
Exploiting Near-Data Processing
to Accelerate Time Series Analysis

Ivan Fernandez§ Ricardo Quislant§ Christina Giannoula† Mohammed Alser‡

Juan Gómez-Luna‡ Eladio Gutiérrez§ Oscar Plata§ Onur Mutlu‡

§University of Malaga †National Technical University of Athens ‡ETH Zürich

A time series is a chronologically ordered set of samples
of a real-valued variable that can contain millions of observa-
tions. Time series analysis is used to analyze information in a
wide variety of domains [128]: epidemiology, genomics, neu-
roscience, medicine, environmental sciences, economics, and
more. Time series analysis includes �nding similarities (mo-
tifs) and anomalies (discords) between every two subsequences
(i.e., slices of consecutive data points) of the time series. There
are two major approaches for motif and discord discovery:
approximate and exact algorithms. Approximate algorithms
are faster than exact algorithms, but they can provide inac-
curate results or limited discord detection, which cannot be
tolerated by many applications (e.g., vehicle safety systems).
Unlike approximate algorithms, exact algorithms do not yield
false positives or discordant dismissals, but can be very time-
consuming on large time series data. Thus, anytime versions
(aka interruptible algorithms) of exact algorithms are proposed
to provide approximate solutions quickly and can return a
valid result even if the user stops their execution early. The
state-of-the-art exact anytime method for motif and discord
discovery is matrix pro�le [142], which is based on Euclidean
distances and �oating-point arithmetic. We evaluate a recent
CPU implementation of the matrix pro�le algorithm [149]
on a real multi-core machine (Intel Xeon Phi KNL [76]) and
observe that its performance is heavily bottlenecked by data
movement. In other words, the amount of computation per
data access is not enough to hide the memory latency and thus
time series analysis is memory-bound. This overhead caused
by data movement limits the potential bene�ts of acceleration
e�orts that do not alleviate the data movement bottleneck in
current time series applications.

Several CPU and GPU implementations of matrix pro�le
have been proposed in the literature. However, these ac-
celeration e�orts still require transferring the time series
data from the main memory to the CPU/GPU cores, lead-
ing to the data movement bottleneck. Near-Data Processing
(NDP) [1–20, 22–29, 31–57, 57, 58, 58–62, 62–74, 77–84, 86–91,
93, 94, 96–127, 129–135, 135, 136, 136–141, 143–148, 150, 151] is
a promising approach to alleviate data movement by placing
processing units close to memory. As a result, NDP solutions
have the potential to greatly improve system performance
and energy e�ciency when they are carefully designed with
low-cost and low-overhead near data processing cores for
memory-bound applications [21].

Our goal in this work is to enable high-performance and
energy-e�cient time series analysis for a wide range of ap-
plications, by minimizing the overheads of data movement.

This can enable e�cient time series analysis on large-scale
systems as well as embedded and mobile devices, where power
consumption is a critical constraint (e.g., heart beat analysis
on a mobile medical device to predict a heart attack [95] or
early earthquacke detection [30]). To this end, we propose
NATSA, the �rst Near-Data Processing Accelerator for Time
Series Analysis. The key idea of NATSA (Fig. 1) is to exploit
modern 3D-stacked High Bandwidth Memory (HBM) along
with specialized custom processing units in the logic layer of
HBM, to enable energy-e�cient and fast matrix pro�le compu-
tation near memory, where time series data resides. NATSA
supports a wide range of time series applications thanks to
matrix pro�le’s generality and �exibility.

Dot Product

DPU

Dot Product

DPU

Dot Product
Reutilization

DPRU

Dot Product
Reutilization

DPRU

Distance
Calculation

DCU

Distance
Calculation

DCU

Profile
Update

PUU

Profile
Update

PUU

Dot ProductDot Product

DPUDPU

Distance
Calculation

Distance
Calculation

DCUDCU

Dot Product
Reutilization
Dot Product
Reutilization

Profile
Update
Profile
Update

control 
unit

T

m

qi,j

σ 

µ 
m

PP

II

PP
II

PUUPUUDPUUDPUU

2

+
× 

reg
ti,m
tj,m

≤ 
di,j

PPi

-× 

× 
ti

+

σi
÷

<<

-

-

× 

× 

σj

μi
μj

m

HBM 
memory

NATSA
8-channel
interface

silicon
interposer

PUn

mm

qi+1,j+1

di,jdi,j

T qi,jqi,j

tj

ti+m
tj+mm

qi,j

qi,j

11

PPi,IIi

di,j,j
{

1KB Scratchpad Memory1KB Scratchpad Memory

Figure 1: NATSA design and integration next to HBM mem-
ory. NATSA is connected directly to the HBM interface.

