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Abstract—This paper derives a saddlepoint approximation for
the random-coding bound to the error probability of channel cod-
ing by using complex-integration techniques. The approximation
is given by a sum of two terms: one with Gallager’s exponent,
and a second one with Arimoto’s strong converse exponent (above
capacity) or the sphere-packing exponent (below the critical rate).

I. INTRODUCTION

Two of the fundamental problems in channel coding are
finding the error probability attained by a given code and
characterizing the largest achievable rate compatible with
vanishing error probability. The first problem is more relevant
for practical transmission at finite blocklengths, while the
second focuses in the asymptotic regime of large blocklengths.
Since the latter regime allows for the use of analytic tools
such as random coding, it had traditionally been favored in
information theory. In the past years, however, spurred by the
construction of near-capacity achieving codes and the interest
in short-duration wireless communications, renewed attention
has been paid to Strassen’s Gaussian approximation to the
effective channel capacity [1]. This approximation has the form

Rn(ε) = C −
√
V

n
Q−1(ε) + o

(
1√
n

)
, (1)

where Rn(ε) is the effective capacity for finite blocklength n
and fixed error probability ε, C is the capacity, V the channel
dispersion, Q(x) the Gaussian tail probability function, and
the term o

(
1√
n

)
is asymptotically negligible [1], [2], [3]. In

terms of the error probability, Eq. (1) translates into

ε ≈ Q

(√
n(C −Rn)√

V

)
. (2)

While (1) accurately estimates the asymptotic behaviour of Rn
for fixed ε, Eq. (2) is less precise for fixed rate R. Significantly,
Eq. (2) does not have the correct exponential decay in n, which
is given for rates above the critical rate by

ε ≤ e−n(E0(ρ,s)−ρ̂R), (3)
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where E0(ρ, s) is Gallager’s function and ρ and s are selected
to minimize the exponent [4]. The saddlepoint approximation
provides an alternative refined estimate to (2) and (3), namely

ε . αn e
−n(E0(ρ,s)−ρ̂Rn)

(
1 + o(1)

)
, (4)

for some coefficient αn [5]. The aproximation in (4) has the
correct exponential decay in n for fixed R, i. e. that of (3),
and recovers the Gaussian approximation as Rn tends to the
capacity and ε is fixed. Overall, it yields an efficient method
to estimate the effective capacity Rn(ε) for finite n and ε.

The goal of this paper is to derive a refined form of (4)
for rates beyond the capacity and the critical rate. We start
in Sect. II by reviewing the refined random-coding union
bound to the average error probability, recently proposed by
Polyanskiy et al. [2] and derive a more tractable, weakened
form by applying Markov’s inequality. Then, in Sect. III, we
determine the rate of exponential decay of this bound with the
blocklength in terms of Gallager’s E0(ρ, s) function, as in (3).
Then, Sect. IV, the core of the paper, uses complex-integration
techniques to derive a novel refined form of (4). In contrast
with [5], where general channels and input distributions are
considered, we limit our attention to continuous channels.

Notation: Random variables are represented by capi-
tal letters and their realizations by small letters. Sequences
are identified by boldface font and their components by a
subindex, e. .g. x and xi. We denote the probability of an event
by Pr{·} and the expectation by E[·]. We may use a subindex
in the event probability or the expectation to explicitly refer
to the relevant random variables, e. g. PrA{·}. Logarithms are
in natural units and information rates in nats.

II. UPPER BOUNDS TO THE ERROR PROBABILITY

We consider coding over memoryless channels with input
x, output y, and channel transition law W (y|x).

Encoder: First, and for a given information message v,
with v ∈ {1, 2, . . . ,Mn}, the encoder outputs a codeword x
of length n, that is x = (x1, . . . , xn). The coding rate Rn is
defined as Rn , 1

n logMn.
Channel: The corresponding channel output of length

n, denoted by y = (y1, . . . , yn), is obtained from the in-
put sequence according to the channel transition probability
Wn(y|x) ,

∏n
i=1W (yi|xi).
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Decoder: Finally, the decoder selects the message v̂ with
largest decoding metric qn(x,y), where the metric is assumed
to be maximum-likelihood, i. e. v̂ = arg maxvW

n(y|x(v)),
and x(v) is the codeword associate to message v.

