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Abstract—The separated restricted two-way relay channel
(TWRC) has two sources that are outside of radio range and
must communicate with the help of a relay. The relay is
limited to perform memoryless operations on its received symbols
to compute its channel input. Relay functions optimizing the
achievable sum rate for both sources are investigated for binary
antipodal signaling and pulse amplitude modulation (PAM). The
results are compared to the performance of Amplify & Forward
(AF), Estimate & Forward (EF) and Detect & Forward (DF).

I. INTRODUCTION

The two-way relay channel (TWRC) incorporates

challenging problems such as multiple access, broadcast

and coding with side information. It is a suitable model for

many applications, such as satellite communication. In this

work, we focus on the separated restricted TWRC where

the source nodes cannot hear each other’s transmissions and

input symbols are chosen independently.

Rankov et al. [1] evaluated achievable rate regions for the

TWRC by using classical relaying strategies such as Decode &

Forward, Compress & Forward and Amplify & Forward. Apart

from these schemes, novel relay strategies based on lattice

coding [2]–[4] and nonlinear memoryless relaying [5]–[9] have

been introduced.

For practical systems, Amplify & Forward is a popular

choice because it is independent of the modulation and coding

scheme of the sender and does not require decoding operations

at the relay. Motivated by the reduced complexity and delay

involved, we concentrate on memoryless relaying.

A. Memoryless Relaying

Memoryless [5] or instantaneous relaying [6], [10] refers

to the case where received symbols are forwarded on a

symbol-by-symbol basis. The relay transmits an analog symbol

depending on a single received symbol.

For example, Amplify & Forward (AF) [11] has the relay

linearly scale the received symbol. In general, nonlinear relay

functions improve performance [5]: For example, for BPSK

signaling, the binary XOR-operation turn out to be a good

choice. This concept, often called physical layer network

coding [7] or analog network coding [8] can be generalized

to higher order modulation schemes.

For the one-way Gaussian relay channel without direct link,

the optimal memoryless relay operation in terms of minimal

uncoded bit error rate for binary antipodal signaling was

derived in [12]. The authors of [5] extended these results to

the separated TWRC and compared different approaches in

terms of bit error rate. Minimum mean square error (MMSE)

forwarding for the one-way relay channel was considered both

without [13] and with [14] a direct link between source and

destination. The technique is also referred to as Estimate &

Forward (EF). If the relay performs hard decisions on the

received symbol, the corresponding memoryless technique is

called Detect & Forward (DF).

In both [13] and [5] EF almost maximizes the mutual

information for the one-way relay channel and uncoded bit

error probability for the TWRC, respectively. Our results

suggest that EF also almost maximizes the mutual information

for the TWRC in some cases. In [15], the authors investigated

the performance of EF in a coded system and considered

further implementation aspects.

B. Contribution

Our goal is to find relay functions that maximize mutual

information expressions for both node pairs. We numerically

optimize relaying functions for different scenarios and

modulation formats, extending ideas from [6] to discrete pulse

amplitude modulation (PAM). Memoryless relaying techniques

such as AF, EF and DF are compared in terms of their

achievable sum rate.

II. SYSTEM MODEL

Consider two source nodes T1 and T2 that communicate

with each other via a relay but cannot hear each other’s

transmissions. This channel model is sometimes called a

separated TWRC [16]. The messages W1 ∈ {1, 2, . . . , 2nR1}
and W2 ∈ {1, 2, . . . , 2nR2} shall be exchanged in n channel

uses. These messages are encoded in codewords Xn
1 ∈ Xn

1

and Xn
2 ∈ Xn

2 , which are functions of W1, W2, respectively.

All devices operate in full-duplex mode. Note that the system

model can easily be extended to the half-duplex case as well.

The received signal after the matched filter at the relay is

Yr,t = X1,t +X2,t + Zr,t = Vt + Zr,t (1)

for time instant t = {1, 2, . . . , n}, where Xj,t ∈ Xj is the

channel input for source Tj and Yr,t ∈ Yr the output at

the relay. Vt denotes the sum signal X1,t + X2,t, its set V
is determined by X1 and X2. We consider one-dimensional

modulation schemes. Zr,t ∼ N (0, Nr) denotes a real-valued

Gaussian noise random variable. The relay processes only a



single receive symbol to a single transmit symbol via the

memoryless relay function f :

f : Yr → Xr (2)

We refer to f as the relay mapping. The output of the

mapping is then broadcasted to both sources. For simplicity,

we assume in Eq. (2) that the relay mapping operates

noncausally; this is only to simplify notation.

