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Abstract

We build upon a constrained, lab-based Sign Language
recognition system with the goal of making it a mobile assis-
tive technology. We examine using multiple sensors for dis-
ambiguation of noisy data to improve recognition accuracy.
Our experiment compares the results of training a small
gesture vocabulary using noisy vision data, accelerometer
data and both data sets combined.

1. Introduction

Twenty–eight million Deaf and hard–of–hearing individ-
uals form the largest disabled group in the United States.
Everyday communication with the hearing population poses
a major challenge to those with hearing loss. Most hear-
ing people do not know sign language and know very little
about Deafness in general. For example, most hearing peo-
ple do not know how to communicate in spoken language
with a Deaf or hard–of–hearing person who can speak and
read lips (e.g. that they should turn their head or not to cover
their mouth). Although many Deaf people lead success-
ful and productive lives, overall, this communication barrier
can have detrimental effects on many aspects of their lives.
Not only can person–to–person communication barriers im-
pede everyday life (e.g. at the bank, post office, or grocery
store), but also essential information about health, employ-
ment, and legal matters is often inaccessible to them.

Common current options for alternative communication
modes include cochlear implants, writing, and interpreters.
Cochlear implants are not a viable option for all Deaf peo-
ple. In fact, only 5.3% of the deaf population in America
has a cochlear implant, and of those, 10.1% of these individ-
uals no longer user their implant (complaints cited are sim-
ilar to those of hearing aides) [3]. The ambiguity of hand-
writing and slowness of writing makes it a very frustrating
mode of communication. Conversational rates (both spoken
and signed) range from between 175 to 225 WPM, while

handwriting rates range from 15 to 25 WPM [7]. In addi-
tion, English is often the Deaf person’s second language,
American Sign Language (ASL) being their first. Although
many Deaf people achieve a high level of proficiency in En-
glish, not all Deaf people can communicate well through
written language. Since the average Deaf adult reads at
approximately a fourth grade level [8, 2], communication
through written English can be too slow and often not pre-
ferred.

Interpreters are commonly used within the Deaf commu-
nity, but can have high hourly costs and be awkward in situ-
ations where privacy is of high concern, such as at a doctor
or lawyer’s office. Interpreters for Deaf people with special-
ized vocabularies, such as a PhD in Mechanical Engineer-
ing, can be difficult to find and very expensive. It can also
be difficult to find an interpreter in unforeseen emergencies
where timely communication is extremely important, such
as car accidents.

Our goal is to offer a sign recognition system as an-
other choice of augmenting communication between Deaf
and hard of hearing people and the hearing community. We
seek to implement a self contained system that a Deaf user
could use as a limited interpretor. This wearable system
would capture and recognize the Deaf user’s signing. The
user could then cue the system to generate text or speech.

2 Related Work

2.1 Language Models

Contact Sign is a modified form of American Sign Lan-
guage (ASL) that is often used by Deaf signers when they
encounter non–native signers [12]. It is a simplified version
of ASL, with less complex combinations of movement and
a grammar that is more analogous to English. We chose
to constrain the scope of the language problem to a vari-
ant of Contact Sign. By using Contact Sign, we reduce the
complexity of the language set we are seeking to recognize,



while maintaining a language set that is useful to the Deaf
community.

We choose to further constrain the problem by leverag-
ing the idea of “formulaic” language. Formulaic is language
that is ritualized or prefabricated. It includes routines,
idioms, set phrases, rhymes, prayers and proverbs[22].
The DARPA one–way translation systems used by peace–
keeping troupes, maritime law enforcement and doctors
uses this idea to employ questions designed for specific
responses. The system provides translations of predeter-
mined phrases used to provide information or elicit feed-
back. Informative phrases include sentences like “I am here
to help you” and “The doctor will be here soon”. Requests
and questions include “Please raise your hand if you un-
derstand me”, “Is anybody hurt?” and “Are you carrying a
weapon?”[16].

