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Abstract—For a network with one sender, n receivers (users)
and m possible messages (files), caching side information at
the users allows to satisfy arbitrary simultaneous demands by
sending a common (multicast) coded message. In the worst-
case demand setting, explicit deterministic and random caching
strategies and explicit linear coding schemes have been shown to
be order optimal. In this work, we consider the same scenario
where the user demands are random i.i.d., according to a Zipf
popularity distribution. In this case, we pose the problem in
terms of the minimum average number of equivalent message
transmissions. We present a novel decentralized random caching
placement and a coded delivery scheme which are shown to
achieve order-optimal performance. As a matter of fact, this is the
first order-optimal result for the caching and coded multicasting
problem in the case of random demands.

I. INTRODUCTION

Content distribution services, such as video on demand,
catch-up TV and internet video streaming, are driving the
exponential traffic growth experienced in today’s networks
[1]. Important features of this type of services are that
user demands are highly predictable [2] and exhibit a high
asynchronous content reuse [3]. That is, while there exists a
relatively small number of popular files that account for most
of the traffic, users do not consume media in a synchronous
way (unlike in live streaming or linear TV). Typical users
wish to access the desired content at arbitrary times, such that
naive multicasting 1 as implemented in Media Broadcasting
Single Frequency Networks (MBSFN) [4], is not useful. Due
to the increasing cost and scarcity of bandwidth resources, an
emerging and promising approach for reducing network load
consists of using caching directly at the wireless edge, e.g.,
at small-cell base stations or end user devices. The efficiency
and throughput of different caching networks has been studied
in recent works [3], [5]–[10].

In [5], [6], Llorca et al. presented a formulation for the
general content distribution problem (CDP), where nodes in
an arbitrary network are allowed to cache, forward, replicate,
and code messages in order to deliver arbitrary user demands
with minimum overall network cost. The authors showed
an equivalence between the CDP and the network coding
problem over a so-called caching-demand augmented graph,
which proved the polynomial solvability of the CDP under

1Naive multicasting refers to the transmission of a common not-network-
coded packet simultaneously overheard and decoded by multiple users,
possibly at different quality levels, by using scalable coding and layered
channel coding.

uniform demands, and the hardness of the CDP under arbitrary
demands.

In [3], [7], Ji et al. considered the one-hop Device-to-
Device (D2D) wireless caching network, where user devices
with limited storage capacity are allowed to communicate
between each other under a simple protocol channel model
[11]. By careful design of the caching configuration and the
use of either coded [7] or uncoded [3] devliery schemes, the
throughput of the D2D caching network is shown analytically
to scale as Θ

(
max

{
M
m ,

1
n

})
, 2 where m is the total number

of files, n is the total number of users and M is the per user
storage capacity. Quantitative results of throughput of D2D
caching networks under realistic propagation and topology
models are reported in [12]. These results show that, when
nM � m, the throughput of a D2D caching network grows
linearly with the per-user cache size M . From an operational
viewpoint, this implies the remarkable fact that caching at the
wireless edge has the potential of turning Moore’s law into
a bandwidth multiplier: doubling the device memory capacity
yields a two-fold increase in the per-user throughput.

A different approach is taken in [8], [9], where Maddah-
Ali et al. considered a single bottleneck caching network
consisting of an omniscient transmitter (e.g., cellular base
station) having access to the whole file library and serving all
the n users through a common shared link. Under the worst-
case demand setting, constructed deterministic and random
caching strategies along with network-coded multicast delivery
schemes are shown to achieve the same throughput scaling
law Θ

(
max

{
M
m ,

1
n

})
as in the D2D caching network, also

shown to be within a bounded multiplicative factor from
an information theoretic cut-set bound, and therefore order-
optimal.

