocks of supercomputers (e.g. Summit, Tianhe-2A). The high
performance computing community seems to have focused on
the execution of Python code on the supercomputers. The
goal is to write once execute on multiple platforms, such
that NumPy code, for example, can be easily prototyped on a
laptop and then executed on a huge machine. One example of
libraries capable of being used in heterogeneous environments
is NVidia Rapids [9].

NumPy is one of the most used Python libraries for perform-
ing array-based numerical computations. It runs on a single
CPU core and is not generally parallelised. However, Legate
[5] was proposed as a programming system that transparently
accelerates and distributes NumPy programs to machines of
any scale and capability typically by changing a single module
import statement. The same approach (replacing a single
import statement) allows one to run NumPy code using CuPy
[13] — the CUDA GPU version of NumPy. Replacing libraries
with a GPU version is not a Python-only approach: in [4]]
the authors describe a Java-based CUDA quantum circuit
simulator using this approach. Using drop-in off the shelf
library replacements has the advantage that it simplifies the
maintainability and and stability of the code base.

II. METHODS

In this paper we investigate the feasibility of using CuPy
[13]] for writing a fast, versatile GPU-based quantum circuit
simulator. CuPy is the NumPy equivalent library that supports
CUDA enabled GPUs, and considering [9] it has the potential
to be used in high performance computing environments with
more than a single GPU.

We start from the assumptions that: a) in its simplest
incarnation a quantum circuit simulator is a matrix vector
multiplication software, b) the supporting libraries should be
as easy as possible to install on consumer and specialised
hardware; c) the performance is important for large qubit
numbers when memory and communication overhead seem
to be the bottleneck (ie. [20] for a very recent discussion of
GPU simulators and the associated communication overhead).
Our goal is to analyse the performance of simulating quantum
circuits with GPUs. While this approach is already standard in
the literature, we are interested in using off the shelf libraries
for building the simulator as well as for benchmarking the
obtained performance.

We develop our own quantum circuit simulator and include
it in QUANTIFY [15]. Our simulator uses the Cirq state vector
simulator as a starting point and we exploit the speed of GPUs
by replacing NumPy calls with CuPy ones. This is possible and
straightforward due to the API of the latter. For our code, we
had to fix some NumPy type errors in the Cirg/linalg packaged,
but the latest versions of Cirq already include these repairs.

It should be noted that our methodology to construct the
CuPy-based simulator guarantees that the simulated circuit
outputs are valid as long as CuPy is performing correct. Our
simulator has all the benefits of the standard Cirq simulator,
and is fast too. In the following we will refer to the Cirg

NumPy-based simulator as NumPy, and we will call our
simulator CuPy.

We benchmarked the performance of CuPy using two types
of circuits: supremacy and arithmetic. We use QUANTIFY
[15] to generate quantum arithmetic circuits (e.g. multipliers).
QUANTIFY is a Cirg-based open-sourced framework capable
of (1) compiling state-of-the-art quantum circuits (it has a
large library of implemented circuits), (2) decomposing the
circuits into their constituent different types of gate-levels, (3)
optimising the decomposed circuits based on some heuristics-
based rules, and (4) verifying either the decomposed or the
optimised circuits against their mathematical models using
state-of-the-art adopted metrics (e.g. T-count, T-depth, CNOT-
count, etc.). For the experiments related to the supremacy
circuits, we use the Google-based Cirq framework [1]].

The scaling of the analysed circuit widths is polynomial
(a multiple of the problem size), but we were interested in
a finer grained analysis one qubit-by-qubit basis. We want
to investigate performance scaling for any number of qubits.
For this reason, whenever we wanted to simulate a circuit of a
non-standard width (e.g. supremacy circuit with 19 qubits), we
generate the next largest circuit (e.g. 20 qubits) and randomly
removed qubits (and the corresponding gates) until achieving
the required width.

