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Abstract—Concurrent cooperative transmission for relaying
purposes in mobile communication networks is relevant in
current institutional systems with limited infrastructure, and
and may be viewed as a potential range-extension mechanism
for future commercial networks, including vehicular autonomous
networking. The complexity of the overall system has encouraged
certain abstractions at the physical layer which are critically
analyzed in the present paper. We show via analytic stochastic-
geometry tools that the receiver structure plays a crucial role
in the outage behavior of the relays, particularly for realistic
flooding protocols. This approach aims to help understand the
cross-layer aspects of such networks.

I. INTRODUCTION

Concurrent Cooperative Transmission (CCT) has been
viewed as a potentially useful scheme in wireless networks
where traditional networking infrastructure is either sparse
(hence, requiring additional coverage-extension mechanisms),
deficient, damaged or completely absent, as in certain insti-
tutional and military missions [1–7]. Furthermore, a recent
version of CCT for potential commercial use appears in [8].
The fundamental premise behind CCT is that radio nodes
in the network can be engaged to help transport information
between a specific transmitter (Tx)-receiver (Rx) pair, or in a
multicast-broadcast mode, whenever direct Tx-Rx connection
is not of adequate quality. The assumption behind this premise
is that the produced benefits of CCT are significant in terms
of the usual figures of merit such as reliability, coverage, total
network throughput, and so on, so as to justify the additional
complexity required versus standard single-node transmission
per relayed path. This is because CCT schemes imply a strong
doze of inherent diversity: if a particular link fails due to
the frailties of ground propagation, other concurrent links can
provide the information to the intended receiver.

The present paper discusses the trade-offs and physical-level
considerations that underlie CCT and examines the impact
of signal-design choices (e.g., certain flavors of cooperation),
network-geometry and propagation parameters on the achiev-
able performance. We aim to quantify the gains in reception
signal strength from multiple, randomly located relay nodes
in a number of different settings and receiver architectures.
We assume a noise- and received-power-limited setting and
thus focus on the statistics of signal-to-noise-ratio – SNR from
multiple concurrently transmitting sources. To gain insight we
address a rather limited scenario, namely that of a spatially-
enhanced, single-message, single-hop cooperative transmis-
sion towards a given receiver. This can be considered as a
building block for several multihop scenarios, such as sensor

networks, ground repeaters extending a satellite’s broadband
transmission, military assets enhancing the integrity of a mes-
sage in adverse ground environments, etc. To make analytic
progress, we assume that the locations of the transmitters
relaying the same message follow a Point Poisson Process
(PPP). Recent evidence [9] suggests that PPP in an ad hoc
network of mobile nodes, is a good model [10].

II. COMMUNICATION-NETWORK MODEL

To make specific quantitative progress, we start by defining
a simplified model of the network. We envision a network
with nodes distributed randomly in location and focus on a
particular intermediate (or final) node. This receiver, located
at the origin, receives signal from a set of transmitters located
stochastically with constant spatial density λ over a cone
of angular width φ0 ∈ [0, 2π] (see Fig. 1). Any potentially
interfering stream is assumed remote enough in space as to not
add significant energy in the noise term. The adopted model
does not incorporate spatial-interference effects. This is a valid
simplification in at least two scenarios: one is when a chosen
node acts as a scheduler, yielding the whole network to one
source at a time, multiplexing them in time frames as per the
sources’ requests. This type of scheduling avoids interference
altogether but is patently inefficient for non-broadcast traffic.
A more efficient scheme would re-use space via the concept
of Controlled Barrage regions. This scheme implies more
sophisticated allocation of space to individual traffic streams of
proper width .Within each such region, interference from other
streams would be minimal. The full theory for such spatial
reuse is still a research topic and is not addressed here.

