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Abstract—We consider a single hop wireless X network with
K transmitters and J receivers, all with single antenna. Each
transmitter conveys for each receiver an independent message.
The channel is assumed to have constant coefficients. We develop
interference alignment scheme for this setup and derived several
achievable degrees of freedom regions. We show that in some
cases, the derived region meets a previous outer bound and are
hence the DoF region. For our achievability schemes, we divide
each message into streams and use real interference alignment
on the streams. Several previous results on the DoF region and
total DoF for various special cases can be recovered from our
result.

Index Terms—real interference alignment, degrees of freedom
region, wireless X network, stream alignment

I. I NTRODUCTION

The wireless X network [1], models a single-hop wireless
network such that each transmitter conveys an independent
message for each receiver. All transmitter and all receivers
have single antenna. Multiple antenna extensions have been
considered [2]. The X network model includes the broadcast
channels, multiple access channels, and the interference chan-
nels as special cases. It is therefore useful to quantify the
capacity limits ofX networks. However, this is a difficult
problem because even the capacity region for the broadcast
channel, which is a special case of the X network, has not
been characterized in full generality (e.g., discrete memoryless
broadcast channel).

Simple single-letter type characterizations of capacity re-
gions for many of other multi-user information-theoretic prob-
lems have also eluded us. A recent line of attack focuses on
Gaussian networks in the asymptotic regime where the signal
to noise ratio (SNR) goes to infinity. The communication rates
are normalized bylog(SNR) to yield a quantity defined as the
degrees of freedom (DoF), or multiplexing gain [3]. The shape
of the capacity region normalized bylog(SNR) as SNR goes
to infinity is defined as the DoF region, e.g., [2]. The total
DoF and in some cases the DoF region for several channels
have been characterized recently. One important techniquefor
proving the achievability results is theinterference alignment,
which seeks to align the dimensions of interference signalsso
that more dimensions are available in the subspace unaffected
by interference.

There are several interference alignment techniques, among
which are the vector interference alignment based on beam-
forming and zero-forcing, e.g., [4], [5], and the real interfer-
ence alignment [6]–[9]. There seems to be intimate connec-
tions between the two methods.

For the DoF problem of wireless X network, several results
are available. An outer bound for multiple-input multiple-
output (MIMO) X network has been derived in [1], which
also developed schemes for achieving the maximum total DoF
for single antenna X network. For constant single-antenna
channels, a real interference alignment scheme has been used
in [9] to establish the maximum total DoF. For MIMO X
networks, outer bounds and achievability schemes have been
developed in [2] for the2 × 2 MIMO X network. The DoF
region for anM×2 X network withN1 andN2 antennas at the
two receivers is available as a special case of the result in [10].
Antenna splitting argument has been used in [1] to establish
a lower bound on the total DoF of MIMO X network.

In this paper, we focus on the single-antenna wireless X
networks, and derive several achievability schemes based on
real interference alignment. The achieved DoF regions are
shown to be tight when the number of receivers is two. Several
previous results (or their constant channel counter parts)can
be recovered as special cases.

II. SYSTEM MODEL

Notation: Throughout the paper,J andK will be integers
and J = {1, . . . , J}, K = {1, . . . ,K}. We usek, k̃, k̂
as transmitter indices, andj, j̃, ĵ as receiver indices. The
set of integers and real numbers are denoted asZ and R,
respectively. We use[dj,k] to denote a matrix with element
dj,k in the (j, k)th position, and use[dj,k]

J,K
j=1,k=1 to make the

size of the matrix explicit. Letterl will be reserved for the
index of streams (parts of a message). Throughout the paper,
a.e. means almost everywhere in the Lebesgue sense for the
channel matrix. �

Consider a single-antenna wireless X network withK
transmitters andJ receivers. For each pair(j, k) ∈ J × K,
transmitterk conveys a messagemj,k for receiver j. The
channel from transmitterk to receiverj is denoted ashj,k.
The whole set of channel coefficients is denoted as a matrix

H :=[hj,k]
J,K
j=1,k=1. (1)

All the quantities are real in this paper. SoH ∈ R
J×K .

The channel is assumed constant (non-fading) throughout the
whole transmission. Each transmitterk transmits a symbolxk,t

in time slot t ∈ Z. Each transmitter has an average power
constraintP so that for any transmission that spansN ∈ Z

symbols, the transmitted symbols satisfy

N
∑

t=1

1

N
|xk,t|

2 ≤ P, ∀1 ≤ k ≤ K. (2)
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The received signal at receiverj at time t can be written as

yj,t =
∑

k∈K

hj,kxk,t + νj,t, ∀j ∈ J (3)

where{νj,t|j ∈ J } is the set of additive noises, assumed to
be independent and identically distributed according to zero
mean Gaussian distribution with unit variance. SoP is the
per-message SNR.

