
Uplink Capacity of MIMO Cellular Systems

with Multicell Processing

Symeon Chatzinotas, Muhammad Ali Imran, Costas Tzaras

Centre for Communication Systems Research

University of Surrey, United Kingdom, GU2 7XH
{S.Chatzinotas, M.Imran, C.Tzaras}@surrey.ac.uk

Abstract—Multiple antennas are known to increase the link
throughput by providing a multiplexing gain which scales with
the number of antennas. Especially in cellular systems, multiple
antennas can be exploited to achieve higher rates without the
need for additional Base Station (BS) sites. In this direction,
this paper investigates the multi-antenna capacity scaling in
a cellular system which employs multicell processing (hyper-
receiver). The model under investigation is a MIMO Gaussian
Cellular Multiple-Access Channel (GCMAC) over a planar cel-
lular array in the presence of power-law path loss and flat
fading. Furthermore, the considered cellular model overcomes
the assumption of user collocation utilized by previous models by
incorporating uniformly distributed User Terminals (UTs). The
asymptotic eigenvalue distribution (a.e.d.) of the covariance chan-
nel matrix is calculated based on free-probabilistic arguments. In
this context, we evaluate the effect of multiple BS/UT antennas on
the optimal sum-rate capacity by considering a variable-density
cellular system. Finally, the analytical results are interpreted in
the context of a typical real-world macrocellular scenario.

I. INTRODUCTION

Across the information-theoretic literature, it has been

widely proven that multiple antennas are able to increase the

link throughput by providing a multiplexing gain which scales

with the number of antennas. In the context of multiuser

channels, the sum-rate capacity of a MIMO multiple-access

channel was investigated in [1], [2] and [3]. In this direction,

it was shown that the sum capacity with perfect Channel State

Information available at the receiver (CSIR) scales linearly

with min (ntot
r , ntot

t ), where ntot
r and ntot

t is the total number

of receive and transmit antennas respectively.

In the research area of the Gaussian Cellular Multiple

Access Channel (GCMAC), the first concrete result for the

single antenna case was presented by Wyner in [4]. Using

a very simple but tractable model for the cellular uplink

channel, Wyner showed the importance of joint decoding at

the Base Station (BS) receivers (hyper-receiver) and found

the analytical formulas of the maximum sum-rate capacity

under the assumption of multicell processing. This model

triggered the interest of the research community in the cellular

capacity limits and it was subsequently extended for flat fading

environments [5]. In addition, [3] has investigated the capacity

scaling in the asymptotic regime where the number of BS

antennas and the number of UTs grow large. Subsequently,

authors in [6] have analyzed the capacity performance for

both uplink and downlink linear Wyner-like models with UTs

collocated at the cell-edge. The reader is referred to [7] and

references therein for a more complete literature review. One

major assumption shared amongst the afomentioned models is

that the cell density is fixed and only physically adjacent cells

interfere. The author in [8], extended the Wyner’s model by as-

suming multiple-tier interference and incorporated a distance-

dependent path loss factor in order to study the effect of cell

density in a variable cell-density linear cellular array. However,

the assumption of user collocation was still maintained to keep

the model tractable.

In this paper, we further extend these models in order to

incorporate the effect of user distribution in combination with

multiple antennas. Instead of assuming collocated UTs, we

assume that UTs are spatially distributed within the cell and

each channel gain is affected by a distance-dependent path

loss factor. The effect of multiple BS and UT antennas is

evaluated and discussed in the context of a MIMO Gaussian

Cellular Multiple-Access Channel (GCMAC) over a planar

cellular array in the presence of power-law path loss and

flat fading. Throughout the formulations of this paper, E[·]
denotes the expectation, (·)∗ denotes the complex conjugate,

(·)† denotes the conjugate transpose matrix, ⊙ denotes the

Hadamard product and ⊗ denotes the Kronecker product.

The logarithmic expression log(x), unless explicitly stated

otherwise, refers to the natural logarithm loge(x). The figure

of merit studied herewith is the per-cell sum-rate capacity

achieved with multicell joint decoding and it is denoted by

Copt.

The rest of the paper is organised as follows. In the next

section, we describe the proposed model and the derivation

of the information theoretic capacity of the cellular system.

In section III, we evaluate and compare the capacity results

produced by both simulation and analysis. Furthermore, sec-

tion IV interprets the analytical results in the context of a

typical macrocellular scenario. The last section discusses the

presented results from a system-design point of view and

concludes the paper.