Our evaluation shows that NATSA provides up to 14.2×
(9.9× on average) higher performance and up to 27.2× (19.4×
on average) lower energy consumption compared to a state-
of-the-art multi-core system. NATSA consumes 11.0× and
4.1× less energy over optimized implementations of matrix
pro�le on an Intel Xeon Phi KNL [76] and NVIDIA GTX 1050
GPU [85], respectively. NATSA has 9.6× and 1.8× smaller
area than these two accelerators, at equivalent performance
points. NATSA outperforms a general-purpose NDP platform
by 6.3× while consuming 10.2× less energy.

This work makes the following contributions:
• We propose NATSA, the �rst near-data processing accel-

erator for accelerating time series analysis using modern
3D-stacked High Bandwidth Memory (HBM) [75, 92].

• We propose a new workload partitioning scheme that pre-
serves the anytime property of the algorithm, while provid-

ar
X

iv
:2

20
6.

00
93

8v
1 

 [
cs

.A
R

] 
 2

 J
un

 2
02

2



ing load balancing among near-data processing units.
• We perform a detailed analysis of NATSA in terms of both

performance and energy consumption. We compare dif-
ferent versions of NATSA (DDR4 and HBM) with four dif-
ferent architectures (8-core CPU, 64-core CPU, GPUs and
NDP-CPU) and �nd that NATSA provides the highest per-
formance and lowest energy consumption.
This invited extended abstract is a summary

version of our prior work [41] published at
ICCD 2020. NATSA’s full-paper, video and codes
are available at https://arxiv.org/abs/2010.02079,
https://www.youtube.com/watch?v=PwhtSAVa_W4 and
https://github.com/CMU-SAFARI/NATSA, respectively.

Acknowledgments
This work has been supported by TIN2016-80920-R and
UMA18-FEDERJA-197 Spanish projects, and Eurolab4HPC and
HiPEAC collaboration grants. We also acknowledge support
from the SAFARI Group’s industrial partners, especially ASML,
Facebook, Google, Huawei, Intel, Microsoft, and VMware, as
well as support from the Semiconductor Research Corpora-
tion.

References
[1] S. Aga et al., “Compute Caches,” in HPCA, 2017.
[2] H. Ahmed et al., “A Compiler for Automatic Selection of Suitable

Processing-in-Memory Instructions,” in DATE, 2019.
[3] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel

Graph Processing,” in ISCA, 2015.
[4] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-

Aware Processing-in-Memory Architecture,” in ISCA, 2015.
[5] B. Akin et al., “Data Reorganization in Memory Using 3D-Stacked DRAM,”

in ISCA, 2015.
[6] M. F. Ali et al., “In-Memory Low-Cost Bit-Serial Addition Using Com-

modity DRAM Technology,” in TCAS-I, 2019.
[7] S. Angizi et al., “PIMA-Logic: A Novel Processing-in-Memory Archi-

tecture for Highly Flexible and Energy-e�cient Logic Computation,” in
DAC, 2018.

[8] S. Angizi et al., “CMP-PIM: An Energy-e�cient Comparator-based
Processing-in-Memory Neural Network Accelerator,” in DAC, 2018.

[9] S. Angizi et al., “AlignS: A Processing-in-Memory Accelerator for DNA
Short Read Alignment Leveraging SOT-MRAM,” in DAC, 2019.

[10] S. Angizi et al., “Graphide: A Graph Processing Accelerator Leveraging
In-DRAM-computing,” in GLSVLSI, 2019.

[11] B. Asgari et al., “FAFNIR: Accelerating Sparse Gathering by Using E�-
cient Near-Memory Intelligent Reduction,” in HPCA, 2021.

[12] H. Asghari-Moghaddam et al., “Chameleon: Versatile and Practical Near-
DRAM Acceleration Architecture for Large Memory Systems,” in MICRO,
2016.

[13] O. O. Babarinsa et al., “JAFAR: Near-Data Processing for Databases,” in
SIGMOD, 2015.

[14] R. Balasubramonian et al., “Near-Data Processing: Insights from a
MICRO-46 Workshop,” IEEE Micro, 2014.

[15] M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems,” in MICRO, 2021.