We study the probability that the decoder outputs a message
different from the one sent; we denote this average error
probability for a given code by ε and express it as

ε ,
Mn∑
v=1

1

Mn
Pr{v 6= v̂}. (5)

We determine achievable values of the error probability by
studying ensembles of codebooks whose Mn codewords are
independently selected according to a probability distribution
Pn(x) =

∏n
i=1 P (xi), for some P (x). For an average error

probability within the ensemble ε̄, there exists at least one
code with Mn codewords such that ε ≤ ε̄. Similarly, standard
expurgation arguments show the existence of codes with 1

2Mn

codewords whose maximal error probability at most 2ε̄.
The random coding union (RCU) bound to the average error

probability under ML decoding [2] is given by

ε ≤ rcu(n,Mn) (6)

, EX,Y

[
min

{
1, (Mn − 1)PrX̄

{
qn(X̄,Y) ≥ qn(X,Y)

}}
,

(7)

where the random variables have the respective distributions
(X,Y) ∼ Pn(x)Wn(y|x) and X̄ ∼ Pn(x̄).

We may upperbound the inner probability in (7) by using
Markov’s inequality, Pr{A ≥ ε} ≤ 1

εE[A] for non-negative A;
and in fact a tighter bound is obtained by applying Markov’s
inequality to Pr{As ≥ εs}, for some s ≥ 0. This gives

ε ≤ rcus(n,Mn) (8)

, EX,Y

[
min

{
1, (Mn − 1)

EX̄[qn(X̄,Y)s]

qn(X,Y)s

}]
. (9)

Moreover, exploiting the identity1 where we let U be
uniformly distributed in (0, 1). we may rewrite rcus(n,Mn)
in (9) as

rcus(n,Mn) = PrX,Y ,U

{
Mn − 1

U

EX̄

[
qn(X̄,Y )s

]
qn(X,Y )s

≥ 1

}
(15)

= PrX,Y ,U{Zn ≥ 0}, (16)

1Let us define W , min(1, A) and let FW (w) denote its cdf. It holds
that FW (w) = FA(w) for w ≤ 1 The expected value of W is therefore

E[W ] =

∫ 1

0
w dFW (w) (10)

= wFW (w)|10 −
∫ 1

0
FW (w) dw (11)

= 1−
∫ 1

0
FA(w) dw (12)

= 1−
∫ 1

0

(
1− PrA{A > w}

)
dw (13)

= PrA,U{A ≥ U}, (14)

where we took logarithms and let Zn , log Mn−1
U −ins (X,Y ).

Here, ins (X,Y ) denotes a generalized information density,

ins (x,y) = log
q(x,y)s

EX̄[q(X̄,y)s]
, (17)

for s ≥ 0. We have ins (x,y) =
∑n
i=1 is(xi, yi), where is(x, y)

is the corresponding symbol information density,

is(x, y) = log
q(x, y)s

EX̄ [q(X̄, y)s]
, (18)

with q(x, y) a symbol decoding metric. We focus on
Maximum-Likelihood decoding, i. e. q(x, y) = W (y|x),
although the analysis holds in more generality.

Our analysis stems from this characterization of rcus as the
tail probability of a random variable Zn. As is usual in this
context, the cumulant generating function (cgf) of Zn is of
critical importance. In this context, we observe that the cgf of
is(X,Y ) is closely related to Gallager’s E0(ρ, s) function for
distribution P and non-negative s [4], which is given by:

E0(ρ, s) = − log EX,Y

[(
EX̄ [q(X̄, Y )s]

q(X,Y )s

)ρ]
. (19)

Indeed, if we express the codeword metric as qn(x,y) =∏n
i=1 q(x, y), we then have the relationship

log E[e−ρi
n
s (X,Y )] = −nE0(ρ, s). (20)

III. EXPONENTIAL DECAY OF THE ERROR PROBABILITY

In this section we briefly deal with the rate of exponential
decay and review how to recover the bound (3). The starting
point is the Chernoff bound to the tail probability of a random
variable Zn, Pr{Zn ≥ 0}. The bound is given by

Pr{Zn ≥ 0} ≤ inf
ρ≥0

E[eρZn ] = inf
ρ≥0

{
eκn(ρ)

}
, (21)

with κn(ρ) , log E[eρZn ]. It follows that the rate of exponen-
tial decay of the probability Pr{Zn ≥ 0} is bounded as

lim
n→∞

− 1

n
log Pr{Zn ≥ 0} ≥ lim

n→∞

1

n
sup
ρ≥0

{
−κn(ρ)

}
. (22)

We use this identity to find the rate of exponential decay of
the bound rcus Es(R) for a fixed rate R such that Mn = enR:

Es(R) , lim
n→∞

− 1

n
log rcus(n,Mn) (23)

= lim
n→∞

− 1

n
log Pr

{
log

Mn − 1

U
− ins (X,Y ) ≥ 0

}
.

