
ar
X

iv
:1

91
2.

08
31

7v
1 

 [
ee

ss
.S

P]
  1

7 
D

ec
 2

01
9

Low-Rank Tensor MMSE Equalization
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Abstract—New-generation wireless communication systems
will employ large-scale antenna arrays to satisfy the increasing
capacity demand. This massive scenario brings new challenges
to the channel equalization problem due to the increased signal
processing complexity. We present a novel low-rank tensor
equalizer to tackle the high computational demands of the
classical linear approach. Specifically, we propose a method to
design a canonical polyadic tensor filter to minimize the mean
square error criterion. Our simulation results indicate that the
proposed equalizer needs fewer calculations and is more robust
to short training sequences than the benchmark.

Index Terms—Tensor, Equalization, Beamforming, MIMO

I. INTRODUCTION

Modern wireless communication systems rely on large-

scale antenna arrays to enhance their performance [1], [2].

Such massive arrays yield high beamforming gain, improve

interference suppression and ameliorate the spatial resolution

capabilities of the system. However, the implementation of

large-scale arrays raises some challenges, including computa-

tionally demanding signal processing, high energy consump-

tion, among others. Tensor filtering has been investigated as a

possible solution to the high computational complexity issue

of large-scale systems [3]–[11].

In [3]–[5], we present beamforming methods for massive ar-

rays considering a modest Kronecker separable system model.

Therein, the high-dimensional beamforming vector is factor-

ized into a Kronecker product of lower-dimension factors.

Such a factorization allows us to optimize the beamformer

for each low-dimensional factor, decreasing the number of

calculations. We also observe that Kronecker beamformers

may drastically reduce the number of calculations in the

beamforming optimization with negligible signal recovery per-

formance degradation. These filters, however, do not provide

many degrees of freedom due to their rank-1 structure, limiting

the performance and the applicability to more practical system

models.

A general formulation of Kronecker filters is thus necessary

to enhance their performance. In fact, Kronecker separable

filters can be regarded as rank-1 tensor filters [12], [13].

One way to increase the filter’s degrees of freedom consists

of employing low-rank filters, i.e., we consider a finite sum

of Kronecker-separable terms. In [6], [7], low-rank bilin-

ear system identification methods are proposed to estimate

acoustic impulse responses. It is shown that some sparse

acoustic signatures nicely fits the low-rank bilinear model.

This work is partially supported by the Brazilian National Council for
Scientific and Technological Development - CNPq, CAPES/PROBRAL Proc.
numbers 88887.144009/2017-00, 308317/2018-1, and FUNCAP.

In fact, sparsity is strongly linked to the low-rank system

representation [14]. Some works [15], [16] also consider the

identification of trilinear systems. These estimation methods

exhibit better accuracy than their classical counterparts. In

the context of wireless communications, [17] presents a low-

rank bilinear filter for code division multiple access systems.

The influence of the filter rank on the system performance

is studied. It is shown that the rank parameter controls a

complexity-equalization performance trade-off. Unfortunately,

the analysis of [17] is restricted to the bilinear case and details

on its computational complexity are lacking. Therefore the

potential of multilinear filters is yet to be investigated.

The main contributions of the present paper can be summa-

rized as: (i) We propose a novel low-rank multilinear equalizer

for large-scale antenna array system based on the minimum

mean square error (MMSE) filter. Our method extends those

of [3]–[5] to deal with non-separable systems and it also

generalizes those of [6], [16], [17] to the multidimensional

case; (ii) We investigate the computational complexity and

the equalization performance of the proposed method; (iii)

With simulation results, we demonstrate the robustness of our

method to short training sequences and its superior computa-

tional efficiency compared to the classical linear equalization

approach.

A. Notation

x denotes vectors, X matrices and X tensors. [X]i,j stands

for the (i, j)-th entry of X . The transpose, and the conjugate

transpose (Hermitian) of X are denoted by XT and XH,

respectively. The (M × M)-dimensional identity matrix is

represented by IM and the (M ×N)-dimensional null matrix

by 0M×N . The ℓ2 norm, the statistical expected value operator

and the vectorization operator are respectively denoted as ‖·‖2,

E [·], vec(·). The outer product, the Kronecker product, the n-

mode product and the Big-O notation are referred to as ◦, ⊗,

×n and O(·), respectively.

II. SYSTEM MODEL

Let us consider a multiple-input multiple-output (MIMO)

wireless communication system consisting of U user equip-

ment (UE) and a single base-station (BS). We assume that

each UE is equipped with a single omni-directional antenna

and the BS employs a uniform linear array (ULA) of N omni-

directional antennas whose axis is parallel to the ground plane.

The spacing between the array antennas is considered to be

d = λ/2, where λ denotes the carrier wavelength. This half-

wavelength ULA setup is considered for simplicity purposes,

however, our model can be easily adapted to different kinds
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of antenna geometry. We consider the uplink scenario, where

UE u emits an independent and identically distributed (i.i.d.)

discrete-time digitally-modulated symbol sequence su[k] with

zero mean and variance σ2
s , where k denotes the symbol period

for u ∈ {1, . . . , U}. From our assumptions, it follows that

E
[

si[k − p]s∗j [k − q]
]

=

{

0, i 6= j or p 6= q

σ2
s , i = j and p = q

.

We assume a frequency-selective wireless channel with Q
delay taps and L multi-paths. Therefore, the discrete-time

representation of the received signal at the n-th BS antenna

can be expressed as [18]

xn[k] =

U
∑

u=1

Q−1
∑

q=0

L−1
∑

ℓ=0

αu,ℓg(qT−τu,ℓ)an(θu,ℓ)su[k−q]+bn[k],

where αu,ℓ denotes the complex channel gain, g(·) the effec-

tive pulse-shaping waveform, τu,ℓ the propagation delay, T
the symbol period, an(θu,ℓ) the channel spatial response and

bn[k] the additive white Gaussian noise (AWGN) component

for n ∈ {1, . . . , N}. The channel gains are modeled as i.i.d.

Gaussian random variables with zero mean and unit variance,

and the AWGN components are Gaussian random variables

with zero mean and σ2
n variance. Since the BS employs a half-

wavelength ULA, the channel spatial response term is given

by an(θu,ℓ) = e−π(n−1) cos(θu,ℓ), where θu,ℓ stands for the

direction of arrival of the ℓ-th path associated with UE u. We

also define the signal to noise ratio (SNR) as SNR = σ2
s/σ

2
n.

Let x[k] = [x1[k], . . . , xN [k]]T denote the received signal

vector at BS. It can be written as:

x[k] =
U
∑

u=1

Husu[k] + b[k], (1)

su[k] = [su[k], . . . , su[k −Q + 1]]
T
,

b[k] = [b1[k], . . . , bN [k]]T ,

where

Hu =

L
∑

ℓ=1

αu,ℓa(