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Abstract—In this paper, we propose a novel quantum backscat-
ter communications (QBC) protocol, inspired by the quantum
illumination (QI) concept. In the QBC paradigm, the transmitter
generates entangled photon pair. The signal photon is transmitted
and the idler photon is kept at the receiver. The tag antenna
communicates by performing the pulse amplitude modulation
(PAM), binary phase shift keying (BPSK) or quadratic phase
shift keying (QPSK) on the signal impinging at the antenna.
Using the sum-frequency-generation receiver, our QBC protocol
achieves a 6 dB error exponent gain for PAM and BPSK, and
3 dB gain for QPSK over its classical counterpart. Finally, we
discuss the QI-enhanced secure backscatter communication.

Index Terms—Quantum communication, backscatter commu-
nication, quantum illumination, error probability exponent

I. INTRODUCTION

Backscatter of radio waves is the subject of active study

since the development of radar in the 1930s, and the use

of it for communications since 1948 [1]. Backscatter com-

munication (BC) is widely used in radio frequency (RF)

identification tags, and it bears close resemblance with the

radar. Quantum radar [2] is a remote-sensing method based

on quantum entanglement. Quantum illumination (QI) was

introduced by S. Lloyd in 2008 with the idea of using entan-

gled photons to increase the success probability of detecting

a low-reflectivity object in a noisy and lossy environment [3],

[4]. The application in the microwave regime was proposed

afterwards, and it paved the way to a prototype of quantum

radar [5]. QI has also been utilized for quantum key exchanged

in optical communication systems [6]. In this paper, we

propose to use QI to enhance backscatter communications. The

proposed Quantum Backscatter Communications (QBC) bears

close resemblance to the quantum radar in a manner similar

to BC being closely related to the classical radar. Our recent

work paper [7] has proposed to construct pre-coder beam-

splitters and receiver beamforming beam-splitters such that the

orthogonal eigen-channels can be accessed using QBC. This

paper aims at describing the QBC concept and analyzing its

performance in terms of bit error rate (BER).

In the proposed QBC paradigm, the reader antennas are

pointed toward a tag antenna that communicates by performing

the pulse amplitude modulation (PAM), binary phase shift

keying (BPSK) or quadratic phase shift keying (QPSK) on

the signal. The receiver is then able to discriminate the states

of the idler-signal system after the corresponding phase and

amplitude modulation are performed by the tag. We compare

the classical architecture, consisting in illuminating the an-

tenna with classical light or microwave signal and performing

heterodyne detection, with the quantum architecture using

Gaussian entangled states as resources. We quantify the quality

of the performance in a Bayesian setting by seeking the best

scaling of the error probability (EP) averaged over the a

priori probabilities of each symbol. In the PAM and BPSK

cases, the quantum setting allows for up to 6 dB improvement

in the EP exponent (EPE) [4]. This can be achieved by a

slight modification of the Zhuang receiver (interchangeably

called SFG-RX) proposed in [8], based on a sum-frequency-

generation (SFG) circuit, parametric amplifiers (PAs), photon-

counter and a feedback loop. Alternatively, a simpler circuit

based only on parametric amplification and photon-counting

can achieve a 3 dB gain [9], [10], which has been implemented

in a laboratory environment in the optical regime [11]. We

further show that only SFG-RX achieve a 3 dB gain in the

QPSK case. At the end, we argue that the BPSK and QPSK

schemes are useful for quantum cryptography, allowing for

secure communication between the antenna and the RX.

