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Abstract—This work considers reliable transmission of gen-
eral correlated sources over the multiple-access relay chan-
nel (MARC) and the multiple-access broadcast relay channel
(MABRC). In MARCs only the destination is interested in a
reconstruction of the sources, while in MABRCs both the relay
and the destination want to reconstruct the sources. We assume
that both the relay and the destination have correlated sideinfor-
mation. We find sufficient conditions for reliable communication
based on operational separation, as well as necessary conditions
on the achievable source-channel rate. For correlated sources
transmitted over fading Gaussian MARCs and MABRCs we find
conditions under which informational separation is optimal.

I. I NTRODUCTION

The multiple-access relay channel (MARC) is a network
in which several users communicate with a single destination
with the help of a relay [1]. Examples of such a network are
sensor and ad-hoc networks in which an intermediate relay
can be added to assist communication from the sources to the
destination. Achievable regions for the MARC were derived in
[2], [3] and [4]. In [2] Kramer et al. derived an achievable rate
region for the MARC with independent sources. The coding
scheme employed in [2] is based on decode-and-forward (DF)
relaying, and uses regular encoding, successive decoding at the
relay and backward decoding at the destination. In [3], another
DF-based coding scheme for the MARC was presented. The
work [3] also showed that, in contrast to DF for the classic
relay channel, for the MARC different DF schemes yield
different rate regions (backward decoding can yield largerrates
than sliding window decoding). Outer bounds on the capacity
of discrete memoryless (DM) MARCs were obtained in [4].

The previous work on MARCs considered independent
messages at the terminals. In contrast, in the present work here
we allow arbitrary correlation among the sources that should
be transmitted to the destination in a lossless fashion.

In [5] Shannon showed that a source can be reliably
transmitted over a memoryless point-to-point (PtP) channel, if
and only if its entropy is less than the channel capacity. Hence,
a simple comparison of the rates of the optimal source and
channel codes for the respective source and channel suffices
to conclude if reliable communication is feasible. This is called
the separation theorem. The implication of the separation
theorem is that independent design of the source and channel
codes is optimal.

This work was supported by the European Commission’s Marie Curie
IRG Fellowship PIRG05-GA-2009-246657 under the Seventh Framework
Programme.

In [6] Shamai and Verdu considered the availability of
correlated side information at the receiver in a PtP scenario,
and showed that source-channel separation is optimal. The
availability of receiver side information enables transmitting
the source reliably over a channel with a smaller capacity
compared to the capacity needed in the absence of receiver
side information.

Unfortunately, optimality of source-channel separation in
the Shannon sense does not generalize to multiuser networks
[7], [8], [9]. Therefore, in general the source and channel
codes must be jointly designed for every particular source
and channel combination. Source-channel coding over the
broadcast channel was considered by Tuncel in [10]. Tuncel
distinguishes between two types of source-channel separation.
Informational separationrefers to classical separation in the
Shannon sense.Operational separationrefers to statistically
independent source and channel codes that are not necessarily
the optimal codes for the underlying source or the channel. In
[10] Tuncel showed that for a broadcast channel in which each
receiver has a different side information, operational separation
is optimal, while informational separation is not.

Optimizing source coding along with multiuser channel
coding in a general setting is a very complicated task. In [11]
Tian et al. showed the optimality of operational separationfor
the following two scenarios: a) arbitrarily correlated sources
over orthogonal links; b) independent sources over a general
network with some restrictions on how many messages can
be decoded at each destination. In [9] Gündüz et al. obtained
necessary and sufficient conditions for the optimality of in-
formational separation for the multiple-access channel with
correlated sources and side information. Gündüz et al. also
obtained necessary and sufficient conditions for the optimality
of operational separation for the compound multiple-access
channel with correlated sources and side information. In
[12] Gündüz and Erkip showed that operational separationis
optimal for the cooperative relay-broadcast channel. Necessary
and sufficient conditions for reliable transmission of a source
over a relay channel when side information is available either
only at the receiver, or only at the relay or at both the relay
and the receiver were established in [13].

In this paper we shall also consider MARCs and MABRCs
subject to independent and identically distributed (i.i.d.) fad-
ing, for both phase and Rayleigh fading. Phase fading models
apply to high-speed microwave communications where the
oscillator’s phase noise and the system timing jitter are the
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key impairments. Phase fading is also the major impairment
in communication systems that employ orthogonal frequency
division multiplexing , as well as in some applications of naval
communications. Rayleigh fading models are very common in
wireless communications and apply to mobile communications
in the presence of multiple scatterers without line-of-sight.
The key similarity between the two models is the uniformly
distributed phase of the fading process. The phase fading and
Rayleigh fading models differ in the behaviour of the fading
magnitude component, which is fixed for the former but varies
following a Rayleigh distribution for the latter.