Given that worst-case demands, in which each user requests
a distinct file if possible, happen rarely in practice, we argue
that it is more relevant to study the average performance when
content requests follow a popularity distribution. With this
motivation in mind, in this paper we study the expected rate
(expected minimum number of equivalent file transmissions)
in the single bottleneck caching network where the demands

2We will use the following standard order notation: given two functions
f and g, we say that: 1) f(n) = O (g(n)) if there exists a constant c and
an integer N such that f(n) ≤ cg(n) for n > N ; 2) f(n) = o (g(n)) if
limn→∞

f(n)
g(n)

= 0; 3) f(n) = Ω (g(n)) if g(n) = O (f(n)); 4) f(n) =

ω (g(n)) if g(n) = o (f(n)); 5) f(n) = Θ (g(n)) if f(n) = O (g(n)) and
g(n) = O (f(n)).
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follow a Zipf popularity distribution, which is shown to be a
good model for the measured popularity of video files [2].

We first propose a novel content distribution scheme, re-
ferred to as RAndom Popularity-based (RAP), that combines
a random caching placement approach, characterized by a
caching distribution that adapts to the content popularity and
the system parameters, and a coded multicasting scheme based
on chromatic number index coding [13]. We derive the achiev-
able expected rate in terms of an upper bound on the expected
chromatic number of a certain random graph (see details later).
We then propose a simpler scheme, referred to as Random
Least-Frequently-Used (Random LFU), which approximates
RAP and generalizes the well known LFU caching scheme. 3

In Random LFU, each user just caches packets from the
(carefully designed) m̃ most popular files in a distributed and
random manner. The delivery scheme is the same as RAP and
hence based on chromatic number index coding. By introduc-
ing a novel scaling law approach for proving an information
theoretic converse, we show the order-optimality of both RAP
and Random LFU under a Zipf popularity distribution with
parameter α, where we distinguish the analysis for 0 ≤ α < 1
and α > 1. To the best of our knowledge, this is the first
order-optimal result under this network model for nontrivial
popularity distributions. In addition, our technique for proving
the converse is not restricted to the Zipf distribution, such
that it can be used to verify expected rate order-optimality in
other cases. Finally, we verify our results by simulations and
compare the performance of the proposed schemes with other
state-of-the-art information theoretic schemes under different
regimes of the system parameters.

It is worthwhile noting that in a parallel and indepen-
dent work [10], the same network model and expected rate
minimization problem are considered. However, the scheme
proposed in [10] for an arbitrary popularity distribution does
not guarantee order-optimality in general. Moreover, for some
non-asymptotic regimes with finite n,m and M , the expected
rate of this scheme can be much worse than that of the
order-optimal schemes proposed in this work. Due to space
limitations, all proofs are omitted and can be found in [14].

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a network formed by a source node with access
to a content library F = {1, · · · ,m} of files of size F bits
each, communicating to n user nodes U = {1, · · · , n} through
a common broadcast shared link of finite capacity C. Without
loss of generality, we can assume C = F bits/unit time and
measure the transmission rate of the scheme in units of time
necessary to deliver the requested messages to the users. Each
user has a cache memory of size MF bits (i.e., M files). The
channel between the content source and all the users follows
a shared error-free deterministic model. Users requests files
from the library in an independent and identically distributed
way across users and over time, according to a popularity

3LFU discards the least frequently requested file upon the arrival of a new
file to a full cache of size M files. In the long run, this is equivalent to caching
the M most popular files.

distribution q = [qf ]mf=1. The goal is to design a content
distribution scheme (i.e., determine the information stored in
the user caches and the multicast codeword to be sent to all
users through the common link) such that all demands are
satisfied with probability 1 and the expected rate R̄(q) is
minimized. We denote the minimum achievable expected rate
by R̄∗(q) (which is also a function of n,m,M ).

Note that our problem is an instance of the coded content
distribution problem (CDP) presented in [5] for the specific
case of the single bottleneck network. Moreover, for a given
(uncoded) caching and demand configuration, finding the op-
timal transmission scheme in the single bottleneck network is
equivalent to solving an index coding problem (ICP) [15] with
side information given by the chosen caching configuration.