A. States, Observables, and Quantum Harmonic Oscillator

In quantum mechanics, the state of a system can be

represented by column vector |ψ〉 ∈ C∞, normalized as

〈ψ|ψ〉 = 1. 1 Observables are Hermitian 2 operators Ô ∈
C∞×∞. The expectation value of the observable Ô on the state

|ψ〉 is defined as 〈Ô〉ψ ≡ 〈ψ|Ô|ψ〉 ∈ R. The Hamiltonian

of a system is an operator H ∈ C∞×∞, which rules the

evolution of the state of the system via the Schrödinger’s

equation: i~∂t|ψ(t)〉 = H |ψ(t)〉, where ~ denotes the reduced

Planck constant and i =
√
−1. These concepts can be easily

generalize to bipartite systems by using the tensor product

formalism. The joint state of two separate systems is repre-

sented by a vector |ψ〉AB ∈ C∞ ⊗ C∞, where ⊗ denotes the

tensor product and AB〈ψ|ψ〉AB = 1. Observables in bipartite

1We use the bra-ket notation. The scalar product between two states |φ〉 and
|ψ〉 is denoted by 〈φ|ψ〉 ≡

∑
i φ

∗
i ψi, where ∗ denotes complex conjugate

of a number. The operators Â ∈ C∞×∞ apply only on the right so that

〈φ|Â|ψ〉 =
∑
i φ

∗
i (Âψ)i = [

∑
i ψ

∗
i (Â

†φ)i]∗ = 〈ψ|Â†|φ〉∗, where † is an
adjoint operator.

2Despite non-Hermitian operators, i.e., Â 6= Â†, do not represent measur-
able quantities, it is useful to formally define their expectation values on the

state |ψ〉 as 〈Â〉ψ ≡ 〈ψ|Â|ψ〉 ∈ C.
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systems are Hermitian operators ÔAB ∈ C∞×∞ ⊗ C∞×∞. 3

A bipartite state |ψ〉AB is said to be entangled if it can not

be decomposed as |ψ〉AB = |φ〉A ⊗ |χ〉B . Entangled states

show correlations between outcomes of measurements on the

individual systems which are not reproducible in the classical

systems, and they will be a key resources for the results in

this paper.

In the low photon number regime, if the thermal fluctu-

ation are negligible, the electromagnetic field behaves ac-

cording to quantum electrodynamic theory. The free Hamil-

tonian of quantized electromagnetic field has the same form

as the Hamiltonian of quantum harmonic oscillator H =
~ω

(

â†â+ 1/2
)

with the annihilation operator â and the

creation operator â†. Their action on the basis defined by

the eigenvectors {|n〉}∞n=0 of the Hamiltonian H is â|n〉 =√
n|n − 1〉 and â†|n〉 =

√
n+ 1|n + 1〉. Moreover, the

commutation relation [â, â†] = 1 hold. The eigenstates of

the operator â are referred to as coherent states, and we

refer to them as classical states, because the statistics of their

measurements resembles the one of the classical signals. The

canonical position and momentum-like operators are given by

x̂ ≡ (â+ â†)/
√
2 and p̂ ≡ −i(â− â†)/

√
2 respectively.

B. Backscatter Communication

The BC consists in sending a signal to a tag, which chooses

a symbol (
√
η, φ) belonging to alphabet A that defines a

particular BC scheme. In this work we consider the follow-

ing BC schemes using PAM, BPSK, and QPSK modulation

techniques:

APAM = {(√η1, 0), (
√
η2, 0)} ,

ABPSK= {(√η, 0), (√η, π)} ,
AQPSK= {(√η, 0), (√η, π/2), (√η, π), (√η, 3π/2)} .

In this framework, the QI setup previously studied in the

literature corresponds to the PAM case with η1 = 0. In this

paper, we consider the symmetric case, where all the symbols

are chosen with equal a priori probability, and the performance

of the BC scheme is quantified by the EP, defined as

Perr =
1

|A|
∑

(η,φ)∈A

Pr [H̄(η,φ)|H(η,φ)], (1)

where |A| is the size of A and Pr [H̄|H ] is the probability

that, given the hypothesis H , we wrongly declare a different

hypothesis. The EP Perr decays exponentially in both the

classical and in the quantum case. We will show a quantum-

RX decaying at a higher rate with respect the classical case.