[16] D. Bhattacharjee et al., “ReVAMP: ReRAM based VLIW Architecture for
In-memory Computing,” in DATE, 2017.

[17] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigat-
ing Data Movement Bottlenecks,” in ASPLOS, 2018.

[18] A. Boroumand, “Practical Mechanisms for Reducing Processor-Memory
Data Movement in Modern Workloads,” Ph.D. dissertation, Carnegie
Mellon University, 2020.

[19] A. Boroumand et al., “Google Neural Network Models for Edge De-
vices: Analyzing and Mitigating Machine Learning Inference Bottlenecks,”
arXiv preprint arXiv:2109.14320, 2021.

[20] A. Boroumand et al., “Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks,” in
PACT, 2021.

[21] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigat-
ing Data Movement Bottlenecks,” ASPLOS, 2018.

[22] A. Boroumand et al., “Polynesia: Enabling E�ective Hybrid Transac-
tional/Analytical Databases with Specialized Hardware/Software Co-
Design,” arXiv:2103.00798 [cs.AR], 2021.

[23] A. Boroumand et al., “Polynesia: Enabling E�ective Hybrid Transactional
Analytical Databases with Specialized Hardware Software Co-Design,”
in ICDE, 2022.

[24] A. Boroumand et al., “CoNDA: E�cient Cache Coherence Support for
Near-Data Accelerators,” in ISCA, 2019.

[25] A. Boroumand et al., “LazyPIM: An E�cient Cache Coherence Mecha-
nism for Processing-in-Memory,” CAL, 2016.

[26] D. S. Cali et al., “GenASM: A High-Performance, Low-Power Approxi-
mate String Matching Acceleration Framework for Genome Sequence
Analysis,” in MICRO, 2020.

[27] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling
Fast Inter-Subarray Data Movement in DRAM,” in HPCA, 2016.

[28] P. Chi et al., “PRIME: A Novel Processing-In-Memory Architecture for
Neural Network Computation In ReRAM-Based Main Memory,” in ISCA,
2016.

[29] S. Cho et al., “McDRAM v2: In-Dynamic Random Access Memory Systolic
Array Accelerator to Address the Large Model Problem in Deep Neural
Networks on the Edge,” IEEE Access, 2020.

[30] A. Christophersen et al., “Bayesian network modeling and expert
elicitation for probabilistic eruption forecasting: Pilot study for
Whakaari/White Island, New Zealand,” Frontiers in Earth Science, vol. 6,
p. 211, 2018.

[31] G. Dai et al., “GraphH: A Processing-in-Memory Architecture for Large-
scale Graph Processing,” IEEE TCAD, 2018.

[32] Q. Deng et al., “DrAcc: A DRAM Based Accelerator for Accurate CNN
Inference,” in DAC, 2018.

[33] A. Denzler et al., “Casper: Accelerating stencil computation using near-
cache processing,” arXiv preprint arXiv:2112.14216, 2021.

[34] S. Diab et al., “High-throughput Pairwise Alignment with the Wavefront
Algorithm using Processing-in-Memory,” arXiv preprint arXiv:2204.02085,
2022.

[35] S. Diab et al., “High-throughput Pairwise Alignment with the Wavefront
Algorithm using Processing-in-Memory,” in HICOMB, 2022.

[36] J. Draper et al., “The Architecture of the DIVA Processing-in-Memory
Chip,” in SC, 2002.

[37] M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017.
[38] C. Eckert et al., “Neural Cache: Bit-serial In-cache Acceleration of Deep

Neural Networks,” in ISCA, 2018.
[39] D. G. Elliott et al., “Computational RAM: Implementing Processors in

Memory,” IEEE Design & Test of Computers, 1999.
[40] A. Farmahini-Farahani et al., “NDA: Near-DRAM acceleration archi-

tecture leveraging commodity DRAM devices and standard memory
modules,” in HPCA, 2015.

[41] I. Fernandez et al., “NATSA: A Near-data Processing Accelerator for Time
Series Analysis,” in ICCD, 2020.

[42] J. D. Ferreira et al., “pLUTo: In-DRAM Lookup Tables to Enable Massively
Parallel General-Purpose Computation,” arXiv:2104.07699 [cs.AR], 2021.