III. PERFORMANCE EVALUATION

We present the performance (the overall execution time of
the experiment expressed in seconds) obtained by executing
different experiments related to two types of quantum circuits
namely supremacy [7] and multipliers [12]]. We are interested
in comparing the performance of different simulators and
consider NumPy state-vector simulator, our CuPy simulator,
QSim [18] (called and executed from Cirq) and Qulacs (called
and executed from Cirq). For the latter two simulators we
analyse their performance when called through the Python-
bindings. The simulators could expose a higher speed when
used from the command line but, for example, when training
variational models, the simulators are called through the
Python interfaces. We are interested in the simulation speeds
achieved in practical setup.

In order to keep the comparison fair between the simulators
we use the same Python quantum software, namely Cirq. We
simulate each circuit 10 times and average the execution times.
The simulation environment are Google Colab cloud machines
with Tesla T4 GPUs (randomly assigned to our machine) on
PCI 16x with 16GB RAM, CUDA Version 11.2, while the
machine had 12 GB RAM and a Xeon(R) CPU @ 2.20GHz.
Initially, we simulated the multipliers with randomly selected
binary inputs, but then decided to use the same supremacy-
circuit-like approach. Both supremacy and arithmetic circuits
were simulated with equal superposition inputs. For the first
this is the standard approach, while for the latter we wanted to
make sure that CuPy is not optimising the CPU-GPU transfers
due to state vector sparsities.

In a nutshell, the CuPy simulator performs best for larger
circuits. Our hypothesis for the low performance for low qubit



counts (21 qubits for supremacy in Figure [2] and 15 qubits for
multiplication in Figure [T) is that the CPU-GPU communica-
tion overhead is higher than the computation speedup.

A. Multiplication circuits

For the multiplication circuits, we considered the ones
presented by [[12]. These have a total width of 4n+1 such that
2 < n < 8. The parameter n represents the size of the integer
inputs to be multiplied. The depth of the circuit is O(n?).

If we consider only the input integers’ size n as the free
parameter for the horizontal axis, then we would get relatively
sparse data. To mitigate this problem, we use the method
described in the previous section. For 2 < n < 8 we
increasingly and randomly take out qubits from the multiplier
circuits of width 4n + 1 and 4(n + 1) so that the circuit size
sweeps over the quantities between both widths. Consequently,
we obtain no gaps or jumps between both quantities but
rather a continuous circuit width which takes all the values
in between. For our upper limit which is 4 x 7+ 1, we were
unable to simulate the multiplier due to memory constraints.
We simulate the circuit for the values between 25 and 28 qubits
by removing those qubits from the circuits in the same fashion
as described above.

Figure [I] illustrates the results of the experiments for the
use case of the multiplier circuit, by considering 4 different
simulation configurations and the case of 13 till 28 qubits
(the limit before obtaining out of memory error). Note that
for the case of Qulacs simulation configuration, the upper
limit was 25 qubit after which we obtained out of memory
errors. It is important to mention that the experiments were
repeated 10 times and their averages were calculated. Among
the four simulation configurations of NumPy, CuPy, QSim
and Qulacs, for the case of 13 till 17 qubits all the four
simulation configurations have similar execution times with
Qulacs having slightly the edge over the others. After 17
qubits, it becomes evident that our choice of CuPy owns better
performance (e.g. smaller execution times) than the other three
configurations especially by increasing the number of qubits.
More precisely, we noticed that CuPy is in factor of 2 and 10
faster than Qulacs and NumPy as well as QSim respectively.

B. Supremacy circuits

The supremacy circuits for benchmarking were used to
assess for the supremacy of the quantum computation model
over the traditional counterpart. We worked with square-
shaped circuits of size n x n qubits. The maximum number
of qubits we succeeded at simulating with particular setting
(square circuits) was 5 X 5 = 25 qubits, because 6 x 65 = 36
qubits cannot be stored in a usual computer RAM. Using our
type of supremacy circuits, we achieved a limit of 7 x 4 = 28
qubits. Intermediate circuit sizes were generated using the
method described in Section [

Figure [2] presents the obtained results of the carried out
experiments for the use case of the supremacy circuit, by
considering 4 different simulation configurations and the case
of 5 to 28 qubits. Note that the supremacy circuit has a much

10#
—8— Qulacs
NumPy
108 Csim
_ —— (CuPy
)
E
£ 1w
=
2
]
2
D 107t
i
102
1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Number of Qubits
Fig. 1. The speed of NumPy, CuPy, QSim and Qulacs for multiplication

circuits having a width between 4 and 28 qubits.

