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Abstract

In this paper, we introduce further our recently designexilfaof L2 orthogonal Space-Time codes for CPM.
With their advantage of maintaining both the constant empelproperties of CPM, the diversity of Space-Time
codes and moreover orthogonality, and thus reduced degadimplexity, these codes are also full rate, even for
more than two transmitting antennas.

The issue of power efficiency for these codes is first dealh ey proving that the inherent increase in
bandwidth in these systems is quite moderate. It is thenildéthow the initial state of the code influences the
coding gain and has to be optimized. For the two and threenaagecase, we determine the optimal values by
computer simulations and show how the coding gain and th#rele bit error performance are significantly
improved by this optimizatior.

. INTRODUCTION

The combination of space-time coding (STC) and continudwse modulation (CPM) is an attractive
field of research because the combination of STC and CPM $rihg benefits of diversity and low
power consumption to wireless communications. Zhang atw [E] were the first to apply this idea by
constructing a trellis based scheme. This idea was pursugdjit and Stiber in [2] for full response CPM,
afterward optimized [3] and extended to partial respons& @ [4]. But for these codes the decoding
effort grows exponentially with the number of transmittiagtennas. This was circumvented by burst-
wise orthogonality introduced by Silvester, Schober anthpea in [5] and by block-wise orthogonality
established by Wang and Xial [6][7]. Unfortunately, basedtw Alamouti code[[8], this latter design is
restricted to two antennas. This restriction was partiallgumvented in[[9] by using quasi orthogonal
STC for 4 transmitting antennas. However, to our knowledigere was so far no consistent orthogonal
design for a general number of antennas.

In our previous publications, by relaxing the orthogoryatibndition, we have been able to construct
new L2-orthogonal space-time codes which achieve full rate aticdfuersity with low decoding effort.
More precisely, in[[10] we have generalized the two-antetode proposed by Wang and Xia [7] from
pointwise toL2-orthogonality and in[[11] and [12], we introduce the fiist-orthogonal code for CPM
with three antennas. In this paper we shortly display sonteesfe results and focus on several properties
of these codes. Of special interest is the optimization eflilt error rate which depends on the initial
phase of the system. Our simulation results illustrate yistesnic behavior of these conditions.

[l. PARALLEL CODED CPM
A. Space-Time code block

In MIMO systems, the signal sentt) is transmitted vial; transmitting antennas. Here, similarly to
[7], the continuous phase modulated sending signal willgdg mito blocks

81’1(t) slth(t)
S(t):[ D st ] (1)

spe1(t) o spyn,(t)
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where each element of the sending matrix

S (1) = \/5—; exp (j27 s (1)) )

is defined within the time intervall,/+r—1)T <t < (L,/+r)T. The indexesn andr denote respectively
the sending antenna and the time slot in a blagk.is the symbol energy per transmit antenna Tx and
per symbol timel’. The phase signal

v
Gmr(t) = (Lol + 1) + 1Y dbq(t —i'T) + () (3)
=1
is essentially the phase of a conventional CPM signal [13hwin additional correction factat,, ,.(¢).

The data symbolslﬁf{f,? are uniquely determined for each element of the code blockertral point of
the coding scheme is the mapping between these symbols andath sequencé; with d; € Q,; =
{-M +1,—-M +3,...,M — 1}. As in conventional CPMh = 2m,/p is the modulation index where
mo andp are relative primes. The phase smoothing funct@n is a continuous function with(¢) = 0

for t <0 andq(t) = 1/2 for t > 4T and~ is the memory length. The phase memory will be obtained
from the definitions of correction factor and the mappingled tlata symbols.

B. L% — orthogonality
To achieve simplified blockwise decoding as in systems basedrthogonal space-time block codes
(OSTBC) [8][7], it is sufficient [11] to force each block to b&-orthogonal
(I+1)L:T
S(t)SH(t)dt = E,I (4)
LT

wherel is the identity matrix. Hence the correlation between twitedént Tx antennas,, ,.(¢) ands,,, ,.(t)
is zeroed over théh complete STC block if

(I+1)L:T

Sm,r (t)s;kn’,r (t) dt =0 (5)
LT

with m # m/. Now, from theses conditiond,?-orthogonal codes can be constructed! [10][11][12] by
expressing our design criteria:

1) the mapping of the data symboi&;f} to the data sequencg and

2) the correction factoe,,, . (t).