[43] D. Fujiki et al., “In-Memory Data Parallel Processor,” in ASPLOS, 2018.
[44] D. Fujiki et al., “Duality Cache for Data Parallel Acceleration,” in ISCA,

2019.
[45] P.-E. Gaillardon et al., “The Programmable Logic-in-Memory (PLiM)

Computer,” in DATE, 2016.
[46] F. Gao et al., “ComputeDRAM: In-Memory Compute Using O�-the-Shelf

DRAMs,” in MICRO, 2019.
[47] M. Gao et al., “Practical Near-Data Processing for In-Memory Analytics

Frameworks,” in PACT, 2015.
[48] M. Gao et al., “HRL: E�cient and Flexible Recon�gurable Logic for Near-

Data Processing,” in HPCA, 2016.
[49] M. Gao et al., “Tetris: Scalable and E�cient Neural Network Acceleration

with 3D Memory,” in ASPLOS, 2017.
[50] N. M. Ghiasi et al., “GenStore: A High-Performance and Energy-E�cient

In-Storage Computing System for Genome Sequence Analysis,” in ASP-
LOS, 2022.

[51] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspective,”
IBM JRD, 2019.

https://arxiv.org/abs/2010.02079
https://www.youtube.com/watch?v=PwhtSAVa_W4
https://github.com/CMU-SAFARI/NATSA


[52] C. Giannoula et al., “SparseP: Towards E�cient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Systems,” arXiv preprint
arXiv:2201.05072, 2022.

[53] C. Giannoula et al., “Towards E�cient Sparse Matrix Vector Multipli-
cation on Real Processing-in-Memory Architectures,” in SIGMETRICS,
2022.

[54] C. Giannoula et al., “SynCron: E�cient Synchronization Support for
Near-Data-Processing Architectures,” in HPCA, 2021.

[55] M. Gokhale et al., “Processing in Memory: The Terasys Massively Parallel
PIM Array,” IEEE Computer, 1995.

[56] M. Gokhale et al., “Near Memory Data Structure Rearrangement,” in
MEMSYS, 2015.

[57] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Sys-
tems: Analysis of Real Processing-In-Memory Hardware,” in IGSC, 2021.

[58] J. Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory Architecture,” arXiv:2105.03814
[cs.AR], 2021.

[59] B. Gu et al., “Biscuit: A Framework for Near-Data Processing of Big Data
Workloads,” in ISCA, 2016.

[60] P. Gu et al., “iPIM: Programmable In-Memory Image Processing Acceler-
ator using Near-Bank Architecture,” in ISCA, 2020.

[61] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and
System Design,” in WoNDP, 2014.

[62] J. Gómez-Luna et al., “Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System,”
IEEE Access, 2022.

[63] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD Pro-
cessing Using DRAM,” in ASPLOS, 2021.

[64] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” in
DATE, 2017.

[65] S. Hamdioui et al., “Memristor Based Computation-in-Memory Architec-
ture for Data-intensive Applications,” in DATE, 2015.

[66] M. Hashemi et al., “Continuous Runahead: Transparent Hardware Accel-
eration for Memory Intensive Workloads,” in MICRO, 2016.

[67] M. Hashemi et al., “Accelerating Dependent Cache Misses with an En-
hanced Memory Controller,” in ISCA, 2016.

[68] J. M. Herruzo et al., “Enabling Fast and Energy-E�cient FM-Index Exact
Matching Using Processing-Near-Memory,” The Journal of Supercomput-
ing, 2021.

[69] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation,” in ICCD, 2016.

[70] K. Hsieh et al., “Transparent O�oading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in
ISCA, 2016.

[71] Y. Huang et al., “A Heterogeneous PIM Hardware-Software Co-Design
for Energy-E�cient Graph Processing,” in IPDPS, 2020.

[72] W.-M. Hwu et al., “Rebooting the Data Access Hierarchy of Computing
Systems,” in ICRC, 2017.

[73] A. C. Jacob et al., “Compiling for the Active Memory Cube,” Tech. rep.
RC25644 (WAT1612-008). IBM Research Division, Tech. Rep., 2016.

[74] S. Jain et al., “Computing-in-memory with spintronics,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2018, pp. 1640–1645.

[75] JEDEC, “High Bandwidth Memory (HBM) DRAM,” Standard No. JESD235,
2013.

[76] J. Je�ers et al., Intel Xeon Phi Processor High Performance Programming:
Knights Landing Edition. Morgan Kaufmann, 2016.

[77] M. Kang et al., “An Energy-E�cient VLSI Architecture for Pattern Recog-
nition via Deep Embedding of Computation in SRAM,” in ICASSP, 2014.