(24)

For memoryless channels and codebooks generated with a
distribution P (x), we can evaluate the function κn,s(ρ) as

κn,s(ρ) , log EX,Y ,U [eρ log Mn−1
U −ρins (X,Y )] (25)

= ρ log(Mn − 1)− log(1− ρ)− nE0(ρ, s), (26)



for ρ < 1. With this function, we lowerbound the limit in (24),

lim
n→∞

sup
0≤ρ<1

− 1

n

(
ρ log(Mn − 1)− log(1− ρ)− nE0(ρ, s)

)
(27)

= sup
0≤ρ<1

{
E0(ρ, s)− ρR

}
(28)

= sup
0≤ρ≤1

{
E0(ρ, s)− ρR

}
, (29)

where (28) follows from the fact that the contribution from
log(1−ρ) vanishes asymptotically and a definition of the rate
R as R = limn→∞Rn; in (29) we used continuity of the E0

function to extend the optimization range to include ρ = 1.
Finally, optimization over the remaining parameter2 s recovers
Gallager’s random-coding exponent Er(R,P ),

Er(R,P ) = sup
s≥0,0≤ρ≤1

{
E0(ρ, s)− ρR

}
. (30)

At rates below the mutual information I(P ), the exponent
in (30) is positive and transmission of information with vanish-
ing error probability can be achieved. Another important rate
is the critical rate R∗(P ), which we define as the largest rate
for which the random-coding exponent is achieved at ρ̂ = 1.

IV. SADDLEPOINT APPROXIMATION FOR THE ERROR
PROBABILITY

While the parameter ρ is real-valued in the Chernoff bound,
it may best be seen as a complex number for the purpose
of deriving the saddlepoint approximation. The cumulant
transform is then the Laplace transform of the probability
density function pZn(z), and the density function itself may
be computed as an inverse Laplace transform [6], [7], namely

pZn
(z) =

1

2πj

∫ ρ0+j∞

ρ0−j∞
eκn,s(ρ)−ρz dρ, (31)

where ρ0 < 1 from the definition of κn,s. We assume that the
information density is(X,Y ) has a density and that eκn,s(ρ) is
absolutely integrable so that the inversion formula (31) applies.
Among others, this rules out discrete channels, although
extensions along the lines of [5] are possible.

Since rcus is given by the tail above ε = 0, we compute its
value by integrating over z ∈ [0,∞),

rcus(n,Mn) =

∫ ∞
0

1

2πj

∫ ρ0+j∞

ρ0−j∞
eκn,s(ρ)−ρz dρdz (32)

=
1

2πj

∫ ρ0+j∞

ρ0−j∞

∫ ∞
0

eκn,s(ρ)−ρz dz dρ (33)

=
1

2πj

∫ ρ0+j∞

ρ0−j∞
eκn,s(ρ)

(
e−ρz

−ρ

∣∣∣∣∞
0

)
dρ (34)

=
1

2πj

∫ ρ0+j∞

ρ0−j∞
eκn,s(ρ) dρ

ρ
, (35)

where we interchanged the integration order in (33) and
required that 0 < ρ0 < 1 to guarantee convergence in (35). It
will prove convenient to define In(w), for real arbitrary w, as

In(w) ,
1

2πj

∫ w+j∞

w−j∞
en(ρR−E0(ρ,s)) dρ

ρ(1− ρ)
, (36)

2The function E0 is maximized for the choice ŝ = 1
1+ρ

for ρ > −1.

so that

rcus(n,Mn) = In(ρ0). (37)

The critical points (poles and saddlepoints) of the integrand
are of fundamental importance in our analysis. Eq. (36) has
two poles, located at ρ = 0 and ρ = 1, and a saddlepoint at
ρ = ρ̂, a minimizer3 of the exponent for fixed R and s,