Main Contributions

In this paper we establish a DF-based achievable source-
channel rate for the MARC with correlated sources and
with side information at the relay and the destination. The
scheme uses irregular encoding, successive decoding at the
relay and backward decoding at the destination. We show that
for the MARC with correlated sources and side information,
irregular encoding yields a higher achievable source-channel
rate than the rate achieved by regular encoding. This rate also
applies directly to the MABRC. We then derive necessary
conditions on the achievable source-channel rate of MARCs
(and MABRCs) with correlated sources and side information.

Next, we consider transmission of correlated sources over
fading MARCs and MABRCs with side information at the
relay and at the destination. Using the necessary conditions
on the achievable source-channel rate of the MARC that we
derive here, the capacity region of the MARC obtained in
[2, Thm. 9], and the results presented in [14, Section III.C],
we find conditions for correlated sources transmitted over
phase fading MARCs with side information, under which
informational separation is optimal. Optimality conditions are
also obtained for Rayleigh fading MARCs with correlated
sources and side information. Additionally, we find conditions
for the optimality of separation for fading MABRCs.This is
the first time the optimality of separation is shown for the
MARC and the MABRC models. Note that these models are
not degraded in the sense of [15], see also [2, Remark 33].

The rest of this paper is organized as follows: in Section
II the model and notations are presented. In Section III the
separation based achievable source-channel rate is presented as
well as necessary conditions on the achievable source-channel
rate. The optimality of separation for correlated sources trans-
mitted over fading Gaussian MARCs is studied in Section IV.

II. N OTATIONS AND MODEL

In the following we useH(·) to denote the entropy of
a discrete random variable andI(·; ·) to denote the mutual
information between two random variables, as defined in [16,
ch. 2, ch. 9]. We denote the set of real numbers withR,
and we useC to denote the set of complex numbers. We
denote random variables with upper case letters, e.g.,X , Y ,
and their realizations with lower case lettersx, y. A discrete
random variableX takes values in a setX . We usepX(x)
to denote the probability mass function (p.m.f.) of a discrete
RV X on X , and fX(x) to denote the probability density

function (p.d.f.) of a continuous RVX on C. For brevity we
may omit the subscriptX when it is the uppercase version
of the sample symbolx. We usepX|Y (x|y) to denote the
conditional distribution ofX given Y . We useXj to denote
the vector(X1, X2, . . . , Xj). We denote the empty set with
φ, and the complement of the setB by Bc. We useA∗(n)

ǫ (X)
to denote the set ofǫ-strongly typical sequences with respect
to distributionpX(x) on X , CN (a, σ2) to denote a proper,
circularly symmetric, complex Normal distribution with mean
a and varianceσ2, andE{·} to denote stochastic expectation.

The MARC consists of two transmitters (sources), a receiver
(destination) and a relay. Transmitteri has access to the source
sequenceSm

i , for i = 1, 2. The receiver is interested in the
lossless reconstruction of the source sequences observed by
the two transmitters. The objective of the relay is to help the
receiver decode the source sequences. It is also assumed that
the relay and the receiver have side information correlated
with the source sequences. For the MABRC both the receiver
and the relay are interested in a lossless reconstruction of
the source sequences. Figure 1 depicts the MABRC with side
information setup.

Fig. 1. Multiple-access broadcast relay channel with correlated side infor-
mation. (Ŝm

1,3
, Ŝm

2,3
) are the reconstructions of(Sm

1
, Sm

2
) at the relay, and

(Ŝm

1
, Ŝm

2
) are the reconstructions at the destination .

The sources and the side information sequences,
{S1,k, S2,k,Wk,W3,k}mk=1, are arbitrarily correlated according
to a joint distributionp(s1, s2, w, w3) over a finite alphabet
S1 × S2 ×W ×W3, and independent across different sample
indexesk. All nodes know this joint distribution.

For transmission, a discrete memoryless channel with inputs
X1, X2, X3 over finite input alphabetsX1,X2,X3, and outputs
Y, Y3 over finite output alphabetsY,Y3, is available. The
channel is memoryless in the sense

p(yk, y3,k|y
k−1, yk−1

3 , xk
1 , x

k
2 , x

k
3) = p(yk, y3,k|x1,k, x2,k, x3,k).