[78] Y. Kang et al., “FlexRAM: Toward an Advanced Intelligent Memory Sys-
tem,” in ICCD, 1999.

[79] W. H. Kautz, “Cellular Logic-in-Memory Arrays,” IEEE TC, 1969.
[80] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic Ar-

chitecture with High-Density 3D Memory,” in ISCA, 2016.
[81] G. Kim et al., “Toward Standardized Near-Data Processing with Unre-

stricted Data Placement for GPUs,” in SC, 2017.
[82] J. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical

Unclonable Functions by Exploiting the Latency–Reliability Tradeo� in
Modern DRAM Devices,” in HPCA, 2018.

[83] J. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate
True Random Numbers with Low Latency and High Throughput,” in
HPCA, 2019.

[84] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping Using Processing-in-Memory Technologies,” BMC Genomics,
2018.

[85] D. Kirk et al., “NVIDIA CUDA Software and GPU Parallel Computing
Architecture,” in ISMM, 2007.

[86] P. M. Kogge, “EXECUBE - A New Architecture for Scaleable MPPs,” in
ICPP, 1994.

[87] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE TCAS II:
Express Briefs, 2014.

[88] S. Kvatinsky et al., “Memristor-Based IMPLY Logic Design Procedure,” in
ICCD, 2011.

[89] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY) Logic:
Design Principles and Methodologies,” TVLSI, 2014.

[90] J. Landgraf et al., “Combining Emulation and Simulation to Evaluate a
Near Memory Key/Value Lookup Accelerator,” 2021.

[91] D. Lavenier et al., “Variant Calling Parallelization on Processor-in-
Memory Architecture,” in BIBM, 2020.

[92] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked
Memory Bandwidth at Low Cost,” TACO, 2016.

[93] J. H. Lee et al., “BSSync: Processing Near Memory for Machine Learning
Workloads with Bounded Staleness Consistency Models,” in PACT, 2015.

[94] Y. Levy et al., “Logic Operations in Memory Using a Memristive Akers
Array,” Microelectronics Journal, 2014.

[95] K. H. C. Li et al., “The Current State of Mobile Phone Apps for Monitoring
Heart Rate, Heart Rate Variability, and Atrial Fibrillation: Narrative
Review,” JMIR Mhealth Uhealth, 2019.

[96] S. Li et al., “DRISA: A DRAM-Based Recon�gurable In-Situ Accelerator,”
in MICRO, 2017.

[97] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-Volatile Memories,” in DAC, 2016.

[98] Z. Liu et al., “Concurrent Data Structures for Near-Memory Computing,”
in SPAA, 2017.

[99] S. Lloyd et al., “In-memory Data Rearrangement for Irregular, Data-
intensive Computing,” Computer, 2015.

[100] S. Lloyd et al., “Near Memory Key/Value Lookup Acceleration,” in MEM-
SYS, 2017.

[101] S. Lloyd et al., “Design Space Exploration of Near Memory Accelerators,”
in MEMSYS, 2018.

[102] K. Mai et al., “Smart Memories: A Modular Recon�gurable Architecture,”
in ISCA, 2000.

[103] A. Morad et al., “GP-SIMD Processing-in-Memory,” ACM TACO, 2015.
[104] R. C. Murphy et al., “The Characterization of Data Intensive Memory

Workloads on Distributed PIM Systems,” in Intelligent Memory Systems.
Springer, 2001.

[105] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW,
2013.

[106] O. Mutlu et al., “Research Problems and Opportunities in Memory Sys-
tems,” SUPERFRI, 2014.

[107] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM O�oading in
Graph Computing Frameworks,” in HPCA, 2017.

[108] R. Nair, “Evolution of Memory Architecture,” Proceedings of the IEEE,
2015.

[109] R. Nair et al., “Active Memory Cube: A Processing-in-Memory Architec-
ture for Exascale Systems,” IBM JRD, 2015.

[110] A. Olgun et al., “QUAC-TRNG: High-Throughput True Random Number
Generation Using Quadruple Row Activation in Commodity DRAMs,” in
ISCA, 2021.

[111] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[112] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks,” arXiv:2105.03725 [cs.AR],
2021.

[113] M. Oskin et al., “Active Pages: A Computation Model for Intelligent
Memory,” in ISCA, 1998.