Cox describes the TESSA system, a system that com-
bines formulaic language with speech recognition and se-
mantic phrase analysis to create a system for generating
phrases in British Sign Language for Deaf customers at
the post office [5]. A set of formulaic language phrases
were compiled from observed interactions at the post office.
These phrases were then translated into sign and recorded
on video. The postal employee speaks to a system that
performs speech recognition and uses semantic mapping to
choose the most likely phrase. The clerk may say “Interest
in the UK is tax free”, and the system would cue the phrase
“All interest is free of UK income tax” which would then
reference the video of a signed translation for the Deaf cus-
tomer to see. The language processor achieved a 2.8% error
rate on phrase matching for the post office domain.

The use of formulaic language allows for a reduction
vocabulary size and allows for better error handling. Cox
showed a progressive decrease in error rates for the lan-
guage processor, by allowing a user to select from larger
N best lists: 1–best was 9.7%, 3–best was 3.8% and 5–best
was 2.8% [5]. The application of the phrase selection op-
tions also resulted in a significant increase in user satisfac-
tion with the system. The TESSA system was scheduled to
go on trial in five British post offices in May 2002.

2.2 Hidden Markov Models for Gesture Recogni-
tion

HMMs are stochastic models that represent unknown
processes as a series of observations. Gesture recognition
researchers have found HMMs to be a useful tool for mod-
eling actions over time [23, 17, 4]. In particular, gesture
recognition researchers have had some success with using
HMMs for sign language recognition [11, 21, 18]. For an
in–depth introduction to HMMs, the interested reader is re-
ferred to the tutorial by Rabiner [15].

2.3 First Person Camera View

Much of the research on sign language recognition has
been done using cameras pointed at a person, in a “third
person” view[21, 6]. The person then signs to the camera in
the same manner they would to another person. These sys-
tems require that the camera be at a predetermined position
in relation to the signer. While these systems have worked
well in the lab, their design inherently limits their mobility.

A camera mounted in the brim of a hat can be used to
observe the user and is sufficient to capture most of the
normal signing space. Though sign language is designed
to be viewed looking directly at another person, the head
mounted camera captures the signs very effectively. The
view of the camera is similar to a person looking at their
own signing, which means that signing captured by the
camera can be clearly understood. These motivations led to
the head mounted camera design seen in Figure 1. A benefit
of this design is that the user can monitor the camera’s view
via the head–mounted display. This allows the user some
idea of what the camera see and provides feedback about
system input.

2.4 Accelerometers for Gesture Recognition

Data gloves have been used by researchers for sign lan-
guage recognition research [20, 14, 10, 13, 9, 11]. These
data gloves are usually neoprene gloves with a network of
accelerometers that send detailed information about rotation
and movement of the hand and fingers. While these gloves
provide large amounts of information about hand shape and
movement, they also have problems associated with daily
wear. Neoprene can be uncomfortable for long term use
and interferes with a user’s tactile feedback. Current data
glove technology is not intended for daily use; the gloves
deteriorate quickly with extended use and output becomes
increasingly noisy as they break down.

If data gloves are not appropriate for the task, then we
look to find another way of using the accelerometer technol-
ogy. The information about rotation and movement could
be extremely helpful in providing information about hand
movement. Accelerometers could be made easy to wear if
they were wireless and mounted on the wrist in a bracelet
or watch. This application would not provide the detailed
information about hand shape that the data gloves provide,
but would provide information that is complementary to a
vision system or other sensors.

2.5 Previous System

In the past, we have demonstrated a HMM based, sign
language recognition system limited to a forty word vocab-
ulary and a controlled lighting environment. [19]. The user



Figure 1. Hat–mounted camera and its view
of signing

wore a hat–mounted camera (see Figure 1) to capture their
signing. Data sets were taken in a controlled lab environ-
ment with standard lighting and background. The images
were then processed on a desktop system and recognized
in real–time. It was trained on a 40 word vocabulary con-
sisting of samples of verbs, nouns adjectives and pronouns.
The system trained to an accuracy of 97.8% on an indepen-
dant test set using a rule–based grammar. The full statistics
can be seen in Table 1.