An (m,n) source-channel code for the MABRC with cor-
related side information consists of two encoding functions
at the transmitters:f (m,n)

i : Sm
i 7→ Xn

i , i = 1, 2, and two
decoding functions at the destination and the relay:g(m,n) :

Yn × Wm 7→ Sm
1 × Sm

2 , g
(m,n)
3 : Yn

3 × Wm
3 7→ Sm

1 × Sm
2 .

Finally, there is a causal encoding function at the relay,
x3,k = f

(m,n)
3,k (yk−1

3,1 , wm
3,1), 1 ≤ k ≤ n. Note that in the

MARC scenario the decoding functiong(m,n)
3 does not exist.

Let Ŝm
i denote the reconstruction ofSm

i , i = 1, 2, respec-
tively, at the receiver. Let̂Sm

i,3 denote the reconstruction of
Sm
i , i = 1, 2, respectively, at the relay. The average probability



of error,P (m,n)
e , of an(m,n) code for the MABRC is defined

as P
(m,n)
e , Pr

(

(Ŝm
1 , Ŝm

2 ) 6= (Sm
1 , Sm

2 ) or (Ŝm
1,3, Ŝ

m
2,3) 6=

(Sm
1 , Sm

2 )
)

, while for the MARC the average probability of
error is defined asP (m,n)

e , Pr
(

(Ŝm
1 , Ŝm

2 ) 6= (Sm
1 , Sm

2 )
)

. A
source-channel rateκ is said to be achievable for the MABRC,
if for every ǫ > 0 there exist positive integersn0,m0 such
that for alln > n0,m > m0, n/m = κ, there exists an(m,n)

code for whichP (m,n)
e < ǫ. The same definition applies to

the MARC.
For fading Gaussian MARCs and MABRCs, the received

signals at timek at the receiver and at the relay are given by
(see Figure 2)

Yk =H11,kX1,k +H21,kX2,k +H31,kX3,k + Zk (1a)

Y3,k =H13,kX1,k +H23,kX2,k + Z3,k, (1b)

Fig. 2. Transmission of correlated sources over the fading Gaussian MARC
with side information at the relay and at the destination (additive noises are
not depicted).

k = 1, 2, . . . , n, where Z and Z3 are independent of
each other, i.i.d., circularly symmetric, complex Normal RVs,
CN (0, 1). The channel input signals are subject to per-symbol
average power constraints:E{|Xi|

2} ≤ Pi, i = 1, 2, 3. In
the following it is assumed that the destination knows the
instantaneous channel coefficients from Transmitteri, i = 1, 2,
and from the relay to itself, and the relay knows the instan-
taneous channel coefficients from both transmitters to itself.
This is referred to as receiver channel state information (Rx-
CSI). For phasefading channels the channel coefficients are
given by Hli,k = alie

jΘli,k , where ali ∈ R are constants
representing the attenuation andΘli,k are uniformly distributed
over [0, 2π), i.i.d., and independent of each other and of the
additive noisesZ3 andZ. For Rayleighfading channels the
channel coefficients are given byHli,k = aliUli,k , ali ∈ R are
constants representing the attenuation, andUli,k are circularly
symmetric, complex Normal RVs,Uli,k ∼ CN (0, 1), i.i.d., and
independent of each other and of the additive noisesZ3 andZ.

III. SOURCE-CHANNEL CODING FORDISCRETE

MEMORYLESSMARCS AND MABRCS

A. Operational Separation-Based Achievable Rate
In this subsection we present an achievable rate for MARCs

and MABRCs with correlated sources and side information,
based on operational separation.

Theorem1. For DM MARCs and DM MABRCs with relay
and receiver side information as defined in Section II, source-
channel rateκ is achievable if,

H(S1|S2,W3)<κI(X1;Y3|X2, V1, X3) (2a)

H(S2|S1,W3)<κI(X2;Y3|X1, V2, X3) (2b)

H(S1, S2|W3)<κI(X1, X2;Y3|V1, V2, X3) (2c)

H(S1|S2,W )<κI(X1, X3;Y |X2, V2) (2d)

H(S2|S1,W )<κI(X2, X3;Y |X1, V1) (2e)

H(S1, S2|W )<κI(X1, X2, X3;Y ), (2f)

for an input distribution that factors as
p(s1, s2, w3, w)p(v1)p(x1|v1)p(v2)p(x2|v2)p(x3|v1, v2).

