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Abstract

In this paper, we introduce further our recently designed family of L2 orthogonal Space-Time codes for CPM.
With their advantage of maintaining both the constant envelope properties of CPM, the diversity of Space-Time
codes and moreover orthogonality, and thus reduced decoding complexity, these codes are also full rate, even for
more than two transmitting antennas.

The issue of power efficiency for these codes is first dealt with by proving that the inherent increase in
bandwidth in these systems is quite moderate. It is then detailed how the initial state of the code influences the
coding gain and has to be optimized. For the two and three antennas case, we determine the optimal values by
computer simulations and show how the coding gain and therewith the bit error performance are significantly
improved by this optimization.

I. INTRODUCTION

The combination of space-time coding (STC) and continuous phase modulation (CPM) is an attractive
field of research because the combination of STC and CPM brings the benefits of diversity and low
power consumption to wireless communications. Zhang and Fitz [1] were the first to apply this idea by
constructing a trellis based scheme. This idea was pursued by Zajić and Stüber in [2] for full response CPM,
afterward optimized [3] and extended to partial response CPM in [4]. But for these codes the decoding
effort grows exponentially with the number of transmittingantennas. This was circumvented by burst-
wise orthogonality introduced by Silvester, Schober and Lampe in [5] and by block-wise orthogonality
established by Wang and Xia [6][7]. Unfortunately, based onthe Alamouti code [8], this latter design is
restricted to two antennas. This restriction was partiallycircumvented in [9] by using quasi orthogonal
STC for 4 transmitting antennas. However, to our knowledge,there was so far no consistent orthogonal
design for a general number of antennas.

In our previous publications, by relaxing the orthogonality condition, we have been able to construct
newL2-orthogonal space-time codes which achieve full rate and full diversity with low decoding effort.
More precisely, in [10] we have generalized the two-antennacode proposed by Wang and Xia [7] from
pointwise toL2-orthogonality and in [11] and [12], we introduce the firstL2-orthogonal code for CPM
with three antennas. In this paper we shortly display some ofthese results and focus on several properties
of these codes. Of special interest is the optimization of the bit error rate which depends on the initial
phase of the system. Our simulation results illustrate the systemic behavior of these conditions.

II. PARALLEL CODED CPM

A. Space-Time code block

In MIMO systems, the signal sents(t) is transmitted viaLt transmitting antennas. Here, similarly to
[7], the continuous phase modulated sending signal will be split into blocks

S(t) =

[

s1,1(t) ... s1,Lt
(t)

... sm,r(t)
...

sLt,1(t) ... sLt,Lt
(t)

]

(1)
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where each element of the sending matrix

sm,r(t) =

√

Es

LtT
exp (j2πφm,r(t)) (2)

is defined within the time interval(Ltl+r−1)T ≤ t ≤ (Ltl+r)T . The indexesm andr denote respectively
the sending antenna and the time slot in a block.Es is the symbol energy per transmit antenna Tx and
per symbol timeT . The phase signal

φm,r(t) = θm(Ltl + r) + h

γ
∑

i=1

d(l,i)m,rq(t− i′T ) + cm,r(t) (3)

is essentially the phase of a conventional CPM signal [13] with an additional correction factorcm,r(t).
The data symbolsd(l,i)m,r are uniquely determined for each element of the code block. Acentral point of
the coding scheme is the mapping between these symbols and the data sequencedj with dj ∈ Ωd =
{−M + 1,−M + 3, . . . ,M − 1}. As in conventional CPM,h = 2m0/p is the modulation index where
m0 andp are relative primes. The phase smoothing functionq(t) is a continuous function withq(t) = 0
for t ≤ 0 and q(t) = 1/2 for t ≥ γT andγ is the memory length. The phase memory will be obtained
from the definitions of correction factor and the mapping of the data symbols.

B. L2 − orthogonality

To achieve simplified blockwise decoding as in systems basedon orthogonal space-time block codes
(OSTBC) [8][7], it is sufficient [11] to force each block to beL2-orthogonal

(l+1)LtT
∫

lLtT

S(t)SH(t) dt = EsI (4)

whereI is the identity matrix. Hence the correlation between two different Tx antennassm,r(t) andsm′,r(t)

is zeroed over thelth complete STC block if

(l+1)LtT
∫

lLtT

sm,r(t)s
∗
m′,r(t) dt = 0 (5)

with m 6= m′. Now, from theses conditions,L2-orthogonal codes can be constructed [10][11][12] by
expressing our design criteria:

1) the mapping of the data symbolsd(l,i)m,r to the data sequencedj and
2) the correction factorcm,r(t).
Mapping: The most convenient mapping [11] is theparallel mapping where each data symbol of one

time slotr for m = 1, . . . , LT is mapped to the same symbol of the data sequencedj. The followingLt

data symbols atr+1 are mapped todj+1 and so on. Each row of the code is therewith modulated by the
same symbols of the data sequence and

d(l,i)m,r = dLtl+r−i+1 (6)

Due to this parallel structure, this solution is named parallel codes (PC). This mapping is illustrated in
Figure 1.