III. ACHIEVABLE SCHEME

In this section we present achievable schemes for the CDP
in the single bottleneck network based on a (distributed) ran-
domized popularity-based caching policy and a (centralized)
index coding based delivery scheme. Order-optimality of the
proposed schemes is shown in Section IV.

A. Caching Placement Scheme

We partition each file into B equal-size packets, represented
as symbols of F2F/B for finite F/B. LetM and Q denote the
packet level caching and demand configurations, respectively,
where Mu,f denotes the packets of file f cached at node u,
and Qu,f denotes the packets of file f requested by node u.
We use Algorithm 1 to let each user fill its cache indepen-
dently (and therefore in a decentralized way) by knowing the
caching distribution p = [pf ]mf=1, with

∑m
f=1 pf = 1 and

0 ≤ pf ≤ 1/M,∀f . This condition prevents from caching
duplicated packets and violating capacity constraints. Notice
that, while each user caches the same amount pfMB packets
of file f , the randomized nature of the algorithm makes each
user cache possibly different packets of the same file, which is
key to maximize the amount of distinct packets of the same file
collectively cached by network. It is immediate to observe that
pf denotes the probability that a randomly (uniformly) chosen
packet from the cache of any given user belongs to file f , and
hence the reference to p as the caching distribution.

Algorithm 1 Distributed Random Caching Algorithm
Require: p = [pf ]mf=1

1: for all f ∈ F do
2: Each user u caches a subset (Mu,f ) of pfMB distinct

packets of file f uniformly at random.
3: end for
4: return M = {Mu,f , u = 1, · · · , n, f = 1, · · · ,m}.

B. Coded Multicast Delivery

Our coded delivery scheme is based on chromatic number
index coding [13]. The (undirected) conflict graph HM,Q is
constructed as follows:



• Consider each packet requested by each user as a distinct
vertex, i.e., if the same packet is requested by N > 1
users, it corresponds to N distinct vertices.

• Create an edge between vertices v1 and v2 if 1) they do
not represent the same packet, and 2) v1 is not available in
the cache of the user requesting v2, or v2 is not available
in the cache of the user requesting v1.

Next, consider a minimum vertex coloring of the conflict graph
HM,Q. The corresponding index coding scheme transmits the
modulo sum of the packets (vertices in HM,Q) with the same
color. Therefore, given M and Q, the total number of trans-
missions in terms of packets is given by the chromatic number
χ(HM,Q). This achieves the transmission rate χ(HM,Q)/B.

C. Achievable Expected Rate

Given n,m,M and the popularity distribution q, our goal is
to find the caching distribution p that minimizes the expected
rate R̄(p,q)

∆
= E[χ(HM,Q)/B], where HM,Q denotes the

random conflict graph which is a function of the random
caching and demand configurations, M and Q, respectively.
The expectation is over i.i.d. (according to q) user demands.
We can show that R̄(p,q) can be upper bounded by:

R̄(p,q) ≤ R̄ub(p,q)
∆
= min{ψ(p,q), m̄}, (1)

with high probability. 4 In (1), m̄ =
∑m
f=1 (1− (1− qf )

n
)

and

ψ(p,q) =

n∑

`=1

(
n

`

) m∑

f=1

ρf,`(1− pfM)n−`+1(pfM)`−1, (2)

where ρf,`
∆
= P(f = argmax

j∈F`
(pjM)`−1(1 − pjM)n−`+1)

denotes the probability that file f is the file whose pf maxi-
mizes the term

(
(pjM)`−1(1− pjM)n−`+1

)
among F` (the

set of files requested by an arbitrary subset of users of size `).
We denote the caching distribution that minimizes R̄ub(p,q)
as p∗. In the following, we refer to the scheme that uses p∗

for caching according to Algorithm 1 and chromatic number
index coding for delivery as Random Popularity-based (RAP),
with achievable rate R̄(p∗,q).