II. MODEL DESCRIPTION AND ANALYSIS

Assume that K UTs are uniformly distributed in each cell

of a planar cellular system comprising N base stations and

that each BS and each UT are equipped with nBS and nUT

antennas respectively. The received signal at cell n, at time
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index t, is given by:

yn[t] =

N
∑

m=1

K
∑

k=1

ςnm
k Gnm

k [t]xm
k [t] + zn[t] (1)

where xm
k [t] is the tth complex channel symbol vector nUT ×1

transmitted by the kth UT of the mth cell and {Gnm
k } is a

nUT×nUT random matrix with independent, strictly stationary

and ergodic complex c.c.s. i.i.d. elements. The matrix Gnm
k [t]

represents the multiple-antenna correlated flat fading processes

experienced in the transmission path between the nBS receive

antennas of the nth BS and the nUT transmit antennas of

the kth UT in the mth cell. The fading coefficients are

assumed to have unit power, i.e. E[Gnm
k [t]Gnm

k [t]†] = I for

all (n,m, k) and all UTs are subject to a power constraint

P , i.e. E[tr
(

x
m
k [t]xm

k [t]†
)

] � P for all (m, k). It should be

noted that the UTs are assumed to be totally ignorant of the

channel state information (CSI). In case the UTs had perfect

of even statistical CSI, input optimization strategies could be

used to maximize the ergodic capacity [9], [10] . However,

in our case the optimal transmission strategy is to uniformly

allocate the UT power P across the nUT transmit antennas

i.e. E[xm
k [t]xm

k [t]†] = P
nUT

InUT
. The variance coefficients

ςnm
k in the transmission path between the mth BS and the kth

UT in the nth cell are calculated according to the “modified”

power-law path loss model [8], [11]:

ςnm
k =

(

1 + dnm
k

)−η/2
, (2)

where η denotes the path loss exponent. Dropping the time

index t, the aforementioned model can be compactly expressed

as a vector memoryless channel of the form Y = HX + Z,

where the vector Y = [y(1)... y(N)]T with y(n) = [y1... ynBS ]
represents received signals by the BSs, the vector X =

[x
(1)
(1) . . . x

(N)
(K)]

T with x
(n)
(k) = [x1... ynUT ] represents transmit

signals by all the UTs of the cellular system and the compo-

nents of vector z=[z(1)... z(N)]T with z(n) = [z1... znBS ]
are i.i.d c.c.s. random variables representing AWGN with

E[zn] = 0, E[zn[t]zn[t]†] = σ2I. The channel matrix can

be rewritten as:

H = ΣΣΣM ⊙ GM (3)

where GM ∼ CN (0, INnBS
) is a complex Gaussian NnBS×

KNnUT matrix, comprising the Rayleigh fading coefficients

between the KNnUT transmit and the NnBS receive anten-

nas. Similarly, ΣΣΣM is a NnBS×KNnUT deterministic matrix,

comprising the path loss coefficients between the KNnUT

transmit and the NnBS receive antennas. Since the multiple

antennas of each UT / BS are collocated, ΣΣΣM can be written

in the form of a block matrix based on the variance profile

matrix ΣΣΣ as

ΣΣΣM = ΣΣΣ ⊗ J, (4)

where J is a nBS × nUT matrix of ones. The entries of the

ΣΣΣ matrix are defined by the variance profile function

ς
(

u, v
)

=
(

1 + d (u, v)
)− η

2 , (5)

where u ∈ [0, 1] and v ∈ [0,K] are the normalized indexes for

the BSs and the UTs respectively and d (u, v) is the normalized

distance between BS u and user v.