The received signal at source Tj is

Yj,t = f(Yr,t) + Zj,t (3)

where Zj,t ∼ N (0, Nj). The average transmit power of

the sources and the relay is given by Pj = E{X2
j,t},

Pr = E{f2(Yr,t)}, respectively. In the following, we omit the

time index t, as we always consider one symbol at a specific

time instant.

The channels in Eqs. (1) and (3) are additive white Gaussian

noise (AWGN) channels with channel gains equal to one. We

do not consider different channel gains in our model, as they

can be expressed as different power and noise levels of the

nodes.

III. OPTIMIZED SCHEMES

A. Continuous Problem

The authors in [6] optimize the rate region achieved with

memoryless relaying for the two-way channel and Gaussian

signaling. In this work, we focus on optimized mappings for

pulse-amplitude modulation (PAM). We take BPSK and 4PAM

as concrete examples.

Shannon showed in [17] that the rate region R is achievable

for the memoryless two-way channel, where R denotes the set

of all rate tupels (R1, R2) satisfying

0 ≤ R1 < I(X1;Y2|X2)

0 ≤ R2 < I(X2;Y1|X1) (4)

for the product distribution p(x1, x2) = p(x1)p(x2). If the

sum rate is chosen as the measure of performance, a utility

can be defined as

U(f) = I(X1;Y2|X2) + I(X2;Y1|X1). (5)

The relay mapping effectively changes the channel

p(y1, y2|x1, x2), so the optimization problem as in [6] can

be stated as

maximize U(f)

subject to: E{f2(Yr)} ≤ Pr. (6)

The last inequality restricts f : R → R to satisfy the relay’s

power constraint.

The problem in Eq. (6) is a variational problem that

seems to be analytically intractable. Also, determining U(f)
analytically for a given relay mapping f can be a difficult

problem: A closed form solution for the integral that

determines the conditional distributions p(y2|x2) and p(y1|x1)
is available only in special cases. We thus focus on numerically

solving a discretized approximation of problem (6).

B. Discretized Approximation

A digital implementation of the memoryless relay function

has received symbols at the relay analog-to-digital (AD)

converted and passed into a digital signal processor. The

corresponding output symbol is then digital-to-analog (DA)

converted and passed to the amplifier. The cardinalities of all

random variables are finite and represent the resolution of the

AD and DA converters, respectively.

In order to have a finite-dimensional optimization problem

over a continuous space, we require the range of f to be the

real numbers, so f : Yr → R. The approach presented can

thus be seen as the limit of a finite-precision AD converter

and infinite precision DA converter.

The relay mapping f can thus be represented by a vector

f = (fi)i=1,...,|Yr | ∈ R
|Yr |. Each possible quantized receive

value yri ∈ Yr is mapped to fi, i.e. fi = f(yri).

Due to the quantization at the receiver, the conditional

probability densities convert to probability mass functions.

Assuming a uniform quantization with interval length ∆, we

can express the conditional probability mass function for the

AWGN channel as

p(yr|x1, x2) = Q
(

yr−∆/2−(x1+x2)√
Nr

)

−Q
(

yr+∆/2−(x1+x2)√
Nr

)

for each yr ∈ Yr, where Q(x) = 1√
2π

∫∞
x exp

(

− z2

2

)

dz.

At the boundaries we obtain slightly different expressions

taking into account the overload terms. Similarly, we have

p(yj |yr) = Q

(

yj−∆/2−f(yr)√
Nj

)

−Q

(

yj+∆/2−f(yr)√
Nj

)

.

The remaining probability mass functions can be computed

by marginalization.

The utility U(f) is given by

U(f) = I(X1;Y2|X2) + I(X2;Y1|X1). (7)

The discretized version of the optimization problem (6) is

given by

maximize U(f)

subject to: fTQf ≤ Pr, (8)

where Q � 0 is a diagonal positive semidefinite matrix with

the diagonal entries Qii = Prob(Yr = yri) ≥ 0.

There are different ways to approach problem (8): The

authors in [6] run a fixed-point iteration scheme that is based

on the Lagrangian of problem (8). We take an alternative

approach and find solutions via the projected gradient method

[18, Sect. 2.3]. The update rule is

fk+1 = P
{

fk + αk
∂U(fk)

∂f

}

, (9)

where P{.} defines a projection onto the feasible set and αk

denotes a suitably chosen diminishing stepsize.

The derivative with respect to a single element of the vector



f , denoted ∂U
∂fi

, is given by

∂U

∂fi
∝
∑

x1

∑

x2

∑

y2

p(y2, yri, x1, x2)
y2 − fi
N2

log
p(y2|x1, x2)

p(y2|x2)

+
∑

x1

∑

x2

∑

y1

p(y1, yri, x1, x2)
y1 − fi
N1

log
p(y1|x1, x2)

p(y1|x1)
.