Proof outline: The achievability is established by using
two independent Slepian-Wolf source coding schemes [16,
Section 14.4], and a channel coding scheme similar to the one
detailed in [3, Sections II, III]. The channel coding scheme
employs a DF code with irregular block Markov encoding,
successive decoding at the relay, and backward decoding at
the destination. Detailed proof is provided in [17].

B. Discussion
In Thm. 1, bounds (2a)–(2c) are constraints for decoding at

the relay, while bounds (2d)–(2f) are constraints for decoding
at the destination. The source-channel achievable rate of
Thm. 1 is established by using two different Slepian-Wolf
coding schemes: one for the relay and one for the destination.
This requires an irregular encoding scheme for the channel
code. In regular encoding, the codebooks at the source and
the relay have the same size, see for example [3]. Applying
regular encoding to MABRCs with correlated sources and side
information leads to merging some of the constraints in (2).In
particular (2a) and (2d) will be combined into the constraint

max
{

H(S1|S2,W3), H(S1|S2,W )
}

<

κmin
{

I(X1;Y3|X2, V1, X3), I(X1, X3;Y |X2, V2)
}

.

For irregular encoding, bounds (2a) and (2d) need not be
combined, since the transmission rates to the relay and to the
destination can be different due to different quality of theside
information. We conclude that for MABRCs with correlated
sources and side information, irregular encoding yields a
higher source-channel achievable rate than the one achieved
by regular encoding. When the relay and destination have the
same side information (W =W3) then the irregular and regular
schemes obtain the same achievable source-channel rates.

We note that when usingregular encodingfor MARCs,
there is a single Slepian-Wolf code, hence, in the scheme used
in Thm. 1 it is not required to recover the source sequences
at the relay and the right-hand side (RHS) of the constraints
(2a)–(2f) can be combined. For example, (2a) and (2d) will
be combined into the constraint

H(S1|S2,W ) < κmin
{

I(X1;Y3|X2, V1, X3),

I(X1, X3;Y |X2, V2)
}

.

C. Necessary Conditions on the Achievable Source-Channel
Rate

In this subsection we present necessary conditions on the
achievable source-channel rate for MARCs and for MABRCs
with correlated sources and side information at the relay and
at the destination.



Proposition 1. Consider the transmission of arbitrarily cor-
related sourcesS1 and S2 over the DM MARC with relay
side informationW3 and receiver side informationW . Any
achievable source-channel rateκ must satisfy the constraints:

H(S1|S2,W )≤ κI(X1, X3;Y |X2) (3a)

H(S2|S1,W )≤ κI(X2, X3;Y |X1) (3b)

H(S1, S2|W )≤ κI(X1, X2, X3;Y ), (3c)
for some input distributionp(x1, x2, x3).
Proof: A detailed proof is provided in [17].
Remark1. SettingX2 = S2 = φ, Proposition 1 specializes to
the converse of [12, Thm. 3.1] for the relay channel.

Proposition2. Consider the transmission of arbitrarily corre-
lated sourcesS1 andS2 over the DM MABRC with relay side
informationW3 and receiver side informationW . Any achiev-
able source-channel rateκ must the satisfy the constraints in
(3) as well as the following constraints:

H(S1|S2,W3)≤ κI(X1;Y3|X2, X3) (4a)

H(S2|S1,W3)≤ κI(X2;Y3|X1, X3) (4b)

H(S1, S2|W3)≤ κI(X1, X2;Y3|X3), (4c)
for some input distributionp(x1, x2, x3).
Proof: A detailed proof is provided in [17].

IV. OPTIMALITY OF SOURCE-CHANNEL SEPARATION FOR

FADING GAUSSIAN MARCS AND MABRCS

We begin by considering source-channel separation for
phase fading Gaussian MARCs (1). The result is stated in
the following theorem.
Theorem2. Consider the transmission of arbitrarily correlated
sourcesS1 andS2 over a phase fading Gaussian MARC with
receiver side informationW and relay side informationW3.
Let the channel inputs be subject to per-symbol power con-
straints E{|Xi|

2} ≤ Pi, i = 1, 2, 3, and let the channel
coefficients and the channel input powers satisfy

a211P1 + a231P3 ≤ a213P1 (5a)

a221P2 + a231P3 ≤ a223P2 (5b)

a211P1 + a221P2 + a231P3 ≤ a213P1 + a223P2. (5c)

A source-channel rateκ is achievable if

H(S1|S2,W )<κ log2(1 + a211P1 + a231P3) (6a)

H(S2|S1,W )<κ log2(1 + a221P2 + a231P3) (6b)

H(S1, S2|W )<κ log2(1 + a211P1 + a221P2 + a231P3).(6c)

Conversely, if source-channel rateκ is achievable, then con-
ditions (6) are satisfied with< replaced by≤.
Proof: See subsections IV-A, IV-B.