Three different concurrent-transmission (and therefore, re-
spective reception) schemes of varying complexity and practi-
cality will be analyzed here. The first, denoted as “coherent”
below, is an idealized, upper-bounding case whereby each
transmitter possesses a distinct orthogonal channel to itself
for its message. The corresponding receiver can match-filter
individually these dimensions and thus coherently demod-
ulate and add all these contributions from all transmitters.
In practical terms, this would necessitate mapping the inde-
pendent transmissions onto orthogonal media (such as time
slots, frequency bins or spreading codes) and subsequently
collecting all the individual powers of all these transmissions
at the receiver. Power collection would be meant both across
orthogonal dimensions as well as across the multipath taps
(ISI) for each dimension, utilizing either a RAKE receiver (for
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spreading schemes) or optimal maximum-likelihood sequence
estimation for ISI.

The second receiver scenario, denoted as “incoherent”,
is more practical, in which the signals from the individual
transmitters arrive without phase coordination at each tap,
namely, their voltage vectors add incoherently per tap, limiting
the potential diversity gains of the signal. In an effort to
combine these two transceiver models, we also consider the
case, denoted as “random”, where the transmitters have a finite
number of orthogonal channels at their disposal with each
transmitter using one such code. For simplicity in coordination
(but a corresponding hit in the performance), we assume that
each transmitter uses a randomly selected code. For a given
instantiation of the Poisson point process denoted by ω with
K(ω) transmitters present, the corresponding received SNR
can be expressed as

SNRcoh =

K(ω)∑
k=1

gkfkpk

D∑
d=1

ad|hkd|2 (1)

In the above equation, gk = `0/r
α
k is the pathloss coefficient

for the kth transmitter at distance rk, with α being the pathloss
exponent and `0 the pathloss constant (see Table I). fk corre-
sponds to the shadowfading fluctuations, assumed to be lognor-
mal with E[fk] = 1 and log10 fk being a normal variable with
variance σ2. pk is the transmit power, which we normalize by
the receive noise power (hence the “SNR’’ term in (1) thus
pk = Pk/(BWN0), where Pk is the power of transmitter k,
BW is the bandwidth of the signal and N0 is the noise spectral
density. In (1) we model the frequency selectivity by assuming
that there are D distinguishable multipath components, with
relative power strengths ad, such that

∑
d ad = 1, possessing

an exponential decay profile, as experimentally demonstrated
in [11]. As mentioned, the receiver match-filters the respective
complex gains at each tap and then adds this matched power
over all taps and all dimensions. This corresponds to the most
optimistic collection of diversity, hence termed “idealized’’.
Moving to the incoherent case, the SNR is given by

SNRinc =

D∑
d=1

ad
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K(ω)∑
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(2)

The lack of phase coherence between transmitters in this
case implies minimal spatial coordination and thus appears
amenable to pragmatic deployment. Since there is still a
(theoretically) unbounded number of contributing transmitters,
one might expect a finite diversity behavior for small SNR,
even in the absence of multipath (D = 1). However, as we
shall see in Section III-B, this will not be the case. Indeed,
for small SNR the outage behavior is identical to that of a
single transmitter! Finally, the SNR for the third, “random”
case is

SNRrand =

Q∑
d=1

∣∣∣∣∣∣
Kq(ω)∑
k=1

g
1
2

k f
1
2

k p
1
2

k hkd
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2

(3)
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Fig. 1. An example of an ad hoc network where 3 transmitters (Tx) relay
their signals to a single receiver (Rx). The transmitters exist in a slice of of
width φ0 and their signals can be either in Line-of-Sight or reflected from
the buildings. The cone geometry of transmitters mimics the fact that the
destination is to the right of the Rx while the node of origin of the relay is
to the left.

Now, a different random subset of nodes transmits in each
dimension, with corresponding density λ/Q. To keep the
analysis simple in this case, we assume flat fading D = 1.
The results for this case are discussed in Section III-C.