The rest of this paper is organized as follows. In Sec-

tion II, we describe a bistatic QI-enhanced quantum backscat-

ter system. Section III introduces the quantum receivers and

discusses quantum protocols, and we then compare the per-

formance of classical and quantum receivers. We discuss in

Sec. IV the possibility of using QI to enhance the secure

3Observables of individual systems are operators ÔA⊗ I and I⊗ ÔB, and

are usually denoted simply as ÔA and ÔB . Here I is the identity operator.

Fig. 1. An illustration of bistatic QI-enhanced QBC systems.

backscatter communication. Finally, Section IV concludes the

paper.

II. SYSTEM MODEL

The quantum backscatter system shown in Fig. 1 enhances

the feature of a classical QBC using entangled photons. In the

classical case, the transmitter (TX) transmits an unmodulated

carrier backscattered from the tag to the receiver (RX). The

carrier is modeled in quantum mechanics as a coherent state

|α〉S = e−|α|2/2 ∑∞
n=0

√

αn/n! |n〉, where α is a parameter

related to the mean number of signal photons.

In the QI setup, the entangled signal-idler (S-I) photon pairs

are first generated at the TX. The S-photon is transmitted and

backscattered from a tag antenna. The idler is kept at the RX

to be measured jointly with the backscattered signal. The RX

uses both the received S-photon from the RX antenna and the

I-photon. The system in Fig. 1 is bistatic4, meaning that the

transmitter and the RX are separated in space. We consider a

source able to continuously generate S-I photon pairs in the

radio frequency regime in a two-mode squeezed state (TMSS)

|ψ〉SI =
∞
∑

n=0

√

Nn
S /(NS + 1)n+1 |n〉S |n〉I ,

where NS is the average number of photons of both the signal

and the idler [4], [8]–[10]. The joint probability distribution

of the quadratures of the TMSS is a Gaussian with zero mean

value, hence the state is well defined by its covariance matrix.

Indeed, if âS and âI represent the modes of the signal and the

idler, respectively, then we have that 〈â†S âS〉 = 〈â†I âI〉 = NS ,

〈âS âI〉 =
√

NS(NS + 1) and 〈â†S âI〉 = 0.

We model the quantum channel with a low-reflectivity

beam splitter, whose inputs are the signal and a thermal state

modeling the effect of the environment. This is described with

the unitary operator

Bη,φ = exp
[

sin−1(
√
η)

(

â†S âZe
−iφ − âS â

†
Ze

iφ
)]

,

where φ is the phase shift, and η is the round-trip transmis-

sivity (RTT) of the channel. Here, the environmental thermal

mode âZ is a Gaussian mode. The number of thermal photons

NZ = (e~ω/kBT − 1)−1, where T is the environment temper-

ature and kB the Bolzmann constant. Both the impact of the

4We assume that the I-photons are available for the RX without losses. In
mono-static case, the idler photon is directly available at the RX. In the bistatic
case, it would need to be transmitted over a cable to the RX. In practice this
transmission will cause losses which will reduce the system gain.



propagation path loss and the tag antenna are included in the

effective parameters η ≪ 1 and φ. The input-output relations

of the beam splitter read

âR≡B†
η,φâSBη,φ=

√
ηe−iφâS +

√

1− ηâZ , (2)

âY≡B†
η,φâZBη,φ=−√

ηeiφâZ +
√

1− ηâS , (3)

where âR is the received mode, and âY corresponds to modes

that are not received and can thus be ignored.

Depending on the transmit and receive antenna gains Gt
and Gr of the reader, distance from the transmitter to the tag

Rt, the communication frequency ω, and the distance from

tag to RX Rr, the RTT η can be represented as:

η =
GrGtc

2σQ
(16πω2R2

tR
2
r)
.