Remark2. The source-channel rateκ in Thm. 2 is achieved by
usingXi ∼ CN (0, Pi), i ∈ {1, 2, 3}, all i.i.d. and independent
of each other, and applying DF at the relay.

Remark 3. The achievability scheme of Thm. 2 uses the
channel code construction and decoding rules detailed in [14,
Section III.C]. The decoding rules detailed in [14, Section
III.C] imply that the destination channel decoder does not use
any information provided by the destination source decoder.
The only interaction between the source code and channel code

is through the bin indices of the transmitted sequences. Hence,
Thm. 2 implies that informational separation is optimal.

Next, we consider sources transmission over Rayleigh fad-
ing MARCs.

Theorem3. Consider the transmission of arbitrarily correlated
sourcesS1 andS2 over a Rayleigh fading Gaussian MARC
with receiver side informationW and relay side information
W3. Let the channel inputs be subject to per-symbol power
constraintsE{|Xi|

2} ≤ Pi, i = 1, 2, 3, and let the channel
coefficients and the channel input powers satisfy

1 + a211P1 + a231P3 ≤
a213P1

e
1

a2
13

P1 E1

(

1
a2

13
P1

)
(7a)

1 + a221P2 + a231P3 ≤
a223P2

e
1

a2
23

P2 E1

(

1
a2

23
P2

)
(7b)

1 + a211P1 + a221P2 + a231P3 ≤

a223P2 − a213P1
(

e
1

a2
23

P2 E1

(

1
a2

23
P2

)

− e
1

a2
13

P1 E1

(

1
a2

13
P1

)

) , (7c)

where E1(x) ,
∫∞

q=x
1
q
e−qdq. A source-channel rateκ is

achievable if

H(S1|S2,W ) < κEŨ

{

log2(1 + a211|U11|
2P1

+ a231|U31|
2P3)

}

(8a)

H(S2|S1,W ) < κEŨ

{

log2(1 + a221|U21|
2P2

+ a231|U31|
2P3)

}

(8b)

H(S1, S2|W ) < κEŨ

{

log2(1 + a211|U11|
2P1+

a221|U21|
2P2 + a231|U31|

2P3)
}

, (8c)

where Ũ =
(

U11, U13, U21, U23, U31

)

. Conversely, if source-
channel rateκ is achievable, then conditions (8) are satisfied
with < replaced by≤.

Proof: The proof uses [14, Corollary B.1] and follows similar
arguments to those in the proof of Thm. 2.

Remark4. The source-channel rateκ in Thm. 3 is achieved by
usingXi ∼ CN (0, Pi), i ∈ {1, 2, 3}, all i.i.d. and independent
of each other, and applying DF at the relay.

A. Achievability Proof of Thm. 2
1) Code construction:For i=1, 2, assign everysi ∈ Sm

i to
one of2mRi bins independently according to a uniform distri-
bution on{1, 2, . . . , 2mRi}. Denote these assignments byfi.
A channel code based on DF with rateŝR1 and R̂2, and a
blocklengthn, is constructed as detailed in [14, Section III.C].
Transmitteri has2nR̂i messages, thus we requireκR̂i = Ri.

2) Encoding: Consider a source sequence of lengthBm,
sBm
i ∈ SBm

i , i = 1, 2. Partition this sequence intoB length-
m subsequences,si,b, b = 1, 2, . . . , B. Similarly partition the
side information sequencewBm ∈ WBm, into B length-m
subsequences. We transmit a total ofBm source samples over
B + 1 blocks ofn channel uses each. If we setn = κm, by
increasingB we obtain a source-channel rate(B+1)n/Bm →
n/m = κ asB → ∞.



In block b, b = 1, 2, . . . , B, source terminali, i = 1, 2,
observessi,b and finds its corresponding bin indexui,b ∈
{1, 2, . . . , 2mRi}. Each transmitter sends its corresponding bin
index using the channel code described in [14, Section III.C].