Correction factor: The correction factor is determined by the phase difference∆φ between the different
transmitting antennas at the end of each symbol in the code block. To ensure phase continuity, this
difference has to be

• 1/2 at t = (2l + 1)T for 2 Tx antennas
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Fig. 1. Mapping of the uncoded data sequence to the code blockfor 3 Tx antennas

• and1/3 or 2/3 at t = (3l + 1)T and2/3 or 4/3 at t = (3l + 2)T for 3 Tx antennas.
We define the linear correction factor (linPC) as

cm,r(t) =
m− 1

Lt

· t− (Ltl + r)T

T
(7)

and a more complex one based on the phase smoothing functionq(t) as

cm,r(t) =
m− 1

Lt

γ
∑

i=1

2q(t− i′T ). (8)

Without loss of generality, the correction factor of the first antenna is set toc1,r(t) = 0. Using Eq. (8) with
Eq. (3) one can see that the sums from each equation can be merged. So, by combining the correction
factor with the data symbol, we get new alphabets for each transmitting antennam:

Ωdm = {−M+1+
2(m−1)

Lth
,−M+3+

2(m−1)
Lth

,...,M−1+
2(m−1)

Lth
}.

Consequently, this code is called offset PC (offPC) and may be seen asLt conventional CPM signals
with different alphabet setsΩdm for each antennam. The alphabet of the first antennaΩd1 is equal to
the alphabet of a conventional CPMΩd. For example, for two transmitting antennas we havec1,r(t) = 0,
c2,r =

∑γ

i=1 q(t− i′T )/2 and thenΩd1 = Ωd = {−M + 1,−M + 3, . . . ,M − 1} andΩd2 = {−M + 1 +
1/h,−M + 3 + 1/h, . . . ,M − 1 + 1/h}. This intuitive representation greatly simplifies modulation and
demodulation [11].

With these definitions of the coding scheme, we can rewrite the correction factor in the more generic
form

θm(Ltl + r + 1) = θm(Ltl + r) + ξ(Ltl + r) (9)

where the functionξ(Ltl+r) guarantees the continuity of the phase for any correction factor and mapping.
For parallel mapping (similarly to conventional CPM) andcm,r(t) = 0, we getξ(Ltl + r) = h

2
dLtl+1−γ.

III. I NITIAL PHASE

Our model includes now all the necessary parameters to construct L2-orthogonal STC. The modulation
indexh and the phase smoothing functionq(t) can be chosen with the usual restrictions of conventional
CPM detailed above.

As proved by our simulations in section IV, the values of the initial phasesθm(1), which are known to
have no influence in conventional CPM systems [13], will be shown to have instead a great importance
on the performance of the proposed code.
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Fig. 2. Power spectral density of the linPC analyzed with theWelch algorithm

A. Continuous-time Model

First, we need to introduce another formalism than the blockstructure used for design. The signals sent
by each Tx antennam are rewritten as

sm(t) =

√

Es

LtT
exp(j2π[θm(1) + h

Nc
∑

i=1

diq(t− (i− 1)T ) + cm(t)]). (10)

In Eq. (10) the phase memory termsθm(Ltl + r) get included in the summation term. Only the initial
phaseθm(1) remains. This is due to the property of continuity in the definition of every symbol over the
whole timeNcT whereNc is the number of transmitted symbols. As a result of the parallel mapping, the
data symbolsdi are also equal for each antenna. For offPC codes, we use the modified alphabets detailed
in section II-B and no additional correction factor is necessary. For linPC codes, the correction factor
cm(t) simplifies to a continuous linear functioncm(t) = (m− 1)t/Lt.

It is interesting to see that for the second Tx antenna, the correction factor causes a constant phase
offset of 2π/Lt per symbol and of2π per block. For the 3 Tx antennas case, these offsets are multiplied
by 2. The same effect is observed from the offset added to the alphabetΩdm .

This phase offset induces a frequency shift. For a phase shift of 2π(m− 1)/Lt on a period ofT , we
get a frequency shift of∆fm = (m− 1)/TLt for antennam and a symbol lengthT .

Figure 2 shows the simulated power spectral density for the linPC code with 3 Tx antennas,h = 1/2,
g = 2 andM = 4. To achieve an attenuation in power of -30dB, a bandwidth expansion of some5HzT is
necessary. This corresponds to an increased bandwidth demand of ∆f2T

5HzT = 2
3·5

= 0.133. As the alphabet
size M grows, the absolute bandwidth of the CPM signal widens but the shift caused by the coding
scheme is constant. Therewith the additional relative bandwidth eventually decreases.