Mapping: The most convenient mapping [11] is tparallel mapping where each data symbol of one
time slotr for m =1,..., Ly is mapped to the same symbol of the data sequéncg&he following L,
data symbols at + 1 are mapped t@;,; and so on. Each row of the code is therewith modulated by the
same symbols of the data sequence and

A = dpe_i (6)

Due to this parallel structure, this solution is named paralodes (PC). This mapping is illustrated in
Figure[1.

Correction factor: The correction factor is determined by the phase diffezeh¢ between the different
transmitting antennas at the end of each symbol in the codekblTo ensure phase continuity, this
difference has to be

« 1/2 att = (20 +1)T for 2 Tx antennas
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Fig. 1. Mapping of the uncoded data sequence to the code idock Tx antennas

. andl/3 or2/3 att = (3[+1)T" and2/3 or 4/3 att = (3] + 2)T for 3 Tx antennas.
We define the linear correction factor (linPC) as

Cmr(t) = L, T (7)
and a more complex one based on the phase smoothing functipas
m—1g .
() = = Z 2q(t —i'T). (8)

Without loss of generality, the correction factor of thetfaiatenna is set to, () = 0. Using Eq. [(8) with
Eqg. (3) one can see that the sums from each equation can bedn&g, by combining the correction
factor with the data symbol, we get new alphabets for eaatsinitting antennav:

— 2(m—1) 2(m—1) 2(m—1)
Qdm —{_M""l"" LLth — M43+ Zth 7777 M-1+ thh

Consequently, this code is called offset PC (offPC) and maysden ad.; conventional CPM signals
with different alphabet set®,,, for each antennan. The alphabet of the first antenfiz, is equal to
the alphabet of a conventional CPWN,. For example, for two transmitting antennas we haygt) = 0,
Cor=>._,q(t—7T)/2 and thenQy, = Qu={-M+1,-M+3,.... M —1} andQy, = {—-M + 1+
1/h,—M +3+1/h,...,M — 1+ 1/h}. This intuitive representation greatly simplifies modigdatand
demodulation[[11].
With these definitions of the coding scheme, we can rewrigectbrrection factor in the more generic

form

O (Ll + 174+ 1) = 0, (Ll + 1) + E(Lel + 1) 9)

where the functiog(L,l+r) guarantees the continuity of the phase for any correctictofaand mapping.
For parallel mapping (similarly to conventional CPM) angl,.(t) = 0, we geté (L + r) = %stHl—w-

[1l. INITIAL PHASE

Our model includes now all the necessary parameters torcehgt’>-orthogonal STC. The modulation
index h and the phase smoothing functigfr) can be chosen with the usual restrictions of conventional
CPM detailed above.

As proved by our simulations in sectibn]lV, the values of thigal phased,, (1), which are known to
have no influence in conventional CPM systeis [13], will bevat to have instead a great importance
on the performance of the proposed code.
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Fig. 2. Power spectral density of the linPC analyzed with\Weich algorithm

A. Continuous-time Model

First, we need to introduce another formalism than the b&iokcture used for design. The signals sent
by each Tx antenna: are rewritten as

slt) = \/f—; exp(j2e(0 (1) + By dialt — (i = )T) + (1) (10)

In Eqg. (10) the phase memory termis(L,l + ) get included in the summation term. Only the initial
phased,, (1) remains. This is due to the property of continuity in the dééin of every symbol over the
whole time N.T" where N, is the number of transmitted symbols. As a result of the peraiapping, the
data symbols/; are also equal for each antenna. For offPC codes, we use ttidiedaalphabets detailed
in section[1I-B and no additional correction factor is nexay. For linPC codes, the correction factor
cm(t) simplifies to a continuous linear functian, (t) = (m — 1)t/ L,.

It is interesting to see that for the second Tx antenna, thleection factor causes a constant phase
offset of 27 /L, per symbol and ofr per block. For the 3 Tx antennas case, these offsets arepiedti
by 2. The same effect is observed from the offset added tolgtabet ), .

This phase offset induces a frequency shift. For a phase ghifr(m — 1)/L, on a period ofl’, we
get a frequency shift oA\ f,, = (m — 1)/T'L, for antennam and a symbol lengtfi.