[114] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[115] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with

Processing-in-Memory Capabilities,” in PACT, 2016.
[116] S. H. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Mem-

ory+Logic Devices on MapReduce Workloads,” in ISPASS, 2014.
[117] S. H. S. Rezaei et al., “NoM: Network-on-Memory for Inter-Bank Data

Transfer in Highly-Banked Memories,” CAL, 2020.
[118] A. Rodrigues et al., “Towards a Scatter-Gather Architecture: Hardware



and Software Issues,” in MEMSYS, 2019.
[119] P. C. Santos et al., “Operand Size Recon�guration for Big Data Processing

in Memory,” in DATE, 2017.
[120] V. Seshadri et al., “Buddy-RAM: Improving the Performance and Ef-

�ciency of Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988
[cs:AR], 2016.

[121] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[122] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.
[123] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk

Data Copy and Initialization,” in MICRO, 2013.
[124] V. Seshadri et al., “Simple Operations in Memory to Reduce Data Move-

ment,” in Advances in Computers, Volume 106, 2017.
[125] A. Sha�ee et al., “ISAAC: A Convolutional Neural Network Accelerator

with In-situ Analog Arithmetic in Crossbars,” ISCA, 2016.
[126] D. E. Shaw et al., “The NON-VON Database Machine: A Brief Overview,”

IEEE Database Eng. Bull., 1981.
[127] H. Shin et al., “McDRAM: Low latency and energy-e�cient matrix com-

putations in DRAM,” IEEE TCADICS, 2018.
[128] R. H. Shumway et al., “Time Series Analysis and Its Applications: With

R Examples,” 2017.
[129] G. Singh et al., “FPGA-based Near-Memory Acceleration of Modern

Data-Intensive Applications,” IEEE Micro, 2021.
[130] G. Singh et al., “Accelerating Weather Prediction using Near-Memory

Recon�gurable Fabric,” ACM TRETS, 2021.
[131] G. Singh et al., “NERO: A Near High-Bandwidth Memory Stencil Accel-

erator for Weather Prediction Modeling,” in FPL, 2020.
[132] G. Singh et al., “NAPEL: Near-memory Computing Application Perfor-

mance Prediction Via Ensemble Learning,” in DAC, 2019.
[133] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[134] Z. Sura et al., “Data Access Optimization in a Processing-in-Memory

System,” in CF, 2015.
[135] UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM)

on DRAM Accelerator (White Paper),” 2018.
[136] UPMEM, “UPMEM Website,” https://www.upmem.com, 2020.
[137] Y. Wang et al., “FIGARO: Improving System Performance via Fine-

Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.
[138] Y. Xi et al., “In-Memory Learning With Analog Resistive Switching

Memory: A Review and Perspective,” Proceedings of the IEEE, 2020.
[139] L. Xie et al., “Fast Boolean Logic Papped on Memristor Crossbar,” in

ICCD, 2015.
[140] X. Xin et al., “ELP2IM: E�cient and Low Power Bitwise Operation

Processing in DRAM,” in HPCA, 2020.
[141] L. Yavits et al., “GIRAF: General Purpose In-Storage Resistive Associative

Framework,” IEEE TPDS, 2021.
[142] C.-C. M. Yeh et al., “Matrix Pro�le I: All Pairs Similarity Joins for Time

Series: A Unifying View That Includes Motifs, Discords and Shapelets,”
in ICDM, 2016.

[143] J. Yu et al., “Memristive Devices for Computation-in-Memory,” in DATE,
2018.

[144] Y. Zha et al., “Hyper-AP: Enhancing Associative Processing Through A
Full-Stack Optimization,” in ISCA, 2020.

[145] D. P. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Pro-
cessing in Memory,” in HPDC, 2014.

[146] M. Zhang et al., “GraphP: Reducing Communication for PIM-based
Graph Processing with E�cient Data Partition,” in HPCA, 2018.

[147] L. Zheng et al., “RRAM-based TCAMs for pattern search,” in ISCAS, 2016.
[148] Q. Zhu et al., “Accelerating Sparse Matrix-Matrix Multiplication with

3D-Stacked Logic-in-Memory Hardware,” in HPEC, 2013.
[149] Y. Zhu et al., “Matrix Pro�le XI: SCRIMP++: Time Series Motif Discovery

at Interactive Speeds,” in ICDM, 2018.
[150] Y. Zhuo et al., “GraphQ: Scalable PIM-based Graph Processing,” inMICRO,

2019.
[151] V. Zois et al., “Massively Parallel Skyline Computation for Processing-

in-Memory Architectures,” in PACT, 2018.

https://www.upmem.com

