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Cache-enabled Small Cell Networks: Modeling

and Tradeoffs

Abstract

We consider a network model where small base stations (SBSs) have caching capabilities as a

means to alleviate the backhaul load and satisfy users’ demand. The SBSs are stochastically distributed

over the plane according to a Poisson point process (PPP), and serve their users either (i) by bringing

the content from the Internet through a finite rate backhaul or (ii) by serving them from the local

caches. We derive closed-form expressions for the outage probability and the average delivery rate as

a function of the signal-to-interference-plus-noise ratio (SINR), SBS density, target file bitrate, storage

size, file length and file popularity. We then analyze the impact of key operating parameters on the

system performance. It is shown that a certain outage probability can be achieved either by increasing

the number of base stations or the total storage size. Our results and analysis provide key insights into

the deployment of cache-enabled small cell networks (SCNs), which are seen as a promising solution

for future heterogeneous cellular networks.

Index Terms

caching, stochastic geometry, small cell networks, small base stations, mobile cellular networks,

Poisson Point Process

I. INTRODUCTION

Increasing traffic demand from mobile users due to the rich media applications, video stream-

ing, social networks [1] is pushing mobile operators to make their mobile cellular networks

evolving continuously (see long term evolution (LTE) [2]). Small cell networks (SCNs) [3], [4]

and their integration with WiFi [5], heterogeneous networks (HetNets) [6], together with many

other ideas from both industry and academia, have now started being deployed and integrated

in current cellular networks. In Europe, projects such as NewCom# [7] in the 7th Framework

Program of the European Commission are focusing on the design of next generation cellular

networks, and a new framework, called Horizon 2020 [8] is going to take place to support these

efforts.
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At the same time, content providers are moving their users’ content to the intermediate nodes

in the network, namely caching, yielding less delays for the access. Content delivery networks

(CDNs) such as Akamai [9] are for that purposes. In this context, information-centric networks

(ICNs) are emerging [10]. Mixing these infrastructural concepts with cellular networks is also

of interest [11][12]. Predicting users’ behavior, and proactively caching the users’ content in the

edge of the network, namely base stations and user terminals, also shows that further gains can

be obtained in terms of backhaul savings and user satisfaction [13].

Even though the idea of caching in mobile cellular networks is somewhat recent, the origin

of caching dates indeed back to 60s, where caching mechanisms are proposed to boost the

performance of operating systems [14]. Additionally, in past decades, many web caching schemes

such as [15] have appeared to sustain the data flow of the Internet. In the context of mobile cellular

networks, there have been recent attempts on design of intelligent caching schemes by taking

into account the wireless environment of mobile cellular networks. Due to its notorious non-

tractability, these proposals are mainly based on approximate or heuristic solutions [16][17][18].

Beside these solutions, novel formulations and system models have been proposed to assess

the performance of caching. For instance, information theoretical formulation of the caching

problem is studied in [19]. The expected cost of uncoded and coded data allocation strategies is

given in [20], where stochastically distributed cache-enabled nodes in a given area are assumed

and the cost is defined as a function of distance. A game theoretical formulation of the caching

problem as a many-to-many game is studied in [21] by taking into account data dissemination

in social networks. The performance of caching in wireless device-to-device (D2D) networks is

studied in [22] in a scenario where nodes are placed on a grid and cache the content randomly.

An alternative D2D caching scenario with randomly located nodes is given in [23] and relevant

tradeoffs curves are derived.

The contribution of this work is to formulate the caching problem in a scenario where

stochastically distributed small base stations (SBSs) are equipped with storage units but have

the limited backhaul capacity. In particular, we build on a tractable system model and define

its performance metrics (outage probability and average delivery rate) as functions of signal-to-

interference-plus-noise ratio (SINR), number of SBSs, target file bitrate, storage size, file length

and file popularity distribution. By coupling the caching problem with physical layer (PHY) in

this way and relying on recent results from [24], we show that a certain outage probability can
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be achieved either by 1) increasing number of SBSs while the total storage size budged is fixed,

or 2) increasing the total storage size while the number of SBSs is fixed. To the best of our

knowledge, our work differs from the aforementioned works in terms of studying deployment

aspects of cache-enabled SBSs. Similar line of work in terms of analysis with stochastic geometry

tools can be found in [20], [23]. However, the system model and performance metrics are different

than what is studied here.1

The rest of this paper is structured as follows. We describe our system model in Section

II. The performance metrics and main results are given in Section III. In the same section,

much simpler expressions are obtained by making specific assumptions on the system model.