The parameter σQ = 〈Îs〉/〈Îi〉 is the Quantum Radar Cross

Section (QRCS) [12], where 〈Îs〉 denotes the intensity mea-

sured by a detector after a photon is reflected by atoms on

the target surface, the tag antenna in our case, and 〈Îi〉 is the

incident intensity calculated assuming the target to act as a

photon detector. The phase shift of the channel φ depends on

the communication distance R = Rt+Rr and the phase shift

caused by the tag φ = 2πR/c+ ϕ. A large number of mode

pairs M are needed in order to perform the QSD at the RX.

The available number of mode pairs M = WTs depends on

the phase matching bandwidth W and the tag symbol duration

Ts assumed to be small compared to the channel coherence

time.

III. PERFORMANCE ANALYSIS

A. Classical receiver

In the base-line classical case (referred to as C-RX), i.e.

without using QI technique, the carrier is a Gaussian mode

in a coherent state with an average number of photons NS .

Heterodyne detection is then performed on each of the M
copies of the received mode âR defined in (2). Heterodyne

detection is modeled in the quantum formalism as a 50 :
50 beam splitter with outputs â1 = (âR + âV )/

√
2 and

â2 = (âR − âV )/
√
2, where âV is a complex Gaussian noise

with variances 〈x̂2V 〉 = 〈p̂2V 〉 = 1/2. Let us introduce the

complex envelope Ŝ ≡ (x̂1 + ip̂2) /
√
NS with mean value

〈Ŝ〉 = √
ηe−iφ, given that 〈x̂1〉 =

√
ηNS cos(φ) and 〈p̂2〉 =

−√
ηNS sin(φ). If we measure M ≫ 1 times both x̂1 and

p̂2, we can estimate the mean value of the complex envelope

with the sample mean S̄ ≡ ∑M
i=1 Si/M . Finally, we declare

the symbol {√η̃, φ̃} = argmin{√τ,ϕ}∈AL

∣

∣S̄ −√
τe−iϕ

∣

∣, and

the protocol succeeds if {√η̃, φ̃} = {√η, φ}. In the classical

setup, regardless the BC scheme used, it is well-known that

the EP P cerr is lower-bounded by

P cerr ≥
1

2|A|erfc





√

mink̃ 6=k d
2
kk̃
NSM

4NZ



 ∼ e
−

min
k̃ 6=k

d2
kk̃

NSM

4NZ ,

(4)

where dkk̃ ≡ |√ηke−iφk − √
ηk̃e

−iφ
k̃ | and the minimum is

taken over the elements of A. This provides the asymptotic

behaviour of the classical EP. For the considered BC schemes

we have that: |APAM| = 2 and d2
kk̃

= |√η2 −
√
η1|2 ≡ d2PAM

for PAM; |ABPSK| = 2 and d2
kk̃

= 4η ≡ d2BPSK for BPSK;

|AQPSK| = 4 and mink̃ 6=k d
2
kk̃

= 2η ≡ d2QPSK for QPSK.

B. Quantum receiver

In the quantum case, different symbols correspond to dif-

ferent quantum states at the RX. Therefore, the task reduces

to find a measurement discriminating with the least number

of measurements, between the quantum states which are the

possible outputs of the considered QBC scheme. A practical

requirement consists in finding an experimentally feasible cir-

cuit achieving the optimal measurement. The optimal decision

rule for discriminating between two equally likely quantum

states ρ0 and ρ1 was found by Helstrom [13]. It consists in

measuring the operators E0, E1, with E0+E1 = I, where E1

is the projection on the range of the positive part of ρ1 − ρ0.

The corresponding optimal EP is PH = (1 − ‖ρ0 − ρ1‖1)/2.

In the multiple copies case, where we need to discriminate

between the two states ρ⊗M0 and ρ⊗M1 , with M ≫ 1, the

computation of the optimal probability and the correspond-

ing measurement can be substantially challenging. An upper

bound on the EP is provided by the quantum Chernoff bound

(QCB) [14], stating that PH ≤ e−MξQCB , where ξQCB =
− log

(

min0≤s≤1 Tr (ρs0ρ
1−s
1 )

)

. This bound is asymptotically

tight, i.e. PH ∼ e−MξQCB for M ≫ 1.