- lacs
10° Qu
NumPy
Osim
10 § =—— CuPy
)
£
a
E 10
(=]
=
5 107t
=
w
102
..—'-'—"'"__'_‘_
103

456 78 91011121314151617 18192021 222324 252627 2829
Number of Qubits

Fig. 2. The speed of NumPy, CuPy, QSim and Qulacs for supremacy circuits
having a width between 13 and 28 qubits.

less memory requirements than the multiplier circuit. Hence,
for the case of Qulacs simulation configuration, we did not
face the same problem as we had for the multiplier circuit.
It is important to mention that the experiments were repeated
10 times and their averages were calculated and demonstrated
in the figure. Among the four simulation configurations of
NumPy, CuPy, QSim and Qulacs, for the case between 4 and
15 qubits all the four simulation configurations have similar
execution times with Qulacs having slightly the edge over the
others. For more than 15 qubits, it becomes evident that our
choice of CuPy has slower execution times than the other three
configurations, whereas NumPy has the worst performance.

IV. DI1SCUSSION AND CONCLUSION

We presented how to massively improve the performance
of a state vector quantum circuit simulator by using a drop-
in replacement library for GPU acceleration of linear algebra
mathematics, namely CuPy. Our approach is motivated by
the fact that we are interested in developing a stable and
maintainable quantum software stack where the simulators
are both fast, versatile and capable to be easily operated



200
=& Qulacs/CuPy

175 CsimfCuPy

45678 9101112151415 161715 19202122 232425 262726 29
Number of Qubits

Fig. 3. The speedup compared to Qulacs and Qsim achieved with CuPy for
supremacy circuits having a width between 5 and 28 qubits.

24
27 —8— Qulacs/CuPy

0 Osim/CuPy

18
16
14
12
10

Speedup

M

13 14 15 16 17 18 19 20 21 22 25

Number of Qubits

[=T0 S B = (R - ]

24 5 % 1T

Fig. 4. The speedup compared to Qulacs and Qsim achieved with CuPy for
multiplication circuits having a width between 13 and 28 qubits.

on heterogeneous hardware. Source code is available at http:
/fwww.github.com/quantumresource/quantify.

The really large speedups achieved using CuPy (Figures [3]
and [) was achieved without explicitly calling cuSPARSE
which is a part of the CuPy library. Nevertheless, the NumPy-
based simulator from Cirq exploits matrix sparsity. It could be
possible that caSPARSE will further improve the speedup, but
this is not guaranteed.

We did not perform any particular optimisation to increase
the GPU throughput, and we did not explicitly benchmark the
memory consumption between the simulators. Such tasks are
future work. However, while benchmarking Qulacs we noticed
increasing memory footprints.

We were surprised by the performance gains achieved for
supremacy circuits (approx. 2x compared to Qsim), but even
more impressive were the speedups achieved for the simulation
of arithmetic circuits. Our approach has the potential to be
easily scaled to high performance machines because the un-
derlying libraries were designed and implemented accordingly.
Future work will focus on simulations with multiple GPUs.

[1

—

[2

—

[3

[t}

[4

=

[5

=

[6

=

[7

—

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]

[20]

REFERENCES

Cirq, a Python framework for creating, editing, and invoking Noisy Inter-
mediate Scale Quantum (NISQ) circuits. https://github.com/quantumlib/
Cirg. Online; accessed 6 April 2021.

Héctor Abraham, AduOffei, and Rochisha Agarwal et al. Qiskit: An
Open-source Framework for Quantum Computing, 2019.