We validate these results via numerical simulations in Section IV and discuss the impact of

parameters on the performance metrics. Then, a tradeoff between the number of deployed SBSs

and total storage size is given in Section V. Finally, our conclusions and future perspectives are

given in Section VI.2

II. SYSTEM MODEL

The cellular network under consideration consists of SBSs, whose locations are modeled

according to a Poisson point process (PPP) Φ with density λ. The broadband connection to

these SBSs is provided by a central scheduler (CS) via wired backhaul links. We assume that

the broadband connection is finite and fixed, thus the backhaul link capacity of each SBS is a

decreasing function of λ. This in practice means that deploying more SBSs in a certain area

yields sharing the total broadband capacity among backhaul links. We will define this function

more precisely in the next sections.

We suppose that every SBS has a storage unit with capacity S nats (1 bit = ln(2) = 0.693

nats), thus they cache users’ most popular files given in a catalog. The size of each file in

the catalog has a length of L nats and bitrate requirement of T nats/sec/Hz. We note that the

assumption on file length is for ease of analysis. Alternatively, the files in the catalog can be

divided into chunks with the same length. The file popularity distribution of this catalog is a

right continuous and monotonically decreasing probability distribution function (PDF), denoted

1Additionally, the related work [25] was made public after the submission of this work.
2Compared to [26], this work contains more comprehensive mathematical treatment, proofs and the trade-off analysis conducted

in Section V.
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as fpop(f, γ). The parameter f here corresponds to a point in the support of a file and γ is the

shape parameter of the distribution. We assume that this distribution is identical among all users.

Every user equipped with a mobile user terminal is associated with the nearest SBS, where its

location falls into a point in a Poisson-Voronoi tessellation on the plane. In this model, we only

consider the downlink transmission and overhead due to the file requests of users via uplink is

neglected. In the downlink transmission, a tagged SBS transmits with the constant transmit power

1/µ Watts, and the standard unbounded power-law pathloss propagation model with exponent

α > 2 is used for the environment. The tagged SBS and tagged user experience Rayleigh fading

with mean 1. Hence, the received power at the tagged user, located r-meters far away from its

tagged SBS, is given by hr−α. The random variable h here follows an exponential distribution

with mean 1/µ, represented as h ∼ Exponential(µ).

Once users are associated with their closest SBSs, we assume that they request some files (or

chunks) randomly according to the file popularity distribution fpop(f, γ). When requests reach to

the SBSs via uplink, the users are served immediately, either getting the file from the Internet via

backhaul or being served from the local cache, depending on the availability of the file therein.

If a requested file is available in the local cache of the SBS, a cache hit event occurs, otherwise

a cache miss event is said to be occurred. According to what we have explained so far, a sketch

of the network model is given in Figure 1.

In general, the performance of our system depends on several factors. To meet the quality-

of-experience (QoE) requirements, the downlink rate provided to the requested user has to

be equal or higher than the file bitrate T , so that the user does not observe any interruption

during its experience. Although this requirement can be achieved in the downlink, yet another

bottleneck can be the rate of the backhaul in case of cache misses. In the following, we define

our performance metrics which take into account the aforementioned situations. We then present

our main results in the same section.

III. PERFORMANCE METRICS AND MAIN RESULTS

Performance metrics of interest in our system model are the outage probability and average

delivery rate. We start by defining these metrics for the downlink. From now on, without loss

of generality, we refer to the user o as typical user, which is located at the origin on the plane.
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Figure 1: An illustration of the considered network model. The top right side of the figure

shows a snapshot of PPP per unit area where the SBSs are randomly located. A closer look to

communication structure of a cache-enabled SBS is shown in the main figure.