Encoding at the relay: Assume that at timeb the relay knows
(u1,b−1, u2,b−1). The relay sends these bin indices using the
channel code described in [14, Section III.C].

3) Decoding and error probability:Conditions (5) imply
that the achievable channel rate region for decoding at the relay
contains the achievable channel rate region for decoding atthe
destination. Hence, reliable decoding of the channel code at
the destination implies reliable decoding of the channel code at
the relay. When the channel coefficients and the channel input
powers satisfy conditions (5), the RHS of constraints (6) isthe
capacity region of the phase fading Gaussian MARC, (see [2,
Thm. 9]). Hence, the transmitted bin indices{u1,b, u2,b}Bb=1

can be reliably decoded at the destination if
R1 ≤ κ log2(1 + a211P1 + a231P3) (9a)

R2 ≤ κ log2(1 + a221P2 + a231P3) (9b)

R1 +R2 ≤ κ log2(1 + a211P1 + a221P2 + a231P3). (9c)
Decoding the sources at the destination:The decoded bin

indices, denoted̃ui,b, i=1, 2, b=1, 2, . . . , B, are then given to
the source decoder at the destination. Using the bin indicesand
the side informationwb, the source decoder at the destination
estimatess1,b, s2,b. More precisely, given the bin indices
ũ1,b, ũ2,b, it declares(s̃1,b, s̃2,b) to be the decoded sequences
if it is the unique pair of sequences that satisfiesf1(s̃1,b) =

ũ1,b, f2(s̃2,b) = ũ2,b and (s̃1,b, s̃2,b,wb) ∈ A
∗(m)
ǫ (S1, S2,W ).

From the Slepian-Wolf theorem [16, Thm 14.4.1],(s1,b, s2,b)
can be reliably decoded at the destination if

H(S1|S2,W )<R1 (10a)

H(S2|S1,W )<R2 (10b)

H(S1, S2|W )<R1 +R2. (10c)
Combining conditions (9) and (10) yields (6) and completes

the achievability proof.
B. Converse Proof of Thm. 2

Consider the necessary conditions of Proposition 1. From
[2, Thm. 8] it follows that for phase fading with Rx-CSI,
the mutual information expressions on the RHS of (3) are
simultaneously maximized byX1, X2, X3 independent, zero-
mean complex Normal,Xi ∼ CN (0, Pi), i = 1, 2, 3 yielding
the same expressions as in (6). Therefore, for phase fading
MARCs, when conditions (5) hold, the conditions in (6)
coincide with the necessary conditions of Proposition 1, and
the conditions in (6) are satisfied with≤ instead of<.
C. Fading MABRCs

The optimality of informational separation can be estab-
lished for MABRCs using the results for the MARC with
additional constraints, as indicated in the following theorem:

Theorem4. For phase fading MABRCs for which the condi-
tions in (5) hold together with

H(S1|S2,W3)≤H(S1|S2,W ) (11a)

H(S2|S1,W3)≤H(S2|S1,W ) (11b)

H(S1, S2|W3)≤H(S1, S2|W ), (11c)

the maximum achievable source-channel rateκ satisfies (6).
The same statement holds for Rayleigh fading MABRCs with
(7) replacing (5) and (8) replacing (6).

Remark5. Conditions (11) imply that for the scenario de-
scribed in Thm. 2 regular encoding and irregular encoding
yield the same source-channel achievable rates (see discussion
in Section III-B), hence the channel code construction of [14,
Section III.C] can be used.

Remark6. The proof for MABRCs differs from the achiev-
ability proof of section IV-A only due to decoding the
source sequences at the relay. This decoding follows similar
arguments to the decoding of the sources at the destination.
Conditions (11) imply that reliable decoding of the sourcesat
the destination guarantees reliable decoding of the sources at
the relay, since the relay achievable source rate region contains
the destination achievable source rate region.
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[9] D. Gündüz, E. Erkip, A. Goldsmith, and H. V. Poor. “Source and channel
coding for correlated sources over multiuser channels”.IEEE Trans.
Inform. Theory, vol. 55, no. 9, pp. 3927–3944, Sep. 2009.

[10] E. Tuncel. “Slepian-Wolf coding over broadcast channels”. IEEE Trans.
Inform. Theory, vol. 52, no. 4, pp. 1469–1482, Apr. 2006.

[11] C. Tian, J. Chen, S. N. Diggavi, and S. Shamai. “Optimality and approx-
imate optimality of source-channel separation in networks”. Submitted
to the IEEE Trans. Inform. Theory, 2010.
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