ρ̂ , arg min
−∞<ρ<∞

{
ρR− E0(ρ, s)

}
. (38)

Since the exponent is a convex function of ρ [6], the root ρ̂
is given by the unique solution of the equation

E′0(ρ̂, s) =
∂E0(ρ, s)

∂ρ

∣∣∣∣
ρ=ρ̂

= R. (39)

From here onwards, we let s denote the value that minimizes
the exponent at the optimum ρ̂. For each rate R and associated
saddlepoint ρ̂, we define a rate-dependent dispersion Vρ̂ as

Vρ̂ , −
∂2E0(ρ, s)

∂ρ2

∣∣∣∣
ρ=ρ̂

= −E′′0 (ρ̂, s). (40)

At R = I(P ), we have Vρ̂ = V , the channel dispersion.
We assume that E0 is strictly convex and the dispersion is
therefore positive. This imposes no real limitation since the
information density is constant otherwise and rcus is trivial.

As we saw in Sect. III, the saddlepoint satisfies ρ̂ ∈ (0, 1)
for rates in the range R∗(P ) < R < I(P ). Then, substituting
κn,s(ρ) in (26), we can set ρ0 = ρ̂ in (37) and get

rcus(n,Mn) = In(ρ̂). (41)

If the rate R is such that ρ̂ lies outside the interval of
convergence of (35), Cauchy’s residue theorem4 allows to shift
the integration axis to ρ̂ at the cost of introducing additional
terms in (41) [7, Ch. 26]. For simple poles ρk and Γ oriented
counterclockwise in the complex plane, the theorem reads

1

2πj

∮
Γ

f(ρ) dρ =
∑
ρk

lim
ρ→ρk

(ρ− ρk)f(ρ). (42)

If ρ̂ < 0, we choose Γ as a rectangle oriented counterclock-
wise with vertices {ρ0 ± jT, ρ̂ ± jT )}, for large real-valued
T . For f(ρ) = eκn,s(ρ)ρ−1, we get

1

2πj

∮
Γ

f(ρ) dρ = lim
ρ→0

ρ
en(ρR−E0(ρ,s))

ρ(1− ρ)
(43)

= 1. (44)

The contributions from the horizontal sides of the rectangle
vanish as T →∞, since is(X,Y ) is assumed to have a density
and therefore en(zR−E0(z,s)) decays fast enough at infinity by
the Riemann-Lebesgue Lemma [6]. The remaining two sides
on Γ correspond to In(ρ0) and In(ρ̂), and we therefore obtain

lim
T→∞

1

2πj

∮
Γ

f(ρ) dρ = In(ρ0)− In(ρ̂). (45)

3This point is a saddlepoint because the function in the exponent has a
maximum at ρ̂ along the imaginary axis with real part ρ̂.

4This theorem expresses the integral of an analytic function f(ρ) over a
closed curve Γ in terms of the residues at the poles ρk enclosed by Γ.



Equivalently, combining Eqs. (42), (44), and (45), we obtain

rcus(n,Mn) = 1 + In(ρ̂). (46)

Analogously, if ρ̂ > 1, we get

In(ρ̂)− In(ρ0) = lim
ρ→1

(ρ− 1)
en(ρR−E0(ρ,s))

ρ(1− ρ)
(47)

= −en(R−E0(1,s)), (48)

instead of (44) and (45). And using again (42), we obtain

rcus(n,Mn) = en(R−E0(1,s)) + In(ρ̂). (49)

To evaluate (36), we use the identity
1

ρ(1− ρ)
=

1

ρ
+

1

1− ρ
(50)

to express In(ρ̂) as In(ρ̂) = In,0(ρ̂) + In,1(ρ̂), with

In,0(w) ,
1

2πj

∫ w+j∞

w−j∞
en(ρR−E0(ρ,s)) dρ

ρ
(51)

In,1(w) ,
1

2πj

∫ w+j∞

w−j∞
en(ρR−E0(ρ,s)) dρ

1− ρ
. (52)

These integrals are estimated by expanding the exponents
in (51)–(52) as a Taylor series around ρ̂, neglecting terms of
order higher than 2, and estimating the error made by this
truncation. We focus on (51), as the analysis of (52) is similar.
The Taylor expansion of the exponent directly gives