We know that the downlink rate depends on the SINR. The SINR of user o which is located

at a random distance r far away from its SBS bo is given by:

SINR , hr−α

σ2+Ir
, (1)

where

Ir ,
∑

i∈Φ/bo
giR

−α
i , (2)

is the total interference experienced from all other SBSs except the connected SBS bo. Assume

that the success probability is the probability of the downlink rate exceeding the file bitrate T

and the probability of requested file being in the local cache. Then, the outage probability can

be given as the complementary of the success probability as follows:

pout(λ, T, α, S, L, γ) , 1− P
[
ln(1 + SINR) > T, fo ∈ ∆bo

]
︸ ︷︷ ︸

success probability

, (3)
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where fo is the requested file by the typical user, and ∆bo is the local cache of serving SBS

bo. Indeed, such a definition of the outage probability comes from a simple observation. Ideally,

if a requested file is in the cache of the serving SBS (thus the limited backhaul is not used)

and if the downlink rate is higher than the file bitrate T (thus the user does not observe any

interruption during the playback of the file), we then expect the outage probability to be close

to zero. Given this explanation and the assumptions made in the previous section, we state the

following theorem for outage probability.

Theorem 1 (Outage probability). The typical user has an outage probability from its tagged

base station which can be expressed as:

pout(λ, T, α, S, L, γ) = 1− πλ
∫ ∞

0

× ∫ S/L

0

e−πλvβ(T,α)−µ(eT−1)σ2vα/2fpop(f, γ)dfdv, (4)

where β(T, α) is given by:

β(T, α) =
2
(
µ(eT − 1)

)
α

×

Eg
[
g

2
α

(
Γ

(
− 2

α
, µ
(
eT − 1

)
g

)
− Γ

(
− 2

α

))]
, (5)

where Γ(a, x) =
∫∞
x
ta−1e−tdt is the upper incomplete Gamma function and Γ(x) =

∫∞
0
tx−1e−tdt

is the Gamma function.

Proof: The proof is provided in Appendix A.

Yet another useful metric in our system model is the delivery rate, which we define as follows:

τ ,


T, if ln(1 + SINR) > T and fo ∈ ∆bo ,

C(λ), if ln(1 + SINR) > T and fo 6∈ ∆bo ,

0, otherwise,

nats/sec/Hz (6)

where C(λ) is the backhaul capacity provided to the SBS for single frequency in the downlink.3

The definition above can be explained as follows. If the downlink rate is higher than the threshold

3Without loss of generality, more realistic values of delivery rate can be obtained by making a proper SINR gap approximation

and considering the total wireless bandwidth instead of 1 Hz.
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T (namely the bitrate of the requested file) and the requested file is available in the local cache,

the rate T is dedicated to the user by the tagged SBS, which in turn is sufficient for QoE. On

the other hand, if the downlink rate is higher than T but the requested file does not exist in the

local cache of the tagged SBS, the delivery rate will be limited by the backhaul link capacity

C(λ), for which we assume that C(λ) < T . Given this definition for the delivery rate, we state

the following theorem.

Theorem 2 (Average delivery rate). The typical user has an average delivery rate from its tagged

base station which can be expressed as:

τ̄(λ, T, α, S, L, γ) = πλ

∫ ∞
0

e−πλvβ(T,α)−µ(eT−1)σ2vα/2dv×(
C(λ) + (T − C(λ))

∫ S/L

0

fpop(f, γ)df

)
, (7)

where β(T, α) has the same definition as in Theorem 1.

Proof: The proof is deferred to Appendix B.

What we provided above are the general results. The exact values of outage probability and

average delivery rate can be obtained by specifying the distribution of the interference, the

backhaul link capacity C(λ) and the file popularity distribution fpop(f, γ). If this treatment

does not yield closed form expressions, numerical integration can be done as a last resort for

evaluating the functions. In the next section, as an example, we derive special cases of these

results after some specific assumptions, which in turn yield much simpler expressions.

A. Special Cases

Assumption 1. The following assumptions are given for the the system model:

1) The noise power σ2 is higher than 0, and the pathloss component α is 4.