(10)

The update in Eq. (9) can be computed efficiently if the

projection P{.} can be easily found. Fortunately, the feasible

set S = {f |fTQf ≤ Pr} is convex and thus the projection

can be expressed as finding the closest point fk+1 ∈ S to

f̄k = fk + αk
∂U
∂f , corresponding to the following problem:

P{.} : minimize ‖ fk+1 − f̄k ‖
subject to: fk+1,TQfk+1 ≤ Pr. (11)

We can solve this problem with a standard convex

optimization solver such as CVX [19]. The update rule of the

projected gradient ascent in Eq. (9) is stopped if ‖ fk+1−fk ‖
is sufficiently small.

Depending on the initialization, we observe that the

algorithm converges to different local optima resulting in

different sum rates. It is therefore important to have a good

starting point before launching the optimization procedure. In

our simulations, we observed that initializations corresponding

to the strategies summarized in the next section are a good

choice. Additionally, the method can be used to check if a

certain mapping is a local optimum.

IV. STRATEGIES

In this section, we summarize different memoryless

strategies to be compared in Sec. VI.

A. Amplify & Forward (AF)

The AF relay mapping is given by

fAF (yr) = Kyr, (12)

where the constant K =
√

Pr

P1+P2+Nr
ensures that the

power constraint at the relay is satisfied. The received signal

at source Tj is given by yj = K(xj + xi + zr) + zj.
After subtracting the own signal, this scheme can be

interpreted as transmission over an AWGN channel with

effective SNR of γAF,j =
K2Pj

K2Nr+Ni
The achievable

sum-rate is thus limited by C(γAF,1) + C(γAF,2),
where C(·) = 1

2 log2(1 + ·) denotes the capacity for the

one-dimensional AWGN channel with Gaussian input.

B. Detect & Forward (DF)

A DF relay makes hard decisions on the received symbol.

Assume both sources use the same modulation format with M
equally-spaced discrete constellation points. For the sum signal

V = X1 +X2, there are at most M2 discrete points if each

combination of the sum of input symbols is distinct. If both

users have the same power P1 = P2, the sum signal is identical

for different individual input symbols, so there are only 2M−1

discrete points for V . The number of distinct superimposed

transmit symbols V ∈ V is limited by 2M − 1 ≤ |V| ≤ M2.

One possible strategy is to assign one distinct transmit level

lj ∈ L to each different symbol vj ∈ V , i.e.

f(yr) = lj if ‖ yr − vj ‖<‖ yr − vj′ ‖, ∀vj 6= vj′ ∈ V .
(13)

We choose the transmit levels lj to be equally spaced and

satisfy the power constraint at the relay. The number of

different transmit levels |L| can be reduced if the side

information available at the sources is taken into account.

In the noiseless case, given either X1 or X2, there are only

M distinct possible sum symbols V . The number of transmit

levels can thus be reduced to |L| = M . As already pointed out

in [5], one can define a function g(v) that uniquely determines

x2 given x1 and vice versa. Precisely, the function ensures that

H(X2|g(V ), X1) = H(X1|g(V ), X2) = 0.

The function g(v) defines a network coding operation for

the noiseless case. Finding such a function g(v) corresponds

to a graph coloring problem in a suitably defined graph,

each color representing a certain transmit level. Due to space

limitations, we refer to [5] for details, but provide a relevant

example: For 4PAM and P1 = P2, the set of possible sum

symbols is given by V = {−6a,−4a,−2a, 0, 2a, 4a, 6a} for

some a > 0 depending on the power. There is only one valid

coloring with M = 4 levels, corresponding to the partitioning

P1 = {−6a, 2a}, P2 = {−4a, 4a}, P3 = {−2a, 6a},

P4 = {0} with
⋃M

j=1 Pj = V . One transmit level lj is

assigned to each partition Pj :

g(v) = lj , if v ∈ Pj (14)

The DF relay mapping is thus defined as

fDF (yr) = g(v), if ‖ yr − v ‖<‖ yr − v′ ‖, ∀v, v′ ∈ V .
(15)

Note that the assignment of transmit levels and partitions can

be permuted, resulting in different sum rates. In our numerical

results, we use the assignment with the best performance.

C. Estimate & Forward (EF)

If the relay forwards an MMSE estimate of a function of

the received signal, the strategy is called Estimate & Forward

[13]. For BPSK, we consider only the MMSE estimate of the

absolute value of the symbol, like in [5], [15].