The initial system was composed of a head–mounted
NTSC camera which fed video to either to a computer or
a recorder. The video was analyzed on a Silicon Graphics
200MHZ Indy workstation at 10 frames per second. Recog-
nition was done in real time.

experiment training set independant test set
grammar 99.3% 97.8%

no grammar 93.1% 91.2%

Table 1. Word Accuracy of Original System

The HMMs for the system were trained and tested using
the Hidden Markov Model Toolkit from Cambridge Uni-
versity. The Hidden Markov Model Toolkit (HTK) was de-
veloped at the Speech, Vision and Robotics group at the
Cambridge University Engineering Department as a toolkit
for building and using Hidden Markov models for speech
recognition research [1, 24]. HTK consists of a library of
tools primarily used for speech recognition, though it has
gained popularity for non–speech applications. HTK was
particularly useful because it allows us to augment HMM
recognition with many speech tools that take advantage of
the linguistic structure of sign language.

3 Current system

While the the previous research in sign language recog-
nition shows some success in the lab, our goal is to create a

system that is a viable assistive technology. The long term
goal of the project is a system that a Deaf user could wear
for the recognition of their signing. The user would sign and
the system would offer the recognized words for the users
acceptance or modification. The system could then be used
to output text or speech, depending on the application. This
recognition system could ultimately be extended to act as
an input device for phones (for TTY or SMS), computing
devices, or as a component in a sign to English translation
system.

3.1 Motivation

Mobile systems are challenged by changing and un-
predictable conditions. Our previous system was a lab–
based computer vision system for sign language recogni-
tion. There are many challenges involved in taking sys-
tems that are developed for constrained lab scenarios and
making them mobile. Mobile computer vision can often
be extremely noisy, making it difficult to process. Lighting
and background environment are constantly changing as the
user moves through the world. Because of the camera’s
view, our background is the floor or ground surrounding
the user and could have considerable clutter. Many com-
puter vision techniques are developed and tested in the lab
and never exposed to the stresses of a mobile environment.
Lab systems use assumptions of lighting, color constancy,
and uncluttered background to help ease the vision task.
Even tasks such as tracking visual markers (such as our col-
ored wristbands) become more difficult as lighting intensity,
color and angle changes.

We propose using multiple sensor types for disambigua-
tion of noise in gesture recognition. In this case, we chose to
add accelerometers with three degrees of freedom, mounted
on the wrists and torso to increase our sensing information.
The accelerometers will capture information that the vi-
sion system will have difficulty with such as rotation (when
hand shape looks similar) and vertical movement towards or
away from the camera. The camera will provide informa-
tion not gathered by the accelerometers such as hand shape
and position. Both sensors collect information about the
movement of the hands through space. It is our goal that
by adding multiple sensor types, the accuracy of the system
will be improved in noisy or problematic conditions.

It is important to add that sensor selection is based on
the amount of information the sensor collects and its “wear-
ability”. We could cover the user in sensors for maximum
information, but if it’s not practical for daily wear, our sys-
tem becomes less usable. We have been working with the
Deaf community to ascertain what hardware is acceptable
for wearable use. The current system could be partially con-
cealed by embedding the camera in a normal hat, such as a
baseball cap, and combining visual markers and accelerom-



eters into a watch or bracelet. Since the system is trained
specifically by the user, these choices can be somewhat cus-
tomized.

The current research system is still somewhat cumber-
some, but reaction from our community consultants has
been positive. Early on we discovered that if the heads–
up display was on the eye with the dominant hand, it was in
the way of head based signs and was often knocked around.
Switching the display to the other eye seemed to almost
eliminate the problem. The first person view of the camera
seems very useful for the users to observe how the system
captures their signing. Overall, people have been excited
about the technology and enjoyed playing with the wear-
able system, but more development is needed for daily use.

3.2 Design

Our current research system consists of a wearable com-
puter, heads–up display, hat–mounted camera, and ac-
celerometers. The system captures video of the user signing
along with accelerometer data from the wrists and body. A
sample view from the cameras can be seen in Figure 2. The
left hand is marked by a cyan band on the wrist and the right
hand is marked by a yellow band.