2) Interference is Rayleigh fading, which in turn gi ∼ Exponential(µ).

3) The capacity of backhaul links is given by:

C (λ) ,
C1

λ
+ C2, (8)

where C1 > 0 and C2 ≥ 0 are some arbitrary coefficients such that C(λ) < T holds.
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4) The file popularity distribution of users is characterized by a power law [27] such as:

fpop (f, γ) ,

(γ − 1) f−γ, f ≥ 1,

0, f < 1,
(9)

where γ > 1 is the shape parameter of the distribution.

The assumption C(λ) < T comes from the observation that the high-speed fiber-optic backhaul

links might be very costly in densely deployed SBSs scenarios. Therefore, we assume that C(λ)

is lower than the bitrate of file. On the other hand, we characterize the file popularity distribution

with a power law. Indeed, this comes from the observation that many real world phenomena can

be characterized by power laws (i.e. distribution of files in web proxies, distribution of word

counts in natural languages) [27]. According to our system model and the specific assumptions

made in Assumption 1, we state the following results.

Proposition 1 (Outage probability). The typical user has an outage probability from its tagged

base station which can be expressed as:

pout(λ, T, 4, S, L, γ) = 1− π
3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
×

Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)(
1−

(
L

L+ S

)γ−1
)
, (10)

where ρ(T, 4) =
√
eT − 1

(
π
2
− arctan

(
1√
eT−1

))
and the standard Gaussian tail probability

is given as Q (x) = 1√
2π

∫∞
x
e−y

2/2dy.

Proof: The proof is given in Appendix C.

Proposition 2 (Average delivery rate). The typical user has an average delivery rate from its

tagged base station which can be expressed as:

τ̄(λ, T, 4, S, L, γ) =
π

3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
×

Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)(
T +

(
C1

λ
+ C2 − T

)(
L

L+ S

)γ−1
)
, (11)

where ρ(T, 4) and Q (x) has the same definition as in Proposition 1.
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Proof: The proof is given in Appendix D.

The expressions obtained for special cases are cumbersome but fairly easy to compute and does

not require any integration. Note that Q (x) function given in the expressions is a well-known

function and can be computed by using lookup tables or standard numerical packages.

IV. VALIDATION OF THE PROPOSED MODEL

So far we have provided the results for outage probability and average delivery rate. In this

section, we validate these results via Monte Carlo simulations. The numerical results shown here

are obtained by averaging out over 1000 realizations. In each realization, the SBSs are distributed

according to a PPP. The file requests, signal and interfering powers of the typical user are drawn

randomly according to the corresponding probability distributions. The outage probability and

average delivery rate are then calculated by considering SINR and cache hit statistics. We note

that all simulation curves match the theoretical ones. However, a slight mismatch is observed

due to the fact that more precise discretization of continuous variables is avoided for affordable

simulation times. As alluded to previously, the target file bit rate as well as average delivery rate

are in units of nats/sec/Hz. On the other hand, the storage size and file lengths are in units of

nats.

A. Impact of storage size

The storage size of SBSs is one critical parameter in our system model. The effect of the

storage size on the outage probability and the average delivery rate is plotted in Figures 2 and

3, respectively. Each curve represents a different value of target file bit rate. We observe that

the outage probability reduces whereas the average delivery rate increases, as we increase the

storage size. Such behavior, observed both in theoretical and simulation curves, confirms our

initial intuition.

B. Impact of the number of base stations

The evolution of outage probability with respect to the number of base stations is depicted in

Figure 4. As the base station density increases, the outage probability decreases. This decrement

in outage probability can be improved further by increasing the storage size of SBSs.
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Figure 2: The evolution of outage probability with respect to the storage size. SNR = 10 dB,

λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.

C. Impact of target file bitrate

Yet another important parameter in our setup is the target file bitrate T . Figure 5 shows its

impact on the outage probability for different values of storage size. Clearly, increasing the

target file bitrate results in higher outage probability. However, this performance reduction can

be compensated by increasing the storage size of SBSs. The impact of storage size reduces, as

T increases.