For P1 = P2 = P , the BPSK EF mapping is given by

fEF (yr) = K(E{|X1 +X2||Yr = yr} − c)

= K





2
√
P cosh

(

2
√
Pyr

Nr

)

e2P/Nr + cosh
(

2
√
Pyr

Nr

) − c



 . (16)

K again denotes a constant to take into account the power

constraint. The constant shift c is chosen to minimize the relay

signal power. For PAM, we consider the EF mapping like in

[5], which is defined as the MMSE estimate of a function of

the input signal



fEF (yr) = K(E{g(X1 +X2)|Yr = yr} − c) (17)

with g(·) as defined in Eq. (14).

An example of a DF mapping and corresponding EF

mapping for 4PAM is shown in Fig. 1.

V. UPPER BOUNDS

Based on the cut-set bound [20], the following bounds can

be obtained:

R1 < min{I(X1;Yr|X2), I(Xr;Y2)}
R2 < min{I(X2;Yr|X1), I(Xr;Y1)} (18)

The channels corresponding to I(X1;Yr|X2) and I(Xr;Y2)
are AWGN channels for which Gaussian inputs give a capacity

upper bound. The achievable rates are thus limited by

R1 < min{C(P1/Nr), C(Pr/N2)}
R2 < min{C(P2/Nr), C(Pr/N1)} (19)

We include the upper bounds in the plots in Fig. 2c and Fig. 2d.

VI. NUMERICAL RESULTS

We investigate the achievable sum rates of the relay

mappings given in Sec. IV. Moreover, we check whether these

mappings can be further improved by using them as initial

values for the optimization routine presented in Sec. III.

We investigate two different scenarios:

• In Scenario 1, uplink and downlink SNR are

simultaneously scaled, i.e. P1 = P2 = Pr,

N1 = N2 = Nr. The SNR P1/N1 ranges from 0

to 20 dB.

• In Scenario 2, the downlink SNR is fixed at Pr/N1 =
Pr/N2 = 12dB. The symmetric uplink SNR P1/Nr =
P2/Nr ranges from 0 to 20 dB.

A uniform quantizer with 64 intervals is used at the relay.

For Scenario 1 and BPSK signaling, results are shown in

Fig. 2a. We plot the achievable sum rate for each strategy

described in Sec. IV. Additionally, we plot the sum rate

achieved by the locally optimal relay mapping that was

found by taking AF, DF and EF as initialization. We observe

that EF dominates DF and AF over the whole SNR range.

Furthermore, we observe that the local optimum starting from

AF as initial value is still worse than DF and EF. The local

optimum found when starting from DF is essentially equal to

EF. With EF as initialization, no significant improvement can

be achieved. We could not find a mapping with higher sum

rate than EF as defined in Eq. (16) for BPSK in this scenario.

Considering 4PAM in Fig. 2c, we see that surprisingly AF is

superior to both DF and EF for low SNR. However, we also

note that the local optimum found with EF as initialization

essentially achieves the same sum rate. The EF optimum is

close to the best observed performance over the whole SNR

range. An example of initial EF and DF mappings and the

corresponding local optimum is shown in Fig. 1. In this case,

essentially the same optimum is achieved. We also note that

BPSK results in better rates than 4PAM and Gaussian signaling

for low SNR. This could be adapted by optimizing the input

distribution of 4PAM.
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Fig. 1: Relay Mappings for DF and EF for 4-PAM in Scenario

1 and a SNR of 9dB.

For Scenario 2, BPSK results are shown in Fig. 2b. Unlike

Scenario 1, EF is not optimal here as AF gives better sum

rates for low SNR. For higher SNR, EF becomes the best

observed mapping. Unfortunately, no local optimum is optimal

over the whole SNR range. Similarly for 4PAM in Fig. 2d:

AF is superior to EF for low SNR. At approximately 12dB,

as the downlink starts having smaller SNR than the uplink,

EF dominates AF again. We observe that the local optimum

found with EF as initial value performs well for low and high

SNR. Interestingly, Gaussian signaling combined with AF is

suboptimal and significantly worse than EF for 4PAM.

VII. CONCLUSIONS AND FUTURE WORK

We investigated the behaviour of memoryless relaying

strategies for the two-way relay channel in terms of achievable

sum rate. We compared state-of-the-art memoryless relay

mappings and proposed numerical methods to optimize

their performance. Our results suggest that using EF as an

initialization for the optimization is a good choice in most

cases.

In general, finding an optimal mapping analytically

would be highly desirable but seems intractable. Likewise,

analytically determining SNR ranges for which a certain

memoryless strategy is superior to others would be highly

useful and is the focus of our future work.
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