ρR− E0(ρ, s) = ρ̂R− E0(ρ̂, s)− 1

2
E′′0 (ρ̂, s)(ρ− ρ̂)2 + r(ρ),

(53)

where we used (39) and r(ρ) is a remainder-term function.
Within a proportionality factor an , en(ρ̂R−E0(ρ̂,s)), we get

In,0(ρ̂) = an
1

2πj

∫ ρ̂+j∞

ρ̂−j∞
e−

1
2nE

′′
0 (ρ̂,s)(ρ−ρ̂)2enr(ρ)

dρ

ρ
(54)

= an
1

2π

∫ ∞
−∞

e
1
2nE

′′
0 (ρ̂,s)ρ2enr(ρ̂+jρ)

dρ

ρ̂+jρ
(55)

≈ an
1

2π

∫ ∞
−∞

e
1
2nE

′′
0 (ρ̂,s)ρ2 dρ

ρ̂+jρ
, (56)

after changing the integration variable from ρ to ρ− ρ̂ in (55)
and neglecting the remainder to obtain (56).

Next, we multiply and divide the integrand by ρ̂−jρ, find
the contribution with imaginary part to vanish since it is an
odd function of ρ, and evaluate the integral in (56) as [6]

1

2π

∫ ∞
−∞

e
1
2nE

′′
0 (ρ̂,s)ρ2 dρ

ρ̂+jρ
= ρ̂

1

2π

∫ ∞
−∞

e
1
2nE

′′
0 (ρ̂,s)ρ2 dρ

ρ̂2 + ρ2

(57)

= Q̄
(
nρ̂E′′0 (ρ̂, s)

)
, (58)

where Q̄(x) is a modified Gaussian tail function, defined as
Q̄(x) , sign(x) 1

2erfc
(
|x|√

2

)
e

x2

2 .

Summarizing, we have

In,0(ρ̂) ≈ Q̄
(
nρ̂E′′0 (ρ̂, s)

)
en(ρ̂R−E0(ρ̂,s)). (59)

The analysis of In,1(ρ̂) follows similar steps and yields

In,1(ρ̂) ≈ Q̄
(
n(1− ρ̂)E′′0 (ρ̂, s)

)
en(ρ̂R−E0(ρ̂,s)). (60)

The combination of (59) and (60) with (36), (46), and (49)
yields our saddlepoint approximation to the random-coding
refined union bound rcus(n,Mn) for fixed rate R,

rcus(n,Mn) ≈ γn + αne
−n(E0(ρ̂,s)−ρ̂R) (61)

γn =


1 ρ̂ < 0

0 0 < ρ̂ < 1

en(R−E0(1,s)) ρ̂ > 1

(62)

αn =
(
Q̄
(
ρ̂
√
nVρ̂

)
+ Q̄

(
(1− ρ̂)

√
nVρ̂

))
. (63)

The approximation is continuous in ρ̂. For ρ̂ = 0, i. e. R =
I(P ), we determine its value by considering the limit ρ̂→ 0,
as the limits from above and below coincide. Similarly, for
R = R∗(P ), we find the value at ρ̂ = 1 from the limit ρ̂→ 1.

An alternative, slightly simpler form of the approximation
is obtained by considering the asymptotic approximation to Q̄
for large absolute values of its parameter x:

Q̄(x) =
1

2
√
πx

(
1− 1

2x2
+

3

4x4
− 15

8x6
+O(x−8)

)
. (64)

Keeping only the dominant term in (64), we rewrite (63) as

αn ≈
1

2ρ̂(1− ρ̂)
√
πnVρ̂

. (65)

This form of the coefficient makes it apparent that its sign is
positive for ρ̂ ∈ (0, 1) and negative if ρ̂ < 0 or ρ̂ > 1.

The exponent of the approximation coincides with that in
Sect. III, as it should. In contrast to the analysis in [5],
which was of the form (4), the approximation in (61) contains
two summands in general. One of them, if non-zero, has a
non-dominant exponent that coincides with that of Arimoto’s
strong converse [8] or that of the sphere-packing exponent [4,
Ch. 5] for values of the rate beyond the mutual information
I(P ) or the critical rate R∗(P ) respectively. Further investiga-
tion of this phenomenon, as well as full treatment of the lattice
information densities and a refined appraisal of the error term
made in the approximation itself, are left for future work.
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