A code of lengthN and message sizes[Mj,k] consists of

1) the encoders{fk|k ∈ K}, where fk is a mapping
from the set of messages to be conveyed by transmitter
k, [1,M1,k]×, . . . ,×[1,MJ,k], to the set of transmitted
symbols (codewords) inRN . All codewords satisfy the
power constraint.

2) the decoders{gj,k|j ∈ J , k ∈ K}, where gj,k is a
mapping from the setRN of received symbols at receiver
j to the set of messages[1,Mj,k] intended for receiver
j from transmitterk.

The rate of messagemj,k is defined to be

Rj,k =
1

N
log2(Mj,k). (4)

Let [Wj,k] denote a set of messages such thatWj,k is indepen-
dently and uniformly chosen from[1,Mj,k]. The probability
of errorPe of the code is defined as

Pr

[

gj,k

(

∑

k∈K

hj,kfk([Wj,k]
J
j=1) + [vj,t]

N
t=1

)

6= Wj,k

for some(j, k) ∈ J ×K

]

.

The code we have thus defined will be denoted as a

(P,N, [Mj,k], [fk], [gj,k]) (5)

code.
The degree of freedom (DoF) region for the system

is the closure of a set of points[dj,k] ∈ R
J×K such

that for any ǫ > 0, there is a sequence of codes
(P (i), N (i), [M

(i)
j,k], [f

(i)
k ], [g

(i)
j,k]) indexed by i such that as

i → ∞, the powerP (i) → ∞, and

lim
i→∞

R
(i)
j,k

0.5 logP (i)
= dj,k, ∀j ∈ J , ∀k ∈ K, (6)

and such that for alli, the probability of error is less thanǫ.

III. A CHIEVABLE DEGREES OFFREEDOM REGION

A. Statement of result

Theorem 1 (An achievable DoF region). For a K-transmitter
J-receiver constant-coefficient single-antenna wireless Xnet-
work H ∈ R

J×K , the DoF regionD satisfiesD ⊃ D(in) a.e.,
whereD(in) is a set of matrices[dj,k]

J,K
j=1,k=1 such that

1) all entries of it are non-negative;
2) ∀1 ≤ j ≤ J , the following inequality holds:

K
∑

k̃=1

dj,k̃ +
∑

j̃∈J ,j̃ 6=j

max
k

dj̃,k ≤ 1. (7)

B. Main ideas

Our achievability proof uses the following ideas:
1) We usereal interference alignment, a technique that

has been initiated in [6], and further extended for the
interference problems in [7]–[9].

2) We split each message intostreams, where all streams
have the same have the same DoF. This allows us to
design achievability schemes for unequal DoFs. This
idea has been used in e.g., [11].

3) The interference alignment at the receivers is stream-
based. Several streams from different transmitters are
aligned. Streams from the same transmitter are never
aligned. Otherwise decodability of the aligned messages
at other receivers will be compromised.

4) We use a construction that involves “dimension padding”
to guarantee that all streams have the same DoF.

C. The proof

We prove that for any[dj,k] ∈ D(in), [dj,k] is achievable.
We assume that all the elements of[dj,k] are rational numbers.
Otherwise, if some elements are irrational, the proof here can
be used to establish achievability of a point that is arbitrarily
close to[dj,k].

Under the rational assumption, we can find an integerκ
such that for allj ∈ J and all k ∈ K, d̄j,k :=κdj,k is a
non-negative integer.

ENCODING: For each(j, k) ∈ J × K, the messagemj,k is
divided into d̄j,k parts as{mj,k,l, l = 1, . . . , d̄j,k}. Each part
is called astream. The signal emitted by transmitterk is in
the following form

xk =
∑

j∈J

xj,k =
∑

j∈J

d̄j,k
∑

l=1

αj,k,lxj,k,l (8)

wherexj,k,l carries the symbols of streaml of the message
from transmitterk to receiver j, and {αj,k,l} are design
parameters that can be chosen randomly, independently, and
uniformly from the interval[ 12 , 1]. The symbolxj,k,l is gen-
erated using elements (calleddirections[9]) specified in a set
Tj,k,l (to be specified later) as follows:

xj,k,l =
∑

δb∈Tj,k,l

δbuj,k,l,b (9)

whereuj,k,l,b ∈ {λq|q ∈ Z,−Q ≤ q ≤ Q}, andQ and λ
are parameters to be specified appropriately later to satisfy
the rate and power requirements. In the summation in (9), we
have assumed that the directions inTj,k,l have been indexed
from 1, and b is the index of the direction ofδb. The exact
indexing scheme is of no importance.