III. RECEPTION STATISTICS

A. Coherent Reception

In this section we calculate the statistics of coherent detec-
tion as defined in (1). Some of the expressions obtained here
are known for pathloss exponent α = 4, but not for general α.
Via standard transform techniques (see, for example, [12, Ch.
3.2]), we compute the Laplace transform L(p) of SNRcoh:

logL(u) = logE
[
e−uSNRcoh

]
= −λu 2

α (4)

with the constant λ being

λ = λφ0Γ

(
1− 2

α

)(
P`0

N0BW

) 2
α

E
[
z

2
α

]
E
[
f

2
α

]
(5)

where Γ(x) is the Euler Γ function and the expectation over
the random variable z =

∑
d ad|hd|2, after averaging over

the fast-fading complex Rayleigh components hd from a fixed
node can be expressed as [13]

E[z
2
α ] = Γ

(
1 +

2

α

) D∑
d=1

a
2
α

d∏
µ6=d

(
1− aµ

ad

) (6)

The expectation over the lognormal shadow fading component
f gives E[f

2
α ] = exp

[
σ2

α

(
2
α − 1

)]
leading to

λ =
2πλφ0

α sin 2π
α

(
P`0
N0W

) 2
α

e
2σ2

α2 −σ2

α

D∑
d=1

Ada
2
α

d (7)

where

Ad =

D∏
k=16=d

(
1− ak

ad

)−1
(8)



To obtain fcoh(s), the distribution of SNRcoh we need to invert
the Laplace transform in (4). For general α > 2 this cannot be
performed exactly. Nevertheless, the tails for the distribution
for small s � λ

α/2
can be obtained by applying the saddle

point method (see [14]), which yields

fcoh(s) ≈ GD,α s−
α−1
α−2 exp

−α− 2

α

(
2
(
λ
)α

2

αs

) 2
α−2

 (9)

where

GD,α =

(
2
α

) 1
α−2√

π(α− 2)

(
λ
) α

2(α−2) (10)

For α = 4 the above equation is exact, which generalizes
the result of [12] to multiple paths and the sector geometry.
We see that the effect of restricting the reception to a finite
sector in space reduces the effective density of the transmitters.
Also note that the effect of multiple paths is to increase the
effective density of transmitters, or equivalently the effective
diversity. The most important feature of this result is that the
probability of very small received signal s � 1 becomes
extremely small. In fact, the key benefit of coherent reception
is that the probability density at s = 0 is zero, in a nonanalytic
way.

B. Incoherent Reception

We now analyze the case of incoherent reception, with
SNRinc given in (2). For the general case of an D-tap channel
(2) can be written as

SNRinc =

D∑
d=1

adh
†
d∆hd (11)

where hd is the complex vector of the fading coefficients hid
for i = 1, . . . ,K(ω) and ∆ is a rank one matrix with elements
∆ij = (gifipigjfjpj)

1
2 . Since the vector hd is complex

Gaussian it can be readily integrated out when calculating
the Laplace transform. Thus for a fixed number of transmitter
nodes the Laplace transform can be expressed as,

L(u) = E

[
D∏
d=1

1

1 + uad
∑K
k=1 gkfkpk

]
(12)

=
∏
d

E

[∫ ∞
0

dqd exp

[
−qd − uqdad

K∑
k=1

gkfkpk

]]
As a result, after averaging over node numbers, positions, and
shadow fading we obtain

L(u) =

D∏
d=1

∫ ∞
0

dqd exp

[
−

D∑
d=1

qd − u
2
α λ̂z(q)

2
α

]
(13)

where z(q) =
∑
d adqd and

λ̂ = λ

(
P`0
N0W

) 2
α

φ0Γ

(
1− 2

α

)
exp

[
σ2

α

(
2

α
− 1

)]
(14)
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Outage Probability vs BW ; P= 0.3 W, fc = 2.4 GHz, σ2 = 8 dB, φ0 = 15o, λ = 1 nodes/1000 m2
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ξ = 0.65 µsec
Incoherent
ξ = 0.17 µsec
Coherent
ξ = 0.65 µsec
Coherent
ξ = 0.17 µsec

Fig. 2. Outage probability for coherent and incoherent reception as a function
of bandwidth for two different values of ξ and fixed node density λ = 1
node/1000m2 and SNR= 0dB.