In the QI setup, the QCB has been computed for PAM case

in [4], showing a 6 dB gain over the best classical strategy.

Recently, a measurement saturating the Helstrom EP has been

obtained in [8]. It applies an SFG to the modes at the RX,

allowing to map the problem to the discrimination between two

coherent states, where the Dolinar RX is known to be optimal

for this task [15]. A suboptimal RX, achieving a 3 dB gain and

consisting in a PA and photon-counting, has been proposed

in [9] and implemented in [11]. The performance loss is

accompanied with a benefit in the experimental feasibility, as

the latter RX involves only two-mode interactions in contrast

to three-mode interactions needed in the SFG-RX. We show

how these RXs achieve a gain in QBCs.

PA-receiver: It consists in the measurement of the observ-

able ÔPA = âI âR + â†I â
†
R, with mean value 〈ÔPA〉 =

√

ηNS(NS + 1) cos(φ) and variance5 〈O2
PA〉 − 〈ÔPA〉2 ≈

NZ . This is implemented with the help of a PA, whose input-

output relations are

ĉ =
√
GâI +

√
G− 1â†R and d̂ =

√
GâR +

√
G− 1â†I .

(5)

If we choose G = 1 + ε2, with NS/NZ ≪ ε2 ≪ 1/NZ [9],

then the photon-number operator approximates ÔPA:

ĉ†ĉ = G â†I âI + (G− 1) âRâ
†
R +

√

G(G − 1) ÔPA ≈ ε ÔPA,
(6)

where we have used that ε2 ≪ 1/NZ and 〈â†I âI〉 = NS ≪
1 in order to conclude that G â†I âI + (G − 1) âRâ

†
R ≈ 0.

A threshold strategy can be easily defined, showing a 3 dB

5It has been approximated in the η ≪ 1, NS ≪ 1, NZ ≫ 1 limits.



advantage of the QBC over BC in the PAM and BPSK cases,

where |〈ÔPA〉| is maximal. Indeed, if we consider the sample

mean ŌPA =
∑M

k=1O
k
PA/M , where OkPA is the measurement

outcome of the k-th copy, we declare the symbol {η̄, φ̄} =
argmin{√η,φ}∈A

∣

∣ŌPA −√
ηe−iφ

∣

∣. It was shown in [9], [10],

with a Cramer-Chernoff theorem based argument, that

PPAerr ≤ e−d
2
PAM(BPSK)NSM/2NZ . (7)

The EPE is twice the one found in (4), which corresponds to

a 3 dB gain. However, the PA receiver does not provide any

gain in the QPSK scheme since the symbols are not aligned.

SFG-RX: It maps the problem to the one of discriminating

between coherent states [8]. The SFG circuit is described by

the interaction Hamiltonian

HI = ~g

M
∑

m=1

(

b̂†âRm
âIm + b̂â†Rm

â†Im

)

,

where {âRm
, âIm}Mm=1 are the modes corresponding to the

different copies of the RX and the idler, b̂ is initially in the

vacuum state, and g is the coupling parameter. If we assume

the low-brightness conditions nR(t) ≡ 〈â†Rm
âRm

〉t ≪ 1,

nI(t) ≡ 〈â†Im âIm〉t ≪ 1 and |C(t)|2 ≡ |〈âSm
âRm

〉t|2 ≪ 1,

then one can solve the dynamics in the qubit approximation,

finding that the mode b̂ is in a coherent state mixed with a

weak thermal noise [8]:

C(t) = C(0) cos(
√
Mgt),

nR(t) = nR(0), nI(t) = nI(0),

b(t) = −i
√
MC(0) sin(

√
Mgt),

nb(t) = [M |C(0)|2 + nI(0)nR(0)] sin
2(
√
Mgt),

where nI(0)nR(0) term in the last equation is the aforemen-

tioned thermal noise contribution. If we let evolve the circuit

for a time tl = lπ/2
√
Mg, with l positive odd integer, then

the correlations between the RX modes C(t) disappears in

favour of the coherent state amplitude b(t). This results in the

following input-output relations:

âRm
(tl) =

√

1 + |C(0)|2 âRm
(0)− C(0) â†Im , (8)

âIm(tl) =
√

1 + |C(0)|2 âIm(0)− C(0) â†Rm
. (9)

Notice that nR(0) ≃ NZ ≫ 1, which lets the low-brightness

condition fall. This issue is solved by sending the modes âRm

to a low-transmissivity beam splitter, obtaining

â
(1)
Rm,1

=
√
τ âRm

+
√
1− τ v̂(1)m , and

â
(1)
Rm,2

=
√
1− τ âRm

−
√
τ v̂(1)m ,

where v̂
(1)
m is a vacuum mode and τNZ ≪ 1. We then send

â
(1)
Rm,1

and â
(1)
Im

= âIm as inputs of the SFG circuit, which

generates the mode b̂(1) in a coherent state |
√
τMC(0)〉 and

the outputs {â′(1)Rm
, â′

(1)

Im} according to Eqs. (8)-(9). We mix

the mode â′
(1)

Rm
with â

(1)
Rm,2

, obtaining

â
(1)
E =

√
τ â

(1)
Rm,2

+
√
1− τ â′

(1)

Rm
,

â
(1)
R =

√
τ â′

(1)

Rm
−
√
1− τ â

(1)
Rm,2

.
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Fig. 2. Bit error probability for PAM, BPSK and QPSK for Heterodyne-RX
in (4), PA-RX in (7) and SFG-RX in (9a)-(9c) as a function of ηNsM/NZ .

We iterate this process K times, by sending as input of

the SFG the modes â
(k)
Rm,1

=
√
τ â

(k−1)
Rm

+
√
1− τ v̂

(k)
m and

â
(k)
Im

= â′
(k−1)

Im . This generates, as output, the b̂(k) modes

in a coherent state |
√
τMC(0)[1 − τ(1 + NZ)]

k〉 embedded

in a thermal environment with NSNZ ≪ 1 average number

of photons, and the â
(k)
E modes in an thermal state with

mean number of photons n
(k)
E = n

(k)
b = τM |C(0)|2[1 −

τ(1 + NZ)]
2k. The number of cycles K is chosen such that

∑K
k=1 n

(k)
b /

∑∞
k=1 n

(k)
b = 1 − ε, for some ε ≪ 1.6 As the

mean number of photons n
(k)
E and n

(k)
b are both zero for

C(0) = 0, one can test the different hypothesis by simply

applying a two-mode squeezing operation (TMSO) before the

SFG circuit. The latter allows to displace to zero the phase-

sensitive correlations of one of the hypothesis.7 We discuss the

performance in the different QBC schemes in the NZ ≫ 1,

NS ≪ 1, τNZ ≪ 1, ε≪ 1 limit.

a) PAM: The SFG-RX achieves a 6 dB gain in the EPE with

respect the classical BC. We can simply apply a TMSO before

the SFG, in order to have n
(k)
E = n

(k)
b = 0 for the hypothesis

(
√
η1, 0). One can simply measure the total number of photons

∑K
k=1(n̂

(k)
b + n̂

(k)
E ) and declare the aforementioned hypothesis

if no photons are counted, obtaining the EP bound in (9a).

b) BPSK: The same can be done here, by applying a TMSO

before the SFG, in order to have n
(k)
E = n

(k)
b = 0 for the

hypothesis (
√
η, π). Then, we proceed like in the PAM case,

achieving an EP given in (9b), which corresponds to a 6 dB

gain in the SNR with respect the classical case.