STREAM ALIGNMENT : Consider an arbitrary receiver̂j. The
signal dimensions situation is shown in Fig. 1. The useful
signals have DoF

∑

k∈K d̄ĵ,k. The interferences coming from
different transmitters are shown on the right. The streams
intended for the same receiverj 6= ĵ are aligned together
at receiver̂j.

DIMENSION PADDING: To facilitate the construction of the
transmission directions, we introduce an idea that we term
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︸ ︷︷ ︸

useful signals

d̄ĵ,1

. . .

d̄ĵ,K

. . . . . .

. . . . . .

. . . . . .

...

aligned stream

︸ ︷︷ ︸

interference

d̄ĵ,2

...

d̄2,2

d̄2,1

d̄1,2

d̄1,1

d̄1,K d̄2,K

d̄J,2

d̄J,1

d̄J,K

Fig. 1. Interference alignment at receiverĵ

dimension padding. Specifically, we notice that in the interfer-
ence part in Fig. 1, the messages intended for the same receiver
j 6= ĵ in general do not have the same number of streams.
To make sure that such disparity does not lead to difference
in the achieved DoF for these messages, we introduce some
fictitious streams so that with these additional streams the
constructed transmission symbols for allactualstreams use the
same number of directions. These fictitious streams only aid
in the construction of the transmission directions. No symbols
are transmitted for these streams, otherwise the useful signal
space dimension will become smaller (the interference space
dimension remains unchanged though).

More specifically, we assume all messages{mj,k|k ∈ K}
intended for receiverj has the same numbersj of streams,
where

sj = max
k

d̄j,k. (10)

For transmitterk, the first d̄j,k of these sj streams are
actual transmitted streams. The remaining ones (if any) are
virtual streams, whose transmitted symbols are all set to zero
[c.f. (9)]:

uj,k,l,b = 0, ∀l ∈ [d̄j,k + 1, sj ]. (11)

We assume thatαj,k,l is assigned for a virtual stream in the
same way as for an actual stream.

TRANSMIT DIRECTIONS: We design the directionsTj,k,l used
by streammj,k,l to contain and only contain directions of the
following form:

T =
∏

ĵ∈J ,ĵ 6=j

∏

k̂∈K

(

h
ĵ,k̂

α
j,k̂,l

)p
ĵ,k̂,j,k,l

(12)

where
0 ≤ p

ĵ,k̂,j,k,l
≤ n− 1, (13)

∀ĵ ∈ J , ĵ 6= j, ∀k̂ ∈ K. It can be seen that there are totally
nK(J−1) directions inTj,k,l for all (j, k, l). The reason for
doing dimension padding can be seen more clearly now as
it leads to the same number of directions to be used by all
streams. This will guarantee that each stream corresponds to
the same DoF in the final result.

ALIGNMENT VERIFICATION: The proposed design above
guarantees that the interferences created by messages intended
for the same receiver are aligned as desired at all receivers. To

see this, defineTĵ,j,l to contain directions described by (12)
but with

0 ≤ p
ĵ,k̂,j,k,l

≤ n, (14)

for all (ĵ, k̂, j, k, i). According to (9), a symbol from stream
(j, k, l) is transmitted in a direction of the formαj,k,lT where
T is as in (12). This symbol will arrive at receiver̂j in
the direction of

(

hĵ,kαj,k,l

)

T , which is in Tĵ,j,l because

the power for
(

hĵ,kαj,k,l

)

will be simply increased by one
after the symbol goes through the channel. Note that not all
directions in Tĵ,j,l will be occupied by interference so the
effective number of interference dimensions is smaller than
the number of elements inTĵ,j,l. However, this does not affect
the calculation of the achievable DoF.

DECODABILITY : The useful signals at receiver̂j will be
generated by directions inT ′

ĵ
, where

T ′
ĵ
=
⋃

k∈K

(

hĵ,kαĵ,k,l

)

Tĵ,k,l . (15)

Since none of theTĵ,k,l contains a generator
(

hĵ,kαĵ,k,l

)

[recall the conditionĵ 6= j in (12)], and for differentk,
(

hĵ,kαĵ,k,l

)

are different, we conclude thatT ′
ĵ

is rationally

independent of
⋃

j,l Tĵ,j,l. Therefore, all the useful signals are
decodable in the noiseless case a.e..