Andrei Amariutei and Simona Caraiman. Parallel quantum computer
simulation on the gpu. In I/5th International Conference on System
Theory, Control and Computing, pages 1-6. IEEE, 2011.

Anderson Avila, Adriano Maron, Renata Reiser, Mauricio Pilla, and
Adenauer Yamin. Gpu-aware distributed quantum simulation. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing,
pages 860-865, 2014.

Michael Bauer and Michael Garland. Legate numpy: Accelerated
and distributed array computing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1-23, 2019.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M So-
haib Alam, Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank,
Alain Delgado, Soran Jahangiri, et al. Pennylane: Automatic differ-
entiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.

Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush,
Nan Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and
Hartmut Neven. Characterizing quantum supremacy in near-term de-
vices. Nature Physics, 14(6):595-600, Apr 2018.

Gian Giacomo Guerreschi, Justin Hogaboam, Fabio Baruffa, and
Nicolas PD Sawaya. Intel quantum simulator: A cloud-ready high-
performance simulator of quantum circuits. Quantum Science and
Technology, 5(3):034007, 2020.

Benjamin Herndndez, Suhas Somnath, Jungi Yin, Hao Lu, Joe Eaton,
Peter Entschev, John Kirkham, and Zahra Ronaghi. Performance
evaluation of python based data analytics frameworks in summit: Early
experiences. In Smoky Mountains Computational Sciences and Engi-
neering Conference, pages 366-380. Springer, 2020.

Tyson Jones, Anna Brown, Ian Bush, and Simon C Benjamin. Quest and
high performance simulation of quantum computers. Scientific reports,
9(1):1-11, 2019.

Martin Lukac, Marek Perkowski, Pawel Kerntopf, and Michitaka
Kameyama. Gpu acceleration methods of representations for quantum
circuits. GPU Computing with Applications in Digital Logic, page 97.
Edgard Mufioz-Coreas and Himanshu Thapliyal. Quantum circuit design
of a T-count optimized integer multiplier. IEEE Transactions on
Computers, 68(5):729-739, 2018.

Royud Nishino and Shohei Hido Crissman Loomis. Cupy: A numpy-
compatible library for nvidia gpu calculations. 31st confernce on neural
information processing systems, page 151, 2017.

Laurentiu Nita, Laura Mazzoli Smith, Nicholas Chancellor, and Hellen
Cramman. The challenge and opportunities of quantum literacy for
future education and transdisciplinary problem-solving. arXiv preprint
arXiv:2004.07957, 2020.

O. Oumarou, A. Paler, and R. Basmadjian. Quantify: A framework for
resource analysis and design verification of quantum circuits. In 2020
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
126-131, 2020.

Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh,
and Robert Wisnieff. Leveraging secondary storage to simulate deep
54-qubit Sycamore circuits. arXiv preprint arXiv:1910.09534, 2019.
Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga,
Masahiro Nakadai, Jiabao Chen, Ken M Nakanishi, Kosuke Mitarai,
Ryosuke Imai, Shiro Tamiya, et al. Qulacs: a fast and versatile quantum
circuit simulator for research purpose. arXiv preprint arXiv:2011.13524,
2020.

Quantum Al team and collaborators. gsim, September 2020.

Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven,
Travis S Humble, Rupak Biswas, Eleanor G Rieffel, Alan Ho, and
Salvatore Mandra. Establishing the quantum supremacy frontier with a
281 pflop/s simulation. Quantum Science and Technology, 5(3):034003,
2020.

Dennis Willsch, Madita Willsch, Fengping Jin, Kristel Michielsen, and
Hans De Raedt. Gpu-accelerated simulations of quantum annealing
and the quantum approximate optimization algorithm. arXiv preprint
arXiv:2104.03293, 2021.


http://www.github.com/quantumresource/quantify
http://www.github.com/quantumresource/quantify
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq

	I Introduction
	I-A Background
	I-B Related Work

	II Methods
	III Performance Evaluation
	III-A Multiplication circuits
	III-B Supremacy circuits

	IV Discussion and Conclusion
	References