According to [12], the asymptotic sum-rate capacity Copt

for the described model assuming a very large number of cells,

is given by

Copt = lim
N→∞

1

N
I (x;y | H )

= lim
N→∞

E

[

1

N

NnBS
∑

i=1

log

(

1 +
γ̃

KnUT
λi

(

1

N
HH†

))

]

= nBS

∫ ∞

0

log

(

1 +
γ̃

KnUT
x

)

dF 1

N
HH†(x)

= nBSV 1

N
HH†

(

γ̃

KnUT

)

= nBSKnUTV 1

N
H†H

(

γ̃

KnUT

)

(6)

where γ̃ = KNP/σ2 = KNγ̂ is the system transmit power

normalized by the receiver noise power σ2. The term λi (X)
denotes the eigenvalues of matrix X and

VX(γ) , E[log(1 + γλi (X))]

=

∫ ∞

0

log (1 + γλi (X)) dFX(x) (7)

is the Shannon transform with parameter γ of a random square

Hermitian matrix X, where FX(x) is the cumulative function

of the asymptotic eigenvalue distribution (a.e.d.) of matrix X

[12]. For a rectangular Gaussian matrix G ∼ CN (0, I) with β
being the columns/rows ratio, the a.e.d. of 1

N G†G converges

almost surely (a.s.) to the nonrandom a.e.d. of the Marčenko-

Pastur law

V 1

N
G†G(γ) a.s.−→ VMP(γ, β) (8)

where VMP (γ, β) = log

(

1 + γ −
1

4
φ (γ, β)

)

+
1

β
log

(

1 + γβ −
1

4
φ (γ, β)

)

−
1

4βγ
φ (γ, β) (9)

and φ (γ, β) =
(

√

γ
(

1 +
√

β
)2

+ 1 −

√

γ
(

1 −
√

β
)2

+ 1

)2

. (10)

However, considering the described MIMO cellular channel

the channel matrix contains elements of non-uniform variance.

In this case, the a.e.d. of 1
N HH† is derived based on the

analysis in [8] and using tools from the discipline of Free

Probability. In this direction, 1
N H†H can be written as the

sum of KNnUT × KNnUT unit rank matrices, i.e.

1

N
H†H =

NnBS
∑

i=1

h
†
ihi (11)

where hi ∼ CN (0,Vi) denotes the ith 1 × KNnUT row

vector of 1√
N

H, since the term 1
N has been incorporated in
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the unit rank matrices. The covariance matrix equals Vi =
1
N (diag(σσσi))

2
, where diag(σσσi) stands for a diagonal matrix

with the elements of vector σσσi across the diagonal with σσσi

being the ith row of ΣΣΣM. The unit-rank matrices Wi = h
†
ihi

constitute complex singular Wishart matrices with one degree

of freedom and their density according to [13] is

fVi
(Wi) = B−1

Vi
det (Wi)

1−KnUT N
e−tr(V−1

i Wi)

BVi
= πKnUT N−1det (Vi) . (12)

It can be easily seen that if Vi ∝ I, the matrices would be uni-

tarily invariant and therefore asymptotically free [12, Example

2.46]. Although in our case Vi = 1
N (diag(σσσi))

2
, we assume

that the asymptotic freeness still holds. Similar approximations

have already been investigated in an information-theoretic con-

text providing useful analytical insights and accurate numerical

results [14],[15]. In this context, the R-transform of each unit

rank matrix [12, Example 2.28] is given by

Rhi
†hi

(w) =
1

KNnUT

‖hi‖
2

1 − w ‖hi‖
2 . (13)

and the asymptotic R-transform of 1
N H†H is equal to the sum

of the R-transforms of all the unit rank matrices [12, Th. 2.64]

lim
N→∞

R 1

N
H†H(w) ≃ lim

N→∞

NnBS
∑

i=1

Rhi
†hi

(w) (14)

= lim
N→∞

1

KNnUT

NnBS
∑

i=1

‖hi‖
2

1 − w ‖hi‖
2 .

Since the variance profile function of Equation (5) defines

rectangular block-circulant matrix with 1 × K blocks which

is symmetric about u = Kv, the channel matrix H is

asymptotically row-regular [12, Definition 2.10] and thus the

asymptotic norm of hi converges to a deterministic constant

for every BS, i.e ∀i

lim
N→∞

‖hi‖
2

= lim
N→∞

1

N

KNnUT
∑

j=1

ς2
ij =

∫ KnUT

0

ς2(u, v)dv

(15)

where ςij is the (i, j)th element of the ΣΣΣM matrix. In addition,

based on the row-regularity it can be seen that

nBS

∫ KnUT

0

ς2(u, v)dv =

∫ nBS

0

∫ KnUT

0

ς2(u, v)dudv.