The above expression may be inverted exactly for the case
of α = 4. To do this we first Laplace transform to obtain a
similar expression with (9) and then integrate over qd to obtain

finc(s) =

D∑
d=1

2Ad λ̂
√
ad(

4s+ adλ̂2
) 3

2

(15)

The above formula, when compared to the corresponding one
of coherent reception in (9) shows that while the large-s
behavior is asymptotically the same, namely f(s) ∼ s−3/2,
its small-s behavior is starkly different.

In particular, for D = 1 we find a finite probability density
for s = 0. This is due to the fact that due to the random
phases between the different complex channel coefficients any
combination of pathloss terms may become arbitrarily small.
In the case of D > 1, the small s behavior of finc(s) can be
obtained for general α by using saddle-point analysis of the
inverse Laplace transform of (13), so that

finc(s) ≈ BD,α
sD−1

λ̂
αD
2

(16)

where BD,α is a constant given by

BD,α =
Γ
(

(α−2)D+1
2

) (
α
2

)D+1
(

α
α−2

) (α−2)D−1
2

Γ(D)
√
π(α− 2)

D∏
d=1

ad

(17)

Here, the presence of independently-contributing multipath
taps reduces the outage probability (small-s behavior) and
alleviates the incoherence problem.

C. Random Allocation of Orthogonal Channels
We now analyze the case of reception from a finite number

of orthogonal channels, with SNRrand given in (3). For sim-
plicity we only treat the single tap D = 1 case. Using identical
arguments as above, we express the Laplace transform of (3)

L(u) =

Q∏
`=1

{∫ ∞
0

dq` exp

[
−q` − u

2
α
λ̃

Q
q

2
α

`

]}
(18)



When Q > 1 f(s) cannot be written in closed form. However,
its small s tails can be obtained using saddle-point analysis of
the inverse Laplace transform of (13), so that

frand(s) ≈ CQ,α
sQ−1

λ̂
αQ
2

(19)

where CQ,α is a constant given by

CQ,α =
Γ
(

(α−2)Q+1
2

)
Γ
(
α
2

)Q (α
2

)2Q (α−2
α

) 1−(α−2)Q
2√

π(α− 2)Γ
(
αQ
2

)
Q−

αQ
2

(20)

Hence, we see that the number of orthogonal paths here saves
the day and reduces the outage for small s.

IV. PERFORMANCE MEASURES

A. Outage Probability

In this section we evaluate the outage distribution, to estab-
lish performance metric for the above schemes. Starting with
coherent detection, we integrate (9) for α = 4 to obtain

P (SNRcoh < s) = Pcohout(s) = 2Q
(

λ√
2s

)
(21)

Similarly, the outage probability for incoherent reception for
α = 4 can be obtained from (15) to be

Pincout(s) = 1−
D∑
d=1

Ad
√
ad λ̂√

4s+ adλ̂2
(22)

For general α 6= 4 the small s behavior of the Pincout(s) can be
obtained from (16) to be

Pincout(s) ≈
BD,α
D

(
s

λ̂
α
2

)D
(23)

Finally, for small s the outage probability for reception from
Q orthogonal codes is approximated by

Prandout (s) ≈ CQ,α
Q

(
s

λ̂
α
2

)Q
(24)

B. Capacity of Relaying Systems

We can express the ergodic capacity for the incoherent
reception Cinc(λ̂) and α = 4 as follows: If adλ̂2 < 4, then

Cinc =

D∑
d=1

√
adλ̂Ad√

4− adλ̂2
arccot

 adλ̂√
4− adλ̂2

 (25)