c) QPSK: The task is equivalent to discriminate between

6As a further technical remark, in the Chernoff bound regime we have
M |C(0)|2 ≫ 1. Therefore, in order to apply the qubit approximation, we

need to divide the M signal-idler pair of modes in M/K̃ subsets, such that

K̃|C(0)|2 ≪ 1, and apply the RX to the K̃ pair of modes at a time [8].
7 [8] applies also two TMSO after the SFG circuit. This allows to have in

every cycle n
(k)
E

= n
(k)
b

, and both n
(k)
E

and n
(k)
b

homogeneous functions
of the phase-sensitive correlations of the hypothesis that we are testing.



the coherent states |eiφ
√

∑K
k=1(n

(k)
b + n

(k)
E )〉, with φ ∈

{0, π/2, π, 3π/2}, where the TMSOs have the role of the

displacements. This can be done following Bayesian strategies,

like in the Dolinar receiver [15]. In alternative, we can simply

test the different hypothesis by applying TMSOs, and discard-

ing them as soon as one photon is detected [16], achieving

the same 3 dB gain in the SNR as in the Dolinar receiver, see

in (9c). This is in contrast with the PA-RX, which does not

provide any gain in this case.

PPAM
err ≤ e−d

2
PAMNSM/NZ , (9a)

PBPSK
err ≤ e−4

∑
K
k=1(n

(k)
b

+n
(k)
E

) ≃ e−d
2
BPSKNSM/NZ , (9b)

PQPSK
err ≤ 4e−

∑
K
k=1(n

(k)
b

+n
(k)
E

) ≃ 4e−d
2
QPSKNSM/2NZ . (9c)

Figure 2 illustrates the bit error probability (or interchange-

ably bit error rate) performance of Heterodyne, PA and SFG

RXs for PAM, BPSK and QPSK modulations. In PAM, we

have assumed that η2 = η and η1 = 0 corresponding to on-

off-keying (OOK). The plots verify the results addressed in

out analysis. For PAM and BPSK, the PA-RX and SGF-RX

provide a 3 dB and a 6 dB EPE gain over the classical RX,

respectively. For QPSK, only the SGF-RX provides a 3 dB

EPE gain over the classical RX.

IV. QI-SECURED BACKSCATTER COMMUNICATION

This section discusses the possibility of using QI to enhance

the secure backscatter communication.

The use of QI can provide a factor 4 gain in the error

exponent for the communication link (referred to as Bob-

Alice) between the backscatter device Bob and the transceiver

Alice compared to the link (referred to as Bob-Eve) between

Bob and the eavesdropping receiver Eve. This is due that

the QI is not available on Bob-Eve link. In order for Eve to

compensate this, Eve would need to use higher-gain antennas

than that which Alice uses or be closer to Bob. Further,

in order to increase the security that is to make the life

of active eavesdropper more complicated, Alice can apply

random phase shift to both the signal and idler paths. In case

of BPSK, Eve would need to estimate this random phase shift

before decoding the message from Bob such that the security

of Bob-Alice link is enhanced.

The system is vulnerable to active Eavesdropping attack

where Eve illuminates the Bob’s antenna with its own signal.

Eve’s signal will cause interference at Alice’s receiver and

could be detected. Adding power detector to Bob would also

be utilized to detect Eve, but in practice this would mean that

fraction of the power impinging at it’s antenna would need

to be fed to the detector thus reducing σQ (and thus η). For

instance, 50−50 power divider at Bob’s antenna would reduce

the error exponent by factor 2 so that in case of PA-receiver

would negate the gain achieved by using QI.

V. CONCLUSIONS

We proposed to use the quantum radar technology to en-

hance the performance of backscatter communication systems.

Especially, we the use of quantum illumination to enhance the

system performance. The proposed QBC concept was verified

to be within the reach of engineering applications such that in

the PAM and BPSK cases, the quantum setting allows for

a 6 dB advantage in the error probability exponent while

in the QPSK scheme a 3 dB gain can be achieved using

the SFG-RX. Finally, we would like to notice that in any

scheme involving only phase modulation, as in the BPSK

and QPSK protocols, the quantum setting allows for secure

communication by means of quantum cryptography in a way

similar to optical systems [6].
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