It should be recalled here that the highest achievable rate for linear codes with 4 Tx antennas is 3/4
[14]. It means that to transmit the same quantity of data during the same duration of time as for our
proposed code a 25% increase in bandwidth is necessary.

With this continuous-time formalism, the signals sent can be rewritten in vector form ass(t) =
[s1(t), s2(t), · · · , sLt

(t)]T. Below underlined variables denote the vector representation and non-underlined
variables the previously used matrix form. Thus we can writes(t) as the product of two matricesΘ and
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C(t) and a vectord(t)

s(t) =

√

Es

LtT
ΘC(t) d(t) (11)

The matrix of initial valuesΘ = diag(θ) and the matrix of correction factorsC(t) = diag(c(t)) are
Lt × Lt diagonal matrices obtained from the vectors

θ =









exp(j2πθ1(1))
exp(j2πθ2(1))

...
exp(j2πθLt

(1))









, c(t) =









exp(j2πc1(t))
exp(j2πc2(1))

...
exp(j2πcLt

(1))









. (12)

As a result of the parallel mapping, the vector of data symbols can be written as

d(t) = exp(j2πh
Nc
∑

i=1

diq(t− (i− 1)T ))
[

1 1 . . . 1
]H

. (13)

B. Code Performance

The performance of theses codes may now by evaluated using the classical pair-wise error probability
(PWEP). We assume optimal demodulation, i.e. maximum likelihood (ML) sequence detection (MLSD).
Furthermore, it is considered that for0 ≤ t ≤ NcT the signals(t) modulated by the data sequencedj
is the one truly sent. The PWEP is then the probability that this signal is erroneously detected as signal
ŝ(t) modulated byd̂j [2].

PWEP = P (s(t) → ŝ(t)|A) = Q

(‖AT
∆(t)‖√
2N0

)

(14)

whereA is the channel matrix which is assumed to to have frequency flat quasi-static Rayleigh fading and
mutual independent elements. The energy of noise is given byN0 andQ(·) is the cumulative distribution
function of the normal distribution (Q-function). The normalized difference vector∆(t) is given by

∆(t) =









∆1(t)
∆2(t)

...
∆Lt

(t)









=

√

LtT

Es









s1(t)− ŝ1(t)
s2(t)− ŝ2(t)

...
sLt

(t)− ŝLt
(t)









(15)

The PWEP is minimized by maximizing the product of the eigenvalues of the signal matrix [15], [2]

Cs =

















NcT
R

0

|∆1(t)|2 dt
NcT
R

0

∆1(t)∆∗

2(t) dt ···
NcT
R

0

∆1(t)∆∗

Lt
(t) dt

NcT
R

0

∆2(t)∆∗

1(t) dt
NcT
R

0

|∆2(t)|2 dt ···
NcT
R

0

∆2(t)∆∗

Lt
(t) dt

...
...

NcT
R

0

∆Lt
(t)∆∗

1(t) dt
NcT
R

0

∆Lt
(t)∆∗

2(t) dt ···
NcT
R

0

|∆Lt
(t)|2 dt

















(16)

Using Eq. (11) and (15) the signal matrix can be written as
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(a) offset PC with REC (b) offset PC with RC (c) linear PC with REC

Fig. 3. Simulated BER for varying initial phaseθ1(1) andθ2(1) andθ3(1) = 0 for 3 Tx antennas at 13dB SNR

Cs =

NcT
∫

0

∆(t)∆H(t) dt

=

NcT
∫

0

[

ΘC(t)(d(t)− d̂(t))
][

ΘC(t)(d(t)− d̂(t))
]H

dt

= Θ
(

NcT
∫

0

C(t)∆d(t)∆dH(t)CH(t) dt
)

ΘH (17)

with ∆d(t) = d(t) − d̂(t) and the integral over the matrix acting element-wise. Sinced(t) has equal
elements and is multiplied by its Hermitian transpose, we get an Lt × Lt all-ones matrix. This matrix is
multiplied with the matrices of the correction factor and weobtain the correlation matrix of the correction
vector

Cs = Θ

NcT
∫

0

c(t)cH(t) dt ΘH. (18)

By writing cm(t) =
m−1
Lr

c̄(t) in Eq. (7) and (8), we get

cm(t)c
∗
m′(t) = exp

(

j2πc̄(t)(m−1
Lt

− m′−1
Lt

)
)

. (19)

The autocorrelationcm(t)c
∗
m(t) is therewith always one and we have

c(t)cH(t) =











exp
(

0
Lt

j2πc̄(t)
)

exp
(

− 1
Lt

j2πc̄(t)
)

... exp
(

−
Lt−1
Lt

j2πc̄(t)
)

exp
(

1
Lt

j2πc̄(t)
)

exp
(

0
Lt

j2πc̄(t)
)