The current system is run on a CharmitPro with a Trans-
meta Crusoe 800MHz processor. The camera is an off the
shelf CCD web cam connected via USB. The accelerome-
ter system was designed at ETH (Swiss Federal Institute of
Technology in Zurich) as part of an ongoing research col-
laboration. The current system captures and processes at 10
frames per second.

3.3 Accelerometer Network

The accelerometer network is a 3-wire bus with a ded-
icated master. Two wires implement the communication
between the nodes using the I2C-bus and the third is used
to synchronize all sensors. This hierarchical approach pro-
vides a logical separation of the sensor information increas-
ing the amount of local processing and reducing the compu-
tational load on the central master. This allows for multiple,
synchronized subnetworks.

Each of the sensor nodes is partitioned and consists of
two parts each: a sub-board with two dual-axis accelerom-
eters from Analog Devices ADXL202E which allow mea-
surement of linear acceleration in the 3D-space, and a main
board with the MSP430F149 low power 16-Bit mixed sig-
nal microprocessor (MPU) from Texas Instruments running
at 6MHz maximum clock speed. The MPU reads out the
analog sensor signals and handles the communication be-
tween the modules through dedicated I/O pins. Since our
setup relies on the analog outputs of the accelerometers
three second order Sallen-Key low pass filters are also used

Figure 2. Sample views of signing from head–
mounted camera

Figure 3. Image of the accelerometer compo-
nents compared to a coin.



Figure 4. Example image of the user’s view
for the calibration phase

(fcutoff=50Hz) and located on the main-board. All modules
are powered from a single central power supply consisting
of a step down regulator and a small battery.

The sensor net we used in our experiments had three
nodes. The master board box was affixed to the shoulder
strap of the wearable bag. Two of the accelerometers were
affixed to the top of the wrist. The third accelerometer was
placed on the shoulder strap on the chest. The grey cabling
for the accelerometers can be seen on the user’s arms in
Figure 2. The accelerometers themselves are covered by
the colored wristbands.

3.4 Georgia Tech Gesture Toolkit

The HTK component of the system has been redesigned
using the Georgia Tech Gesture Toolkit, which provides
a publicly available toolkit for developing gesture–based
recognition systems. The toolkit provides a framework that
simplifies designing and implementing the gesture recog-
nition component of larger systems by providing a bridge
between the user and the services provided by HTK. Ad-
vantages of the redesign have been automated training and
testing options and quick configuration as we test new ideas.

4 Method and Results

We designed the experiment to collect data about both
sensing techniques to compare their performance. We cap-
tured a series of signed sentences to be used for testing and
training. The capture method included both the vision and
accelerometer data. The tests were then run using differ-
ent subsets of information (accelerometer, vision, and com-
bined), and the results were compared.

0 1
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4

Figure 5. Topology for a 5 state left to right
HMM with self transitions and 1 skip state
used to model the gestures "calibrate", "my",
"me", "talk", and "exit"

The test data was 72 annotated sequences of signed sen-
tences. The vocabulary was a 5 gesture set of words {my,
computer, helps, me, talk} plus a calibration gesture at the
beginning and an exit gesture at the end. The calibration
gesture involved the user placing their hands inside a box
shown on the video stream (see Figure 4). The exit ges-
ture was the process of dropping the hands and using Twid-
dler keyboard input to stop the data gathering. A rule based
grammar was employed that consisted of a calibration ges-
ture, 5 vocabulary gestures and an exit gesture. The test
data contained sentences with differing permutations of the
5 vocabulary words.

Of concern is that our current language set is smaller than
the training set used in our previous system experiments.
However, our purpose here is to explore how we may aug-
ment computer vision so as to make a viable mobile system.
Thus, our main goal is to determine if accelerometers pro-
vide features that are complementary to the vision system.
We will continue to add words to our vocabulary as we col-
lect more data sets.