Note that for any other caching distribution p 6= p∗, we
have

R̄(p∗,q) ≤ R̄ub(p∗,q) ≤ R̄ub(p,q), ∀p 6= p∗. (3)

Given that R̄ub(p∗,q) may not have an analytically tractable
expression in general, we now present a simpler scheme that
approximates RAP by using a caching distribution p̃ of the
following form:

p̃f =
1

m̃
, f ≤ m̃

p̃f = 0, f ≥ m̃+ 1 (4)

where m̃ ≥M is a function of m, n, M , q.

4The term ”with high probability” means that limF→∞ P(R̄(p,q) ≤
R̄ub(p,q)) = 1. In the following, we first let F →∞ and then let n→∞.

The form of p̃ is intuitive in the sense that each user just
randomly caches packets (may not be the entire file) from
the m̃ most popular files by using Algorithm 1. In the case
where M is an integer and m̃ = M , this caching scheme
coincides with LFU [16]. Therefore, we refer the proposed
caching policy as Random LFU.

There are two important aspects of Random LFU. First,
given the caching placement, the chromatic number based
index coding delivery scheme allows coding within the full set
of requested packets, which is contrary to the coded delivery
scheme considered in [10], where coding is only allowed
within packets of specific file groups. Second, to guarantee
the order optimality, the choice of m̃ ∈ {dMe, · · · ,m} is es-
sential and highly nontrivial. This makes the proposed caching
scheme fundamentally different from the caching scheme of
[8], which corresponds to the case m̃ = m (referred as uniform
caching). In fact, the choice of m̃ ∈ {dMe, · · · ,m} balances
the gains from local caching and coded multicasting as a
function of the popularity settings and the system parameters.
Moreover, notice that Random LFU is only an approximation
of RAP. 5 However, surprisingly, Random LFU is sufficient to
guarantee order optimality under the class of Zipf popularity
distributions [2]. In the following section, we will prove the
order optimality of random LFU by using R̄ub(p̃,q). Note
that, from (3), this also implies the order optimality of RAP.

IV. ORDER OPTIMALITY

Definition 1: A caching and delivery scheme is order
optimal if its achievable expected rate R̄(q) satisfies:

lim
n→∞

R̄(q)

R̄∗(q)
≤ κ, (5)

where R̄∗(q) is the minimum achievable expected rate and
1 ≤ κ <∞ is a finite constant independent of m,n,M . ♦

We will now show that Random LFU is order optimal for
Zipf popularity distributions. Let the file popularity q follow
a Zipf distribution, given by qf = f−α/(

∑m
i=1 i

−α), ∀f =
{1, · · · ,m}. We notice that the behavior of Zipf distribution
is fundamentally different for the two regions of the Zipf
parameter 0 ≤ α < 1 and α > 1, 6 which will be considered
separately. We have:

Theorem 1: When 0 ≤ α < 1, let m̃ = min{
(n(1− α)M/m)

1
α m,m}, the expected rate of Random LFU

is order optimal with high probability, and it is upper bounded
by

R̄ub(p̃,q) ≤ min

{(
m̃

M
− 1

)(
1−

(
1− M

m̃

)n∑m̃
f=1 qf

)

+n

m∑

f=m̃+1

qf ,m



 ≤ min

{m
M
− 1, n,m

}
. (6)

5The relationship between the actual rates of RAP and Random LFU,
R̄(p∗,q) and R̄(p̃,q), is not known. However, it can be shown that
R̄ub(p∗,q) ≤ R̄ub(p̃,q).

6In this paper, we do not consider the case of α = 1.



with p̃ given by (4). �
Next, we consider the case of α > 1. Depending on how the

number of users n scales with the library size m, we consider
three different subcases: a) n = ω (mα); b) n = o (mα); c)
n = Θ (mα). 7

Theorem 2: When α > 1 and n = ω (mα), letting m̃ = m,
the rate of Random LFU is order optimal with high probability
and is upper bounded by