(16)

Therefore, the R-transform can be simplified to [12, Th. 2.31,

Ex. 2.26]

lim
N→∞

R 1

N
H†H(w) (17)

≃
1

KnUT

∫ nBS

0

∫KnUT

0
ς2(u, v)dv

1 − w
∫KnUT

0
ς2(u, v)dv

du

=
1

KnUT

∫ nBS

0

∫KnUT

0
ς2(u, v)dudv

nBS − w
∫ nBS

0

∫KnUT

0
ς2(u, v)dudv

= q(ΣΣΣM)
1

1 − KnUT

nBS
wq(ΣΣΣM)

= Rq(ΣΣΣM) 1

N
GM

†GM
(w)

D

Fig. 1. Ground plan and dimensions of the cellular system comprising of
BSs with multiple antennas and UTs distributed on a uniform planar grid.
Parameters: N = 7, K = 16.

where q(ΣΣΣM) , ‖ΣΣΣM‖2/(KN2nUT nBS) is the Frobenius

norm of the ΣΣΣM matrix ‖ΣΣΣM‖2 , tr{ΣΣΣM
†ΣΣΣM} normalized

with the matrix dimensions and

‖ΣΣΣM‖2
= tr

{

(ΣΣΣ ⊗ J)
†
(ΣΣΣ ⊗ J)

}

= ‖ΣΣΣ‖2
nUT nBS . (18)

Thus, it can be seen that q(ΣΣΣM ) = q(ΣΣΣ) = ‖ΣΣΣ‖2
/
(

KN2
)

.

In the asymptotic case, q(ΣΣΣ) is given by limN→∞ q(ΣΣΣ) =
1
K

∫K

0
ς2(u, v)dv. Therefore, the a.e.d. of 1

N H†H follows a

scaled version of the Marčenko-Pastur law and hence the Shan-

non transform of the a.e.d. of 1
N H†H can be approximated

by

V 1

N
H†H

(

γ̃

KnUT

)

≃ VMP

(

q(ΣΣΣ)
γ̃

KnUT
,KnUT

)

. (19)

As a result, the per-cell capacity is given by

Copt≃nBSKnUTVMP

(

q (ΣΣΣ)
γ̃

KnUT
,KnUT

)

. (20)

Equation (20) reveals a linear scaling of the MIMO sum-

rate capacity w.r.t. single-antenna sum-rate capacity, which

comes into agreement with the already-existing results in the

literature [2]. More specifically, when the number of UTs is

large, the MIMO sum-rate capacity grows linearly with the

number of BS antennas. What is more, as it can be seen in

the next section, this linear growth continues to apply even

when there is a single UT antenna.

III. NUMERICAL RESULTS

This section presents and compares the analytical and

simulations capacity results which have been produced by

applying the Free Probability approach and running Monte

Carlo simulations respectively. For the analytical results, the

per-cell sum-rate capacity has been calculated using Equation

(20). The coefficient q(ΣΣΣ) is calculated assuming that the UTs

are positioned on a uniform planar grid (Figure 1). The per-

cell sum-rate capacity has been plotted w.r.t. a variable cellular
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Fig. 2. Random snapshot of UT positions used for the Monte Carlo
simulations. Parameters: N = 7, K = 16.

system coverage. The cellular coverage is varied by varying

the edge length D of the cellular coverage area (Figure 1). The

analytical results have been verified by running Monte Carlo

simulations over 1000 random instances of the system and

by averaging the produced capacity results. More specifically,

for each system instance the Gaussian complex matrix GM

is constructed by randomly generating Gaussian i.i.d. c.c.s.

fading coefficients. Similarly, the variance profile matrix ΣΣΣM

is constructed by randomly placing the UTs according to

the considered distribution in the coverage area of each cell

(Figure 2) and by calculating the variance profile coefficients

using Equations (5) and (4). After constructing the channel

matrix, the sum-rate capacity is calculated by evaluating the

formula in [1]

Copt =
1

N
E

[

log det

(

INnBS
+

γ̂

nUT
HH†

)]

(21)

The simulation points are marked in Figures 3 and 4 using

circle points.

A. Multiple BS Antennas

Figure 3 depicts the numerical results obtained by incorpo-

rating multiple antennas at the BS side. As it can be seen, the

analytical results match the simulations and the linear scaling

of sum-rate capacity w.r.t. the number of BS antennas nBS is

established.

