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A time series is a chronologically ordered set of samples
of a real-valued variable that can contain millions of observa-
tions. Time series analysis is used to analyze information in a
wide variety of domains [128]: epidemiology, genomics, neu-
roscience, medicine, environmental sciences, economics, and
more. Time series analysis includes �nding similarities (mo-
tifs) and anomalies (discords) between every two subsequences
(i.e., slices of consecutive data points) of the time series. There
are two major approaches for motif and discord discovery:
approximate and exact algorithms. Approximate algorithms
are faster than exact algorithms, but they can provide inac-
curate results or limited discord detection, which cannot be
tolerated by many applications (e.g., vehicle safety systems).
Unlike approximate algorithms, exact algorithms do not yield
false positives or discordant dismissals, but can be very time-
consuming on large time series data. Thus, anytime versions
(aka interruptible algorithms) of exact algorithms are proposed
to provide approximate solutions quickly and can return a
valid result even if the user stops their execution early. The
state-of-the-art exact anytime method for motif and discord
discovery is matrix pro�le [142], which is based on Euclidean
distances and �oating-point arithmetic. We evaluate a recent
CPU implementation of the matrix pro�le algorithm [149]
on a real multi-core machine (Intel Xeon Phi KNL [76]) and
observe that its performance is heavily bottlenecked by data
movement. In other words, the amount of computation per
data access is not enough to hide the memory latency and thus
time series analysis is memory-bound. This overhead caused
by data movement limits the potential bene�ts of acceleration
e�orts that do not alleviate the data movement bottleneck in
current time series applications.

Several CPU and GPU implementations of matrix pro�le
have been proposed in the literature. However, these ac-
celeration e�orts still require transferring the time series
data from the main memory to the CPU/GPU cores, lead-
ing to the data movement bottleneck. Near-Data Processing
(NDP) [1–20, 22–29, 31–57, 57, 58, 58–62, 62–74, 77–84, 86–91,
93, 94, 96–127, 129–135, 135, 136, 136–141, 143–148, 150, 151] is
a promising approach to alleviate data movement by placing
processing units close to memory. As a result, NDP solutions
have the potential to greatly improve system performance
and energy e�ciency when they are carefully designed with
low-cost and low-overhead near data processing cores for
memory-bound applications [21].

Our goal in this work is to enable high-performance and
energy-e�cient time series analysis for a wide range of ap-
plications, by minimizing the overheads of data movement.

This can enable e�cient time series analysis on large-scale
systems as well as embedded and mobile devices, where power
consumption is a critical constraint (e.g., heart beat analysis
on a mobile medical device to predict a heart attack [95] or
early earthquacke detection [30]). To this end, we propose
NATSA, the �rst Near-Data Processing Accelerator for Time
Series Analysis. The key idea of NATSA (Fig. 1) is to exploit
modern 3D-stacked High Bandwidth Memory (HBM) along
with specialized custom processing units in the logic layer of
HBM, to enable energy-e�cient and fast matrix pro�le compu-
tation near memory, where time series data resides. NATSA
supports a wide range of time series applications thanks to
matrix pro�le’s generality and �exibility.
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Figure 1: NATSA design and integration next to HBM mem-
ory. NATSA is connected directly to the HBM interface.

Our evaluation shows that NATSA provides up to 14.2×
(9.9× on average) higher performance and up to 27.2× (19.4×
on average) lower energy consumption compared to a state-
of-the-art multi-core system. NATSA consumes 11.0× and
4.1× less energy over optimized implementations of matrix
pro�le on an Intel Xeon Phi KNL [76] and NVIDIA GTX 1050
GPU [85], respectively. NATSA has 9.6× and 1.8× smaller
area than these two accelerators, at equivalent performance
points. NATSA outperforms a general-purpose NDP platform
by 6.3× while consuming 10.2× less energy.

This work makes the following contributions:
• We propose NATSA, the �rst near-data processing accel-

erator for accelerating time series analysis using modern
3D-stacked High Bandwidth Memory (HBM) [75, 92].

• We propose a new workload partitioning scheme that pre-
serves the anytime property of the algorithm, while provid-
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ing load balancing among near-data processing units.
• We perform a detailed analysis of NATSA in terms of both

performance and energy consumption. We compare dif-
ferent versions of NATSA (DDR4 and HBM) with four dif-
ferent architectures (8-core CPU, 64-core CPU, GPUs and
NDP-CPU) and �nd that NATSA provides the highest per-
formance and lowest energy consumption.
This invited extended abstract is a summary

version of our prior work [41] published at
ICCD 2020. NATSA’s full-paper, video and codes
are available at https://arxiv.org/abs/2010.02079,
https://www.youtube.com/watch?v=PwhtSAVa_W4 and
https://github.com/CMU-SAFARI/NATSA, respectively.
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