R̄ub(p̃,q) ≤ min
{m
M
− 1 + o

(m
M

)
,m
}
. (7)

with p̃ given by (4). �
Theorem 3: When α > 1 and n = o (mα), the rate of Ran-

dom LFU is order optimal with high probability. Moreover,
as n → ∞, the values of m̃ and the upper bounds of the
achievable rate are given in Table I for different regimes of
parameters n,m,M . 8 �

M �m R̄ub(p̃,q)

1 ≤ M <
mα

n

M ≥ mα

n

1 ≤ M = o
�
n

1
α−1

�

ω
�
n

1
α−1

�
= M <

mα

n

M = o(m)

M = Θ(m) = κ1m

M = o(m)

M = Θ(m) = κ1m

n
1
α

m

M

M

m

2n
1
α + o

�
n

1
α

�

m

M
− 1 + o

�m

M

�

n

Mα−1
+ o

� n

Mα−1

�

� n

Mα−1
− n

mα−1

�
+ o(1)

min
�m

M
− 1 + o

�m

M

�
, m
�

0 ≤ M < 1

M
1
α n

1
α

2n
1
α

M1− 1
α

− 1 + o

�
n

1
α

M1− 1
α

�

TABLE I
WHEN n = o (mα), THIS TABLE SHOWS m̃ AND THE CORRESPONDING

UPPER BOUND R̄ub(p̃,q) OF THE EXPECTED RATE OF RANDOM LFU. IN
THIS TABLE, 0 < κ1 < 1 IS A GIVEN POSITIVE CONSTANT.

The converse of the expected rate, which is omitted due
to its complex expression and can be found in [14], is
based on a modified cut-set bound. Qualitatively, we first find
particular cuts of the caching-demand augmented graph under
the guidance of m̃ given in Theorem 1-3 and then weight
the lower bound of the rate obtained by each cut differently
according to the demands distribution.

V. DISCUSSIONS

Fig. 1(a) shows p∗ obtained by minimizing the upper bound
R̄ub(p,q) given in (1) when m = 3, M = 1, n = 3, 5, 10, 15
and the demand distribution is q = [0.7, 0.21, 0.09]. Observe
how the caching distribution p∗, which does not necessarily
coincide with q, adjusts according to the system parameters to
balance the gains from local caching and coded multicasting.
Note that p∗ goes from caching the most popular file (as

7Due to space limitation, case c) is shown in [14] but it is omitted from
the present paper.

8Due to the limit of space, the case of M = Θ
(
n

1
α−1

)
is shown in [14].
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Fig. 1. Let m = 3, M = 1 and n = 3, 5, 10, 15 and the demands distribution
be q = [0.7, 0.21, 0.09]. a) The caching distribution p∗. b) The upper bound
given by (1) of the expected rate by RAP.

in LFU) for n = 3 to uniform caching for n = 15.
The corresponding achievable expected rate given by (1) is
shown in Fig. 1(b), which confirms the average performance
improvement when using the adaptive RAP distribution. 9

Furthermore, from Theorems 1-3, we can see that the caching
placement characterized by p̃ by using Random LFU has the
same trends as p∗. In particular, as α > 1, from Table I of
Theorem 3, when n = o

(
mα−1

)
and ω

(
n

1
α−1

)
= M ≤ m

(approximately, this is the regime of n small and M is large),
if the orders of n and m are fixed, let the order of M increase,
then the order optimal m̃ varies from n

1
α via M

1
αn

1
α to M ,

which means that the caching placement converges to LFU.
Accordingly, the expected rate R̄ub(p̃,q) takes values from

Θ
(
n

1
α

)
via Θ

(
n

1
α

M1− 1
α

)
to Θ

(
n
Mα

)
, from which we can see

that the effect of caching is also increasing in the sense that the
average throughput (inversely proportional to the average rate)
scales with M from sub-linear to super-linear. When α > 1
and n = ω

(
mα−1

)
(approximately, this is the regime where

n is large), if the orders n and m are fixed, let the order of M
increase, then the order optimal m̃ varies from n

1
α via M

1
αn

1
α

to m, which means that the caching placement converges to
uniform caching. Correspondingly, the scaling of the expected

rate varies from Θ
(
n

1
α

)
, through Θ

(
n

1
α

M1− 1
α

)
to Θ

(
m
M

)
,

where the effect of caching becomes more and more significant
in the sense that the average throughput scales with M from
sub-linear to linear.