The total rational dimensionsDĵ of both the useful signals
and the interference at any receiverĵ is

Dĵ ≤

K
∑

k̃=1

d̄ĵ,k̃n
K(J−1) +

∑

j∈J ,j 6=ĵ

max
k

d̄j,k(n+ 1)K(J−1).

We define

S = max
ĵ∈J





K
∑

k̃=1

d̄ĵ,k̃ +
∑

j∈J ,j 6=ĵ

max
k

d̄j,k



 , (16)

which is an upper bound on the total number of useful signal
streams and interference streams (multiple aligned streams are
counted as one), maximized over all receivers. For any DoF
point in D(in) that satisfies (7), we haveS ≤ κ. As a result,
we have

Dĵ ≤ S(n+ 1)K(J−1) ≤ κ(n+ 1)K(J−1) (17)
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With reference to the constellation symbols in (9), if we
choose

λ = P
1
2 /Q (18)

then we can guarantee that the power constraint is satisfied.
In addition, if for anyǫ ∈ (0, 1) we choose as in e.g., [9],

Q = P
1−ǫ

2(m+ǫ) , (19)

wherem is an integer, then we can guarantee that the DoF
per stream is 1−ǫ

m+ǫ
. Choosingm = κ(n + 1)K(J−1), the

hard decoding error probability for the constellation symbols
decreases to zero asP → ∞ due to the Khintchine-Groshev
type Theorems, see the discussion in e.g., [8], [9], and the
DoF of the messagemj,k can be arbitrarily close to

lim
n→∞

d̄j,kn
K(J−1)

κ(n+ 1)K(J−1)
=

d̄j,k
κ

= dj,k, (20)

for all j ∈ J andk ∈ K. This completes the proof. �

IV. EXTENSIONS

The alignment scheme presented in Sec. III is only one
possible alignment schemes within the class of real alignment.
We have aligned the messages intended for the same receiver.
However this is not always optimal and not necessary either.
We propose some extensions of the alignment scheme that can
yield potentially larger achievable DoF regions.

A. Permuted alignment

To see the insufficiency of the alignment scheme in Sec. III,
consider a3 × 3 X network. If we set all messagesmj,k to
have rate zero wheneverj 6= k, then it becomes a 3-user
interference channel. It is known [5] that per user DoF 1/2 is
achievable. Therefore, the following DoF point is within the
DoF region of the3× 3 X network:

[dj,k]
T =





1
2 0 0
0 1

2 0
0 0 1

2



 . (21)

However, it can be seen that this point cannot be achieved
using the scheme in Sec. III. To achieve this point, we can
arrange the individual DoFs in each row so that it looks as
follows (c.f. Fig. 1):





d1,1 d2,1 d3,1
d2,2 d1,2 d3,2
d3,3 d1,3 d3,3



 =





1
2 0 0
1
2 0 0
1
2 0 0



 . (22)

Note the matrix has been shown in its transposed form to
agree with the Fig. 1. The permutations applied to different
rows can be different. To see that this point is achievable,
we can check e.g., the situation at receiver 1 as depicted (for
illustration only) in the following





1
2 − −
− 0 −
− − 0





∣

∣

∣

∣





− 0 0
1
2 − 0
1
2 − 0



 (23)

where the left part is the signal dimensions, and the right part is
for the interference dimensions. The minus signs are a place
holder that means “no signal”. The dimensions on the left

d1,3 d2,3 d3,3 d4,3

d1,1

d1,2 d2,2

︸ ︷︷ ︸

1/10

4/10
︷ ︸︸ ︷

Fig. 2. Staggered alignment

(12 , 0, 0) are(d1,1, d1,2, d1,3), the DoF’s that receiver 1 needs.
These entries have been removed from the right part (replaced
with minus signs). Counting the total dimensions by taking the
maximum of all the DoF on each column, treating minus as
0, we have

1

2
+ 0 + 0 +

1

2
+ 0 + 0 = 1, (24)

which is acceptable. Similar verification can be performed for
receiver 2 and 3 as well. As a result, the point as in (21) is
achievable. Formally, we state without proof the following.

Theorem 2 (Permuted Alignment). For a K-transmitterJ-
receiver constant-coefficient single-antenna wireless X net-
work H ∈ R

J×K , the DoF regionD satisfiesD ⊃ D(in)
0 a.e.,

whereD(in)
0 is a set of matrices[dj,k]

J,K
j=1,k=1 such that

1) All entries of it are non-negative;
2) There existsK permutations ofJ objects{σk(·)|k ∈ K}

such that∀1 ≤ ĵ ≤ J , the following inequality holds:

K
∑

k̃=1

dĵ,k̃ +
∑

j̃∈J

maxIj̃ ≤ 1, (25)

whereIj̃ :={dj,k|k ∈ K, j ∈ J , j 6= ĵ, σk(j) = j̃}.