D. Impact of file popularity shape

Another crucial parameter in our setup is the shape of the file popularity distribution, param-

eterized by γ. The impact of the parameter γ on the outage probability, for different storage

sizes, is given in Figure 6. Generally, a higher value of γ means that only a small portion of

files is highly popular compared to the rest of the files. On the contrary, lower values of γ

correspond to a more uniform behavior on the popularity distribution. Therefore, as γ increases,

the outage probability reduces due to reduced requirement in terms of storage size. However, in
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Figure 3: The evolution of average delivery rate with respect to the storage size. SNR = 10 dB,

λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.

very low and high values of γ, the impact on the outage probability is not high compared to the

intermediate values.

V. DAVID VS. GOLIATH: MORE SBSS WITH LESS STORAGE OR LESS SBSS WITH MORE

STORAGE?

In the previous section, we have validated our results via numerical simulations and discussed

the impact of several parameters on the outage probability and average delivery rate. On top

of those, we are interested in finding a tradeoff between the SBS density and the total storage

size for a fixed set of parameters. We start by making an analogy with well-known David and

Goliath story to examine the tradeoff between the SBS density and total storage size.4 More

precisely, we aim to answer the following question: Should we increase storage size of current

SBSs (David) or deploy more SBSs with less storage (Goliath) in order to achieve a certain

4David vs. Goliath refers to the underlying resource sharing problem which arises in a variety of scenarios including massive

MIMO vs. Small Cells [28].
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Figure 4: The evolution of outage probability with respect to the base station density. SNR = 10

dB, T = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.

success probability? The answer is indeed useful for the realization of such a scenario. Putting

more SBSs in a given area may be not desirable due to increased deployment and operation

costs (Evil). Therefore, increasing the storage size of already deployed SBSs may incur less cost

(Good). To characterize this tradeoff, we first define the optimal region as follows:

Definition 1 (Optimal region). An outage probability p† is said to be achievable if there exist

some parameters λ, T, α, S, L, γ satisfying the following condition:

pout(λ, T, α, S, L, γ) ≤ p†.

The set of all achievable p† forms the optimal region.

The optimal region can be tightened by restricting parameters λ, T, α, S, L, γ to some intervals.

A detailed analysis on this is left for future work. Hereafter, we restrict ourselves to find the

optimal SBS density for a fixed set of parameters. In such a case, optimal SBS density can be

readily obtained by plugging these fixed parameters into pout and solving the equation either

analytically or numerically (i.e. bisection method [29]). In the following, we obtain a tradeoff
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Figure 5: The evolution of outage probability with respect to the target file bitrate. SNR = 10

dB, λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.

curve between the SBSs density and total storage size, by solving these equations systematically

in the form of optimization problem.

Definition 2 (SBS density vs. total storage size tradeoff). Define the average total storage as

Stotal = λS, and fix T , α, L and γ to some values in the optimal region given in Definition 1.

Denote also λ? as the optimal SBS density for a given Stotal. Then, λ? is obtained by solving

the following optimization problem:

minimize
λ

λ (12)

subject to pout(λ, T, α, Stotal/λ, L, γ) ≤ p†. (12a)

The set of all achievable pairs (λ?, Stotal) characterize a tradeoff between the SBS density and

total storage size.

Figures 7 and 8 show two different configurations of the tradeoff. In these plots, to achieve a

certain outage probability (i.e. p† = 0.3), we see that it is sufficient to decrease the number of
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Figure 6: The evolution of outage probability with respect to the popularity shape parameter γ.

SNR = 10 dB, λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.

SBSs by increasing the total storage size. Alternatively, the total storage size can be decreased

by increasing the number of SBSs. Moreover, for different values of parameter of interest (i.e.

T ∈ {0.1, 0.2} or L ∈ {1, 2}), there is also a scaling and shifting in this tradeoff. Regardless of

this scaling and shifting, we see that David wins victory against Goliath.