The features sets used for training consisted of ac-
celerometer data and vision data. The accelerometer feature
vector consists of: (x,y,z) values for accelerometers on the
left wrist, right wrist and torso. The vision feature vector
consists of the following blob characteristics: x,y center co-
ordinates, mass, eccentricity, angle, major axis x,y coordi-
nates, and minor axis x,y coordinates. The camera captures
at 10 frames a second and each frame is synchronized with
8–12 accelerometer packets. The accelerometer values are
an average of the packets that accompany each frame.

The Georgia Tech Gesture Toolkit was used for the train-
ing and testing of our language models. Gestures in the vo-
cabulary were represented by two different HMM topolo-
gies. Short words {my, me, talk, exit, calibrate} were rep-
resented with a 5 state left to right HMM with self transi-
tions and 1 skip state, shown in Figure 5. Longer words
{computer, helps} were represented with a 10 state left to
right HMM with self transition and 2 skip states.

We used the leave–one–out testing mode and collected
statistics for the training and testing runs. Leave–one–out
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Figure 6. Topology for a 10 state left to right HMM with self transitions and 2 skip states used to
model the gestures "computer" and "help"

H D S I N
Vision 4.13 0.46 2.42 0.46 7

292.75 30.14 174.11 30.14 497
Accelerometer 5.08 0.47 1.44 0.47 7

405.97 30.25 60.78 30.25 497
Combined 6.40 0.7 0.53 0.7 7

471.08 2.63 23.29 2.63 497

Table 2. Word level statistics: Rows where
N=7 are testing on independant testing sets
and N=497 are testing on training data. All
results are averaged over the 72 runs.

testing involves running multiple training and testing cycles
in which a single example is left out of the training set and
used as a test set. The 72 examples allow for 72 leave–
one–out training and testing runs. Statistics for each run are
collected and then averaged together.

4.1 Word Level Metrics

We will use standard word level speech recognition met-
rics for measuring the performance of our recognition.
These metrics are all evaluated based on the comparing the
transcription of the recognized sentence with the actual sen-
tence. Skipping a word results in a deletion error. Inserting
extra words results in an insertion error. Substitution errors
are words that were recognized incorrectly.

The following symbols are defined as:

• H is the number of correctly labeled gestures
• D is the number of deletion errors
• S is the number of substitution errors
• I is the number of insertion errors
• N is the total number of gestures labeled in the tran-

script

Correctness is calculated by: Correct = H

N
x100%

Accuracy is calculated by: Accuracy = H−I

N
x100%

Table 2 shows the word level results for the tests. Each
data set (vision, accelerometer and combined) has two rows.
The rows can be compared by the “N” column on the far left
of the Table. The first row is “N=7”, which shows the results
of testing on the independant testing set (one sentence of 7
words). The second row is “N=497” which is the results
of testing on the training set (71 sentences of 7 words for a
total of 497 words). These word level statistics result in only
whole numbers for each single run; Table 2 shows fractional
numbers because they are the average over all 72 runs.

4.2 Recognition Rate Results

Table 3 shows the average sentence level accuracy over
all of the runs. The “Training” column shows the results
of testing on the training set and the “Testing” column
shows the results of testing on a previously unseen (inde-
pendant) testing set. There is marked improvement from
vision (52.38% on Testing) and accelerometers (65.87% on
Testing), and the combined set (90.48% on Testing). No
training runs for any of the feature sets resulted in 0%. In
38 of the runs the combined vector recognized at 100% ac-
curacy. In contrast, the accelerometer features recognized
at 100% accuracy only 6 times, and the vision never did.

The “testing on training” results help show how well we
can actually model the data. These runs show the results of
testing the model with the data we used to create it. These
recognition rates usually form an approximate upper bound
for the models’ performance. The difference between the
accuracies on the training and testing set is less than 10%
for all three sets, showing that we are approaching the up-
per bounds of recognition for the models we have trained.
The hidden nature of HMMs makes it difficult to determine
what data features are used as transitional signals, but the
high correlation between the “Testing” and “Training” col-
umn statistics indicates a high probability that we are gener-
alizing the models well and training on informative features



Data Set Testing Training
Mean StdDev Mean StdDev

Vision 52.38% 8.97 52.84% 0.98
Accelerometer 65.87% 16.53 75.60% 1.30

Combined 90.48% 11.25 94.26% 0.87

Table 3. Accuracy: The "Testing" column
shows testing on an independant testing set
and "Training" column shows testing on train-
ing sets.

instead of noise .