Figure[2 shows the simulated power spectral density foritifd code with 3 Tx antennas,= 1/2,

g =2 andM = 4. To achieve an attenuation in power of -30dB, a bandwidttaeg@n of somé& HzT is
necessary. This corresponds to an increased bandwidthrxdbaﬁ%M—QZ:; = % = 0.133. As the alphabet
size M grows, the absolute bandwidth of the CPM signal wio’é‘ns batghift caused by the coding
scheme is constant. Therewith the additional relative badftti eventually decreases.

It should be recalled here that the highest achievable matdirfear codes with 4 Tx antennas is 3/4
[14]. It means that to transmit the same quantity of datanduthe same duration of time as for our
proposed code a 25% increase in bandwidth is necessary.

With this continuous-time formalism, the signals sent canrbwritten in vector form ag(t) =
[s1(¢), 85(t), -+, s.,(t)]T. Below underlined variables denote the vector representand non-underlined
variables the previously used matrix form. Thus we can wafté as the product of two matrice3 and



C(t) and a vectorl(t)

) =[5 ©CO () (11

The matrix of initial values® = diag(d) and the matrix of correction factor§(¢t) = diag(c(t)) are
L; x L; diagonal matrices obtained from the vectors

exp(j27r91(1)) exp(jchl (1))
8 em(ﬂ@(l)) | o(t) = exp(ﬂjwz(l)) . (12)
exp(j2m0r, (1)) exp(j2mer, (1))

As a result of the parallel mapping, the vector of data sysioah be written as

c_l(t):exp(j27rhzcd,-q(t—(z’—l)T))[l (U T (13)

i=1

B. Code Performance

The performance of theses codes may now by evaluated usngldhsical pair-wise error probability
(PWEP). We assume optimal demodulation, i.e. maximumilkeld (ML) sequence detection (MLSD).
Furthermore, it is considered that for< ¢t < N.T" the signals(t) modulated by the data sequence
is the one truly sent. The PWEP is then the probability thet signal is erroneously detected as signal
5(t) modulated byd; [2].

. [ATA()]]
PWEP = P(s(t t)|A) = 14
) = s(014) = @ (1220 (14)
whereA is the channel matrix which is assumed to to have frequentydiasi-static Rayleigh fading and
mutual independent elements. The energy of noise is giveNggnd )(-) is the cumulative distribution
function of the normal distribution (Q-function). The naalized difference vectoA(t) is given by

] o 2088
A(t) = 25 = LEiT = 5§2 (15)
Ap, (1) sp, (t) = 3.,(t)

The PWEP is minimized by maximizing the product of the eigdmes of the signal matrix [15], [2]

B T NeT NeT 7
g |A1(t)|? dt fAl(t VAL () dE - ({Al(t)Azt(t)dt
NT
* 2 *
C. = ng AT (t) dt f |Az(t)]? dt ({AQ(t)ALt(t) dt (16)
NT ' N.T :
AL, (AT (0 at fALtu st [ AL, () at

Using Eq. [(11) and_(15) the signal matrix can be written as
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Fig. 3. Simulated BER for varying initial phagg (1) andf2(1) andf3(1) = 0 for 3 Tx antennas at 13dB SNR

C, = /A(t)AH(t) dt
_ / [0 C()d(t) — dt)] [e.C()(d(t) — )™ dt

_of / C(t) Ad(t) Ad (1) CH(1) dt) ©" 17)

with Ad(t) = d(t) — d(t) and the integral over the matrix acting element-wise. Sié@é has equal
elements and is multiplied by its Hermitian transpose, Wweagel; x L; all-ones matrix. This matrix is
multiplied with the matrices of the correction factor and @l#ain the correlation matrix of the correction
vector

2

T

C, =0 [ c(t)d(t)dt ©". (18)

[e=]

By writing ¢,,,(t) = %=1¢(t) in Eq. () and[(B), we get

Con (1) () = exp (j2me(t) (=t — m=1)). (19)
The autocorrelation,,(t)c;, (t) is therewith always one and we have

exp(%j%ré(t)) exp(—ij%ré(t)) exp(—Lthlj%rE(t))

exp (%ﬁj%ré(t)) exp (%j%ré(t)) .. EXD (— LtL;2j27rE(t))

c(t)c(t) = (20)

oxp (252 sm0) e (42 2m0) . o £, me)