VI. CONCLUSIONS

We have studied the caching problem in a scenario where SBSs are stochastically distributed

and have finite-rate backhaul links. We derived expressions for the outage probability and average

delivery rate, and validate these results via numerical simulations. The results showed that

significant gains in terms of outage probability and average delivery rate are possible by having

cache-enabled SBSs. We showed that telecom operators can either deploy more base stations or

increase the storage size of existing deployment in order to achieve a certain QoE level.
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Figure 7: The trade-off between SBSs density and total storage size for different file target

bitrates. SNR = 10 dB, α = 4, L = 1 nats, γ = 3 and p† = 0.3.
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APPENDIX A

PROOF OF THEOREM 1

In order to prove Theorem 1, we modify some useful results from [24]. Conditioning on the

nearest base station at a distance r from the typical user, the outage probability can be written

as:

pout(λ, T, α, S, γ) = Er
[
1 − P[ln(1 + SINR) > T, fo ∈ ∆bo | r]

]
.

Since expectation is a linear operator and these two events are independent, the above expression

can be decomposed as:

pout(λ, T, α, S, γ) = 1 − Er
[
P [ln(1 + SINR) > T | r]

]
︸ ︷︷ ︸

(i)

Er
[
P [fo ∈ ∆bo | r]

]
︸ ︷︷ ︸

(ii)

. (13)

Proceeding term by term, we first write (i) as:

Er [P [ln(1 + SINR) > T | r]]

January 8, 2015 DRAFT



18

=

∫
r>0

P [ln(1 + SINR) > T | r] fr(r)dr (14)

(a)
=

∫
r>0

P [ln(1 + SINR) > T | r] e−πλr22πλrdr

(b)
=

∫
r>0

P
[
hr−α

σ2 + Ir
> eT − 1 | r

]
e−πλr

2

2πλrdr

(c)
=

∫
r>0

P
[
h > rα(eT − 1)(σ2 + Ir) | r

]
e−πλr

2

2πλrdr, (15)

where fr(r) = e−πλr
2
2πλr is the PDF of r for PPP [24], hence (a) follows from its substitution.

The expression in (b) is obtained by plugging the SINR formula and letting it on the left hand

side of the inequality, (c) is the result of some algebraic manipulations for keeping fading variable

h alone.

Conditioning on Ir and using the fact that h ∼ Exponential(µ), the probability of random

variable h exceeding rα(eT − 1)(σ2 + Ir) can be written as:

P
[
h > rα(eT − 1)(σ2 + Ir) | r

]
= EIr

[
P
[
h > rα(eT − 1)(σ2 + Ir) | r, Ir

]]
= EIr

[
exp

(
−µrα(eT − 1)(σ2 + Ir)

)
| r
]

= e−µr
α(eT−1)σ2LIr

(
µrα(eT − 1)

)
, (16)

where L(s) is the Laplace transform of random variable Ir evaluated at s conditioned on

the distance of the nearest base station from the origin. Substituting (16) into (15) yields the

following:

Er [P [ln(1 + SINR) > T | r]] = ∫
r>0

e−µr
α(eT−1)σ2LIr

(
µrα(eT − 1)

)
e−πλr

2

2πλrdr. (17)

Defining gi as a random variable of arbitrary but identical distribution for all i, and Ri as the
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distance from the i-th base station to the tagged receiver, the Laplace transform is written as:

LIr(s) = EIr
[
e−sIr

]
= EΦ,{gi}

exp

−s ∑
i∈Φ\{bo}

giR
−α
i


= EΦ,{gi}

 ∏
i∈Φ\{bo}

exp
(
−sgiR−αi

)
(a)
= EΦ

 ∏
i∈Φ\{bo}

E{gi}
[
exp

(
−sgiR−αi

)]
(b)
= EΦ

 ∏
i∈Φ\{bo}

Eg
[
exp

(
−sgR−αi

)]
= exp

(
−2πλ

∫ ∞
r

(
1− Eg

[
exp

(
−sgv−α

)])
vdv

)
,

where (a) comes from the independence of gi from the point process Φ, and (b) follows

from the i.i.d. assumption of gi. The last step comes from the probability generating func-

tional (PGFL) of the PPP, which basically says that for some function f(x), E
[∏

x∈Φ f(x)
]

=

exp
(
−λ
∫
R2 (1− f(x))dx)

)
. Since the nearest interfering base station is at least at a distance

r, the integration limits are from r to infinity. Denoting f(g) as the PDF of g, then plugging in

s = µrα(eT − 1) and switching the integration order yields

LIr
(
µrα(eT − 1)

)
=

exp

(
−2πλ

∫ ∞
0

(∫ ∞
r

(
1− e−µrα(eT−1)v−αg

)
vdv

)
f(g)dg

)
.