4.3 Mobility and Generality

One criticism of these results is the dramatic difference
in vision-only recognition rates as compared with the previ-
ous system. These questions reveal the change in direction
that the project has taken. The initial system was an early
proof of concept system for sign recognition, designed ex-
clusively for in lab use. The current system is a proof of
concept for mobility.

The early system had very narrow working parameters.
The system was designed to work in a very specific environ-
ment that was engineered to aid in the vision task. The back-
ground and user’s clothing was uniform and chosen for high
contrast. The user sat stationary in a specific place and did
not move his head or body. Special care was taken to place
lighting around the signing space so that the hands were
evenly lit. Because these parameters were carefully orches-
trated, the vision hardware and software could be carefully
calibrated for optimimum performance. The color thresh-
olds, gain control, and white balance were adjusted by hand.

The hardware was also chosen for maximum perfor-
mance instead of cost, wearability and form factor. The
camera was a $3,000 near broadcast quality camera which
could be hand calibrated for the working environment. The
processing was done on a SGI O2 server with a professional
digitization board. Though the system sensors were wear-
able, and the system had been designed for migration to a
wearable system, it was not truly ”wearable” at the time.

In contrast, the current system has been designed for
wearability and mobility. The hardware has been chosen
for cost and form factor, which has resulted in a trade-off
in quality. The camera is an off-the-shelf web cam, which
is significantly cheaper, more durable, and consumes much
lower power (1 Watt compared to 4 Watts on the previous
system), but has much lower image quality. The vision code
and camera calibration are much more generalized. The
camera adjusts to lighting changes with auto gain control
(instead of a pre-set value), which can often change color
and shading effects. The color models have been chosen for

a general environment, so they are more likely to be noisy.

5 Conclusion and Future Work

Our hypothesis that the two sensing methods would col-
lect complementary and slightly overlapping information is
validated by the results. Individually, vision and accelerom-
eter data sets performed significantly less well than the com-
bined feature vector, even when tested on the training set.
We plan to further explore what kinds of techniques we can
use for dealing with noisy sensing in the environment.

We are currently collaborating with Assistive Technol-
ogy researchers and members of the Deaf community for
continued design work. The gesture recognition technology
is only one component of a larger system that we hope to
one day be an active tool for the Deaf community. Research
continues on the wearable form factor, pattern recognition
techniques, and user interface.

We chose to use a rule–based grammar for sentence
structure in the training and testing process. Speech recog-
nition often uses statistical grammars for increased accu-
racy. These grammars are built by tying together phonemes
(the simplest unit of speech) and training on the transition
between the phonemes. The sets are usually done with
bigrams (two phonemes tied together) or trigrams (three
phonemes). Training using bigrams or trigrams requires
considerably more data because representations of each
transition of each word are now needed. In our case, the
bigrams and trigrams would be built by tying together ges-
tures. Our current data set is too small to effectively train
using bigrams or trigrams, but we intend to continue collect-
ing data with the goal of implementing these techniques.

The current system has only been trained on a very small
vocabulary. We seek to increase the size and scope of our
dataset to train on a larger vocabulary with more signing
examples. A larger dataset will also allow us to experiment
further on performance in different environments. Such a
comparison will allow us to tangibly measure the robust-
ness of the system in changing environments and provide
training examples for a wider variety of situations.

We plan “Wizard of Oz” studies to seek to determine
one–way translator phrase sets for constrained situations
similar to the post office environment in Cox’s work [5].
The phrase sets will help us determine appropriate vocabu-
laries for various applications.

Work on the sensing components of the system will con-
tinue throughout development of the system. Adaptive color
models and improved tracking could boost performance of
the vision system. Wireless accelerometers will make wear-
ing the system much more convenient. Other sensing op-
tions will be explored.
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