... exp
(

−
Lt−2
Lt

j2πc̄(t)
)

...
...

exp
(

Lt−1
Lt

j2πc̄(t)
)

exp
(

Lt−2
Lt

j2πc̄(t)
)

... exp
(

0
Lt

j2πc̄(t)
)











(20)

The elementwise integration of this matrix is easily computed [12] in the special cases wherec̄(t) is a
linear function (linPC codes) or a sum of raised cosines (OffPC codes) [12]. In both cases, the matrixCs

is shown to have full rank [11] and thus our codes achieve fulldiversity. However, the PWEP approach
doesn’t provide here any valuable estimate of the coding gain. For that reason, we detail hereafter some
statistical estimates to show the influence of the initial phase values upon the coding gain.
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Fig. 4. simulated BER for varying initial phaseθ2 for 2 Tx antennas at SNR=12.5dB

offPC
θ1 0.1 0.15 0.4 0.45 0.75 0.8
θ2 0.45 0.75 0.8 0.1 0.15 0.4

linPC
θ1 0.75 0.4 0.45 0.7 0.05 0.1
θ2 0.15 0.15 0.5 0.8 0.5 0.8

TABLE I
INITIAL PHASE VALUES FOR MINIMAL BER (SNR=12.5DB; 2REC)

IV. SIMULATIONS

In this section, we benchmark by simulations the performance of the proposed codes. In all the
simulations, we used an alphabet size ofM = 4 with 2-bit Gray-coding, a modulation index ofh = 1/2,
a memory length ofγ = 2 and 12 samples per symbol. The signal is disturbed by complexcode-block-
wise Rayleigh fading of variance one. In this section all given phase values are relative values, e.g. 1
corresponds to2π or 360◦.

A. Two transmit antennas

The bit error rate (BER -Eb/N0) for the proposed two transmitting antenna codes depends onthe
difference of the initial phase∆θ = θ2(1) − θ1(1). Figure 4 shows the results of computer simulations
for linPC and offPC codes with different phase smoothing functions q(t). The variation of performance
covers almost one decade. This shows the importance of a carefully chosen initial phase.

Mainly, the position of the minimal BER seems to depend on thecorrection factor used. Between linPC
and offPC, the minima are shifted by1/4. However, the phase smoothing function used has only minor
influence on the position of the minima. It is also interesting to see that the distance between the minima
is 1/2 and further simulations show a periodicity of1.

B. Three transmit antennas

For the three antennas codes, the BER also depends on the initial phaseθm(1). Fig. 3 shows the
simulation results for different codes with varying initial phases for the first and second antenna and null
initial phase for the third antenna. It can be seen that the phase offset for a minimal BER depends on the
correction factor chosen (Fig. 3(a) and 3(c)). However, similarly to the two antenna code, the form of the
phase smoothing functionq(t) has almost no influence on the position of the minima (Fig. 3(a) and 3(b)).
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Fig. 5. BER for Rayleigh-fading channel

In Table I the optimal initial phase are summarized for the first and second antenna. Other simulations
for different alphabet sizesM , modulation indexesh and memory lengthγ validate the position of the
minima and prove it is an important issue for the optimal design of parallel codes.

C. Bit Error Rate

Fig. 5 shows the influence of Rayleigh fading channels on a CPMtransmitter with a different number
of antennas.

For the optimal two antenna system we used in the optimal casea frequency offset of∆θ = 0.19 for
linPC and of∆θ = 0.4 for offPC. For the optimal three-antennas-codes, we took the following values
from Fig. 3:

• offPC: θ1(1) = 0.1, θ2(1) = 0.45;
• linPC: θ1(1) = 0.4, θ2(1) = 0.15.

The non-optimal codes have no phase offset (θ1(1) = θ2(1) = ∆θ = 0).
The optimized codes achieve the expected performance gain.For high SNR the BER decreases with

5dB/dec similar to a two antenna system with full diversity.The three Tx antennas code achieves a decay
of some 3.5dB/dec. This validates the property of full diversity.

Fig. 5 shows clearly the improvement of the coding gain by using an optimized initial phase. Comparing
the optimized codes with the non-optimal ones, we achieve anadditional coding gain of around 5dB for
the two antenna system and of around 7dB for the three Tx antennas.

V. CONCLUSION

In this paper, we detail the construction and analyze some ofthe properties of L2-orthogonal STC-CPM
for two and three transmitting antennas. These codes are attractive due to their low-effort-decoding and
the few restrictions the code-family set upon the parameters of CPM. We give a general formulation for
two and three antenna parallel codes and introduce a continuous-time representation of the CPM signals.
With this representation we are able to analyze how the coding gain depends on the initial phase of the
system. Furthermore, we give the optimal values for the initial states obtained from computer simulation.
The significant gain in performance for typical Rayleigh fading channels is shown and compared with
non-optimal parallel codes.
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