B. Multiple UT Antennas

In contrast with multiple BS antennas, incorporating mul-

tiple antennas at the UT side does not achieve a capacity

gain. This can be intuitively explained by the fact that the

sum-rate capacity grows linearly with min (ntot
r , ntot

t ), where

ntot
r = NnBS and ntot

t = NKnUT is the total number

of receive and transmit antennas respectively in a MIMO

GCMAC. Assuming K ≫ nBS/nUT , it can be seen that

ntot
t ≫ ntot

r and thus the sum-rate capacity grows linearly

with the number of BS receive antennas nBS .

This fact can also be explained using the derived closed-

forms. According to [12], the asymptotic of the Shannon
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Fig. 3. Per-cell sum-rate capacity vs. the cellular coverage D for uniformly
distributed users. Parameter values: η = 2, K = 16, N = 19, γ̂ =
10, nBS = [1, 2, 3].

transform for β > 1 is given by

lim
γ→∞

βVMP(γ, β) = log(βγ) − (β − 1) log

(

β −
1

β

)

− 1.

(22)

Furthermore, the asymptotic sum-rate capacity for a very large

number of UTs per cell converges to

lim
γ,β→∞

βVMP(γ, β) = log(βγ) (23)

since limβ→∞

(

1 + 1
β

)β

= e. In this direction, the per-cell

capacity of Equation (20) can be simplified to

lim
K→∞

Copt = nBS log (q (ΣΣΣ) γ̃) (24)

which is independent of the number of UT antennas nUT .

Hence, it can be seen that for K UTs with a power constraint

P equally distributed over nUT antennas produce an equal

per-cell capacity as K single-antenna UTs with an individual

power constraint of P .

IV. PRACTICAL RESULTS

The employed power-law path loss model of Equation (5)

provides a variance profile coefficient as a function of the

normalized distance d(v). Similar path-loss models have been

already utilized in the information-theoretic literature [8], [11],

[3]. In order to apply the aforementioned results to real-

world cellular systems, a reference distance d0 is required

to interconnect the normalized distance d(v) and the actual

distance d̂(v). Assuming that the power loss at the reference

distance d0 is L0, the scaled variance profile function is given

by

ς(d(v)) =

√

L0(1 + d̂(v)/d0)−η. (25)

In the context of a real-world macrocellular scenario, the

typical parameters of Table I will be considered. Figure 4

depicts the per-cell capacity of the planar MIMO cellular

system vs. the equivalent cell radius R of the hexagonal cell,

which is defined as the cell radius of a circular cell with

equivalent coverage surface (Figure 1).
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TABLE I
VALUE/RANGE OF PARAMETERS USED FOR A TYPICAL

MACROCELLULAR SCENARIO

Parameter Value/Range

Cell Radius R 0.1− 3 km
Reference Distance d0 1 m

Path Loss at ref. distance L0 38 dB
Path Loss Exponent η 2 or 3.5

UTs per cell K 16
UT Transmit Power P 200 mW

Thermal Noise Density N0 −169 dBm/Hz
Channel Bandwidth B 5 MHz

V. DISCUSSION & CONCLUSION

This section analyses the presented results and tries to derive

some insights on the practical performance of hyper-receiver

cellular networks. In the model employed in this paper, the

assumption of collocated users is alleviated by considering

the more realistic scenario where the users are uniformly

distributed across the cell’s coverage area. The analysis of

this model has shown that spectral efficiencies of up to 20

bits/s/Hz can be achieved for dense cellular networks assuming

multicell joint processing and single BS antenna. Furthermore,

by incorporating multiple antennas at the BS, a linear growth

of the sum-rate capacity can be achieved w.r.t. the number of

antennas. More importantly, it has been shown that increasing

the number of UT antennas does not achieve higher capacities,

which is convenient due to the size and power limitations of

the mobile handsets.

However, it should be noted that the aforementioned MIMO

results apply only to uncorrelated i.i.d. MIMO MAC channels,

which is not always the case. For example, when the BS lies on

high ground in a poor scattering environment, then correlation

among the multiple receive antennas of a single BS can be

considerable. These correlation effects can compromise the

linear capacity scaling of the MIMO MAC channel. Another

important assumption of the MIMO analysis is that there

is no CSI available at the transmitters. This fact limits the

sum-rate capacity, since the UT is unable to fully exploit

the space diversity by optimizing the input signals over its

transmit antennas. Such a transmitter optimization strategy

could increase the throughput of the MIMO MAC channel.

These scenarios will be considered in future work.
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