On the other hand, if adλ̂2 > 4, then

Cinc =

D∑
d=1

2
√
adλ̂Ad√
adλ̂2 − 4

ln

√adλ̂+

√
adλ̂2 − 4

2

 (26)

For coherent reception, the general capacity formula is unob-
tainable; however, for α = 4,

Ccoh = πErfi
(
λ

2

)
− λ

2

2
2F2

(
(1, 1);

(
3

2
, 2

)
;

(
λ
)2

4

)
(27)

where 2F2(·) is the Hypergeometric function [15].
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Fig. 3. Outage probability (and its approximations) as a function of the node
density λ for fixed SNR= 0 dB and bandwidth BW = 10 MHz along with
the cases where D = 1

Parameter Value
Carrier Frequencey fc = 2.4 GHZ
Delay Spread Values [16] ξ = 0.17µs and ξ =

0.65µs
Lognormal Shadowing Standard Deviation 8 dB
Bandwidth BW = 10 MHz
Noise Power N0 = −97.8 dBm
Average Pathloss Attenuation at x = 25m `0 = −93 dB
Pathloss Exponent α = 4

TABLE I
PARAMETER SETTINGS FOR THE NUMERICAL RESULTS.

V. NUMERICAL RESULTS

We now draw certain quantitative conclusions from the
previous results. The chosen parameter values are summarized
in Table I. ad, the relative strength of the receiver power in tap
d for a given bandwidth BW and delay spread ξ is expressed
as

ad = n0

(
exp

[
− (d− 1)

(BW ξ)

]
− exp

[
− d

(BW ξ)

])
(28)

where n0 is a normalization constant so that
∑
d ad = 1.

The number of taps D is determined from the condition that
90% of the total power is captured. Fig. 3 depicts the outage
probability versus λ. This is equivalent to plotting versus SNR,
since the outage probability depends on the parameter λP 2/α,
thus allowing for a tradeoff between node density and power.
While the outage for coherent reception is largely independent
of the delay spread (and therefore D), the outage probability
of incoherent reception depends strongly on ξ. Indeed for
ξ = 0.65 µsec corresponding to urban environments [16] the
outage is essentially identical to that of coherent reception.
Fig. 2 depicts the outage probability versus bandwidth. The
dependence on bandwidth is two-fold. First, for increasing
bandwidth the number of taps increases hence reducing the
outage. However at the same time the noise power increases,
thereby increasing the outage. Thus for a given delay spread
there is a optimum bandwidth. In any case, the outage for
the incoherent case, although higher than that of the coherent
one, is still relatively low. Fig. 4 compares the outage behavior
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Fig. 4. Outage probability as a function of λ along with its approximations
for the incoherent reception, for BW = 10 MHZ.

of all three reception schemes discussed here. We see that
indeed the case with finite number of orthogonal channels Q
is inbetween the two other cases (coherent and incoherent).
For moderate values of Q the slopes of the outage become
close to that of coherent reception, indicating that not too
many orthogonal channels can provide enough diversity to
the system. Finally, in Fig. 5 we plot the ergodic spectral
efficiency versus the density for various values of delay spread
and bandwidth. We find that increasing delay spread increases
the spectral efficiency, while increasing bandwidth has the
opposite effect.

VI. CONCLUSION

We have introduced fairly detailed models of reception
in stochastic-geometry relaying networks and assessed their
impact analytically in the outage regime. Pragmatic protocols
of the stateless type tend to suffer from the phase-noncoherent
combination of same-tap simultaneous receptions, which im-
plies the need to counter that with other means. Rich delay-
spread multipath, if present and properly collected, is shown
to have an ameliorating effect on outage. The coherent power-
collecting model is shown to be superior in outage. However,
the latter implies protocol-level coordination as well as signal
expansion in the resource dimension (not required in the
noncoherent model), with a concomitant loss of throughput
at the cooperative-link level. A more thorough study of end-
to-end throughput would quantify the associated tradeoffs.
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