Observe that unlike uncoded delivery schemes that transmit
each non-cached packet separately, or the scheme proposed in
[10], where files are grouped into subsets and coding is only
performed within each subset, the schemes proposed in this
paper allow coding over the entire set of requested packets.
When treating different subsets of files separately, missed cod-
ing opportunities can significantly degrade multicast efficiency.
This is shown in Fig. 2 and 3, where we plot the upper bound
of the rate achieved by Random LFU, R̄ub(p̃,q), and compare

9As mentioned before, the upper bound of the expected rate by using RAP
with parameter p is R̄ub(p,q) = min{ψ(p,q), m̄}, where m̄ is obtained by
just using the naive multicasting of the requested files without using caching.
Hence, m̄ can be improved by not sending the cached packets or using random
linear coding [9]. For example, in Fig. 1(b), when p = [1, 0, 0], the server
could just transmit the two uncached files such that rate is 2, which is less than
m̄. However, this caching gain contributes at most by an additive constant.
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Fig. 2. Simulation results for α = 0.6. a) m = 5000, n = 50. b) m = 5000, n = 500. c) m = 5000, n = 5000. d) m = 500, n = 5000.

5 10 15 20 25

5

10

15

20

25

30

35

40

45

M

E
x
p

e
c
te

d
 R

a
te

 

 

Uniform Caching

Referenced Scheme

LFU

Random LFU

(a)

20 40 60 80 100 120 140 160 180 200

10

20

30

40

50

60

70

80

90

100

M

E
x
p

e
c
te

d
 R

a
te

 

 

Uniform Caching

Referenced Scheme

LFU

Random LFU

(b)

20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

300

350

400

450

M
Ex

pe
ct

ed
 R

at
e

 

 
Uniform Caching
Referenced Scheme
LFU
Random LFU

(c)

10 20 30 40 50 60 70 80

20

40

60

80

100

120

140

160

180

200

M

E
x
p

e
c
te

d
 R

a
te

 

 Uniform Caching

Referenced Scheme

LFU

Random LFU

(d)

Fig. 3. Simulation results for α = 1.6. a) m = 5000, n = 50. b) m = 5000, n = 500. c) m = 5000, n = 5000. d) m = 500, n = 5000.

it with LFU, the scheme proposed in [10] (referenced scheme)
and uniform caching. 10 The expected rate is shown as a
function of the per user cache capacity, M , for various values
of m,n.

In practice and also in our simulations, R̄ub(p̃,q) is com-
puted with p̃ in (4) and m̃ = argmin R̄ub(p̃,q). Notice that
this optimization problem, which can be solved by simply one
dimensional search, is much simpler than the non-convex op-
timization problem needed to optimize the referenced scheme
in [10].

The simulation results agree with the analytical study shown
in Section IV, which is generally difficult to evaluate and ver-
ify for the study of scaling laws. Observe that for all scenarios,
the proposed scheme is able to significantly outperform both
LFU and the referenced scheme unless the proposed scheme
converges to LFU. In particular, when α = 1.6, m = 500 and
n = 5000, observe from Fig. 3(d) that for cache size 4% of
the library size (M = 20), the proposed scheme achieves a
factor improvement in expected rate of 5× with respect to the
referenced scheme and 8× with respect to LFU.

We remark that the improved performance and order opti-
mality guarantees of the proposed schemes are based on the
ability to 1) cache more packets of the more popular files,
2) maximize the amount of distinct packets of each file col-
lectively cached, and 3) allow coded multicast transmissions
within the full set of requested packets.

10The achievable rate for the scheme proposed in [10] is computed based
on a grouping of the files, an optimization of the memory assigned to each
group, and a separate coded transmission scheme for each group, as described
in [10].
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