By change of variables v−α → y, the Laplace transform can be rewritten as:

LIr
(
µrα(eT − 1)

)
=

exp
(
λπr2 −

2πλ
(
µ(eT − 1)

) 2
α r2

α
×∫ ∞

0

g
2
α

[
Γ

(
− 2

α
, µ
(
eT − 1

)
g

)
− Γ

(
− 2

α

)]
f(g)dg

)
. (18)

Plugging (18) into (17), using the substitution r2 → v and after some algebraic manipulations,

the expression becomes

Er [P [ln(1 + SINR) > T | r]] = πλ

∫ ∞
0

e−πλvβ(T,α)−µ(eT−1)σ2vα/2dv, (19)
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where β(T, α) is given as

β(T, α) =
2
(
µ(eT − 1)

)
α

Eg
[
g

2
α

(
Γ

(
− 2

α
, µ
(
eT − 1

)
g

)
− Γ

(
− 2

α

))]
.

So far, we have obtained (i) of (13). The term (ii) is straightforward to derive. In the system

model, as we assume that every small base station caches the same popular files and they have

the same storage size, the cache hit probability becomes independent of the distance r. This

yields:

Er [P [fo ∈ ∆bo | r]] =

∫ S/L

0

fpop(f, γ)df. (20)

Plugging both (19) and (20) into (13) and rearranging the terms, we conclude the proof. �

APPENDIX B

PROOF OF THEOREM 2

Average achievable delivery rate is τ̄ = E [τ ], where the average is taken over the PPP and

the fading distribution. It can be shown that

τ̄ = E [τ ]

(a)
= E

[
P [ln(1 + SINR) > T ]

(
TP [fo ∈ ∆bo ] + C (λ)P [fo 6∈ ∆bo ]

)]
(b)
= E

P [ln(1 + SINR) > T | r]︸ ︷︷ ︸
τ1

×
E

TP [fo ∈ ∆bo | r]︸ ︷︷ ︸
τ2

+ E

C (λ)P [fo 6∈ ∆bo | r]︸ ︷︷ ︸
τ3


= E [τ1] (E [τ2] + E [τ3]) , (21)

where (a) is obtained by plugging the delivery rate as defined in (6), and (b) follows from

independence of the events and linearity of the expectation operator.

Derivation of E[τ1] can be obtained from the proof of Theorem 1, by following the steps from

(14) to (19). On the other hand, the fact that the cache hit probability is independent of r, Er[τ2]

can be expressed as

Er[τ2] = T

∫ S/L

0

fpop(f, γ)df.
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Using similar arguments, Er[τ3] is written as:

Er[τ3] = C(λ)

(
1−

∫ S/L

0

fpop(f, γ)df

)
.

Substituting these expressions into (21) concludes the proof. �

APPENDIX C

PROOF OF PROPOSITION 1

Since Proposition 1 is a special case of Theorem 1, we follow the similar steps. We first

rewrite (13) as:

pout(λ, T, α, S, γ) = 1 − Er
[
P [ln(1 + SINR) > T | r]

]
︸ ︷︷ ︸

(i)

Er
[
P [fo ∈ ∆bo | r]

]
︸ ︷︷ ︸

(ii)

. (22)

For the proceeding of (i), the proof of Theorem 1 can be followed starting from (14) to (17).