It should be obvious that if we choose the permutations to
be the identity mapping (no permutation), then the result in
Sec. 1 is recovered. For the purpose of comparison, we will
term the alignment scheme in Sec. III thenatural alignment.

B. Staggered alignment

In both the natural alignment and the permuted alignment,
any message from any single transmitter is aligned with one
and only one message from another transmitter. However, this
can be generalized. It is possible to align two users’ messages
so that one message from the first user is aligned with multiple
messages from the other user.

Staggered alignment can achieve DoF point that are not
achievable using the natural or permuted alignments. Consider
a 3× 4 X network. The point[dj,k] as follows

[dj,k]
T =

1

10





4 0 0 0
2 2 0 0
1 1 1 1



 (26)

is in the DoF region. This can be established using a stag-
gered alignment scheme as shown in Fig. 2. Using permuted
alignment without message staggering, a DoF point that is
proportional to the matrix in (26) will have a coefficient1/11
instead of1/10 in front.
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V. D ISCUSSION

A. Some special cases

An outer bound for the wireless X channel has been derived
in [2]. It states that∀j ∈ J , ∀k ∈ K:

K
∑

k̃=1

dj,k̃ +

J
∑

j̃=1

dj̃,k − dj,k ≤ 1. (27)

This result can be written in an alternative form as
K
∑

k̃=1

dj,k̃ +max
k

J
∑

j̃∈J ,j̃ 6=j

dj̃,k ≤ 1, ∀j ∈ J . (28)

1) K × 2 X channel

Comparing (7) and (28), it can be seen that the inner bound
does not meet the outer bound in general. However, there are
some special cases where they do meet. One such case is when
J = 2. In this case, both bounds are given by

K
∑

k̃=1

d1,k̃ +max
k

d2,k ≤ 1, (29)

K
∑

k̃=1

d2,k̃ +max
k

d1,k ≤ 1. (30)

We summarize the result in the following.

Theorem 3 (DoF Region ofK × 2 X Network). The DoF
region of theK×J wireless X network whenJ = 2 is a.e. the
set of[dj,k]

2,K
j=1,k=1 that have non-negative entries and satisfy

both (29) and (30).

2) Some boundary points on the general DoF region

Another case where the two bounds (7) and (28) meet is when
dj,k = d

j,k̂
, for all j ∈ J and for allk, k̂ ∈ K. We have:

Theorem 4 (Some Boundary Points). The DoF region of the
K×J wireless X network a.e. has the following points on the
boundary:[dj,k]

J,K
j=1,k=1 such that

i) all entries are non-negative;
ii) dj,k = d

j,k̂
, for all j ∈ J and for all k, k̂ ∈ K;

iii) (K − 1)maxj∈J dj,1 +
∑

j∈J dj,1 = 1.

This is true for Lebesgue almost everywhereH ∈ R
J×K .

If we set all dj,k = 1/(J + K − 1), then we recover the
total DoF ofd(total) = JK/(J +K − 1) of [1], [9].

B. Extensions

It is possible to extend the result in the paper to cases where
each transmitter emits an arbitrary number of messages, and
each receiver may request an arbitrary subset of the messages
emitted by all the transmitted. This can be termed the wireless
X network with multicast, or wireless X network with general
message demands. For the case where each transmitter emits
only one message, and the channel varies with time, the DoF
region for time-varying channel has been obtained in [11].
The same DoF region, but for a constant coefficient channel,
can be derived using the technique developed in this paper.
As a special case of that, the DoF region result ofK-user
interference channel with single antennas [12] can also be
recovered.

VI. CONCLUSIONS

We have derived some achievability results for the wireless
X network with single antennas. Each message is split into
multiple streams, and achievability is established using real
interference alignment of the streams. The streams emittedby
a single transmitter can be “shuffled” to determine the align-
ment position with respect to streams from other transmitters.
Such rearrangement allow for higher DoF in some cases. It
is not known whether the presented schemes are sufficient to
achieve all points in the DoF region. However, we showed
that when the number of receivers is equal to two, then the
achieved region is actually the DoF region. We also showed
that certain boundary points in the general DoF region can be
achieved using the proposed schemes. Closing the possible gap
would be a meaningful objective. It would also be interesting
to investigate the multiple antenna cases. Quantifying theDoF
region of the general wireless X network with arbitrary number
antennas at each node, and with general message demands,
would be a useful result.

Acknowledgement:The work in this paper was supported in
part by the NSF grant No. 1128477.
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