The elementwise integration of this matrix is easily conepufl2] in the special cases whefg) is a
linear function (linPC codes) or a sum of raised cosinesROftodes) [12]. In both cases, the maifix

is shown to have full rank [11] and thus our codes achievedivrsity. However, the PWEP approach
doesn't provide here any valuable estimate of the coding.d@r that reason, we detail hereafter some
statistical estimates to show the influence of the initisdgghvalues upon the coding gain.
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offPC 6, 0.1 0.15 04 045 0.75 0.8
6,045 075 08 0.1 0.15 04
inPC 66,1075 04 045 0.7 0.05 0.1
6,015 015 05 08 05 0.8

TABLE |
INITIAL PHASE VALUES FOR MINIMAL BER (SNR=12.5B; 2REC)

V. SIMULATIONS

In this section, we benchmark by simulations the perforreaat the proposed codes. In all the
simulations, we used an alphabet sizeléf= 4 with 2-bit Gray-coding, a modulation index &f= 1/2,
a memory length ofy = 2 and 12 samples per symbol. The signal is disturbed by conqude-block-
wise Rayleigh fading of variance one. In this section allegivohase values are relative values, e.g. 1
corresponds t@x or 360°.

A. Two transmit antennas

The bit error rate (BER F,/N,) for the proposed two transmitting antenna codes dependfien
difference of the initial phasé&\d = 65(1) — 6,(1). Figure[4 shows the results of computer simulations
for linPC and offPC codes with different phase smoothingcfioms ¢(¢). The variation of performance
covers almost one decade. This shows the importance of &ulbarehosen initial phase.

Mainly, the position of the minimal BER seems to depend oncttreection factor used. Between linPC
and offPC, the minima are shifted By 4. However, the phase smoothing function used has only minor
influence on the position of the minima. It is also interegtio see that the distance between the minima
is 1/2 and further simulations show a periodicity bf

B. Three transmit antennas

For the three antennas codes, the BER also depends on tte¢ phiased,,(1). Fig.[3 shows the
simulation results for different codes with varying initghases for the first and second antenna and null
initial phase for the third antenna. It can be seen that tlas@loffset for a minimal BER depends on the
correction factor chosen (Fig. 3(a) and B(c)). However,laity to the two antenna code, the form of the
phase smoothing functiof(¢) has almost no influence on the position of the minima (Fig)| (e[ 3(D)).
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Fig. 5. BER for Rayleigh-fading channel

In Table[]l the optimal initial phase are summarized for thstfand second antenna. Other simulations
for different alphabet sized/, modulation indexes and memory lengthy validate the position of the
minima and prove it is an important issue for the optimal giesif parallel codes.

C. Bit Error Rate

Fig.[8 shows the influence of Rayleigh fading channels on a @Rkkmitter with a different number
of antennas.

For the optimal two antenna system we used in the optimal adsequency offset ofAd = 0.19 for
linPC and of A9 = 0.4 for offPC. For the optimal three-antennas-codes, we toekfttiowing values
from Fig.[3:

« liNPC:6,(1) =0.4, 6,(1) = 0.15.

The non-optimal codes have no phase offetl) = 6»(1) = Af = 0).

The optimized codes achieve the expected performance Bainhigh SNR the BER decreases with
5dB/dec similar to a two antenna system with full diversitiie three Tx antennas code achieves a decay
of some 3.5dB/dec. This validates the property of full devist

Fig.[d shows clearly the improvement of the coding gain bygisin optimized initial phase. Comparing
the optimized codes with the non-optimal ones, we achievadalitional coding gain of around 5dB for
the two antenna system and of around 7dB for the three Tx aasen

V. CONCLUSION

In this paper, we detail the construction and analyze sontieeoproperties of L2-orthogonal STC-CPM
for two and three transmitting antennas. These codes aextate due to their low-effort-decoding and
the few restrictions the code-family set upon the pararsatéiICPM. We give a general formulation for
two and three antenna parallel codes and introduce a cant#atime representation of the CPM signals.
With this representation we are able to analyze how the godain depends on the initial phase of the
system. Furthermore, we give the optimal values for theainstates obtained from computer simulation.
The significant gain in performance for typical Rayleighifedchannels is shown and compared with
non-optimal parallel codes.
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