Then, the Laplace transform is written as

LIr(s) = EΦ

 ∏
i∈Φ\{bo}

Eg
[
exp

(
−sgR−αi

)]
(a)
= EΦ

 ∏
i∈Φ\{bo}

µ

µ+ sR−αi


= exp

(
−2πλ

∫ ∞
r

(
1− µ

µ+ sv−α

)
vdv

)
, (23)

where (a) comes from the new assumption that g ∼ Exponential(µ). Then, plugging s =

µrα
(
eT − 1

)
yields:

LIr
(
µrα

(
eT − 1

))
= exp

(
−2πλ

∫ ∞
r

eT − 1

eT − 1 + (v
r
)α
vdv

)
.

Using a change of variables u =
(

v
r(eT−1)α/2

)2

results in

LIr
(
µrα

(
eT − 1

))
= exp

(
−πr2λρ(T, α)

)
, (24)

where

ρ(T, α) = (eT − 1)2/α

∫ ∞
(eT−1)−2/α

1

1 + uα/2
du.
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Substituting (24) into (17) with r2 → v gives

πλ

∫ ∞
0

e−πλv(1+ρ(T,α))−µ(eT−1)σ2vα/2dv. (25)

Since α = 4 in our special case, (25) simplifies to

πλ

∫ ∞
0

e−πλv(1+ρ(T,4))−µ(eT−1)σ2v2dv, (26)

where

ρ(T, 4) = (eT − 1)2/α

∫ ∞
(eT−1)−2/α

1

1 + u2
du

= (eT − 1)2/α
(π

2
− arctan

(
(eT − 1)−2/α

))
=
√
eT − 1

(
π

2
− arctan

(
1√

eT − 1

))
.

From this point, (26) can be further simplified since it has a form similar to:∫ ∞
0

e−axe−bx
2

dx =

√
π

b
exp

(
a2

4b

)
Q

(
a√
2b

)
,

where Q (x) = 1√
2π

∫∞
x
e−y

2/2dy is the standard Gaussian tail probability. Setting a = πλ(1 +

ρ(T, 4)) and b = µ(eT − 1)σ2 = (eT − 1)/SNR gives

π
3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)
. (27)

This is the final expression for (i) of (22). The term (ii) of (22) can be obtained by using similar

arguments given for (20) in the proof of Theorem 1, meaning that the cache hit probability is

independent of distance r. Thus:

Er [P [fo ∈ ∆bo | r]] =

∫ S/L

0

fpop (f, γ) df

(a)
=

∫ 1+S/L

1

(γ − 1) f−γdf

= 1−
(

L

L+ S

)γ−1

, (28)

where (a) follows from plugging definition of C(f, λ) given in Assumption 1 and changing the

integration limits accordingly. The last term is the result of the integral. Therefore, we conclude

the proof by plugging (27) and (28) into (22). �
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APPENDIX D

PROOF OF PROPOSITION 2

The proposition is a special case of Theorem 2, thus we have the similar steps. We start by

rewriting (21) as:

τ̄ = E

P [ln(1 + SINR) > T | r]︸ ︷︷ ︸
τ1

×
E

TP [fo ∈ ∆bo | r]︸ ︷︷ ︸
τ2

+ E

C (λ)P [fo 6∈ ∆bo | r]︸ ︷︷ ︸
τ3


= E [τ1] (E [τ2] + E [τ3]) . (29)

In this expression, the term E [τ1] can be obtained from the proof of Proposition 1. More precisely,

observe that E [τ1] is identical to (i) of (22). Thus, following the steps from (23) to (27), we

obtain

E [τ1] = E
[
P [ln(1 + SINR) > T | r]

]
=

π
3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)
. (30)

On the other hand, E [τ2] can be obtained by taking T out of the expectation and plugging (28)

into the formula, i.e.

E [τ2] = E [TP [fo ∈ ∆bo | r]]

= T

(
1−

(
L

L+ S

)γ−1
)
. (31)

Finally, E [τ3] is easy to derive as

E [τ3] = E [C (λ)P [fo 6∈ ∆bo | r]]

= C (λ)

(
L

L+ S

)γ−1

=

(
C1

λ
+ C2

)(
L

L+ S

)γ−1

, (32)

where definition of C(λ) follows from Assumption 1. Substituting (30), (31) and (32) into (29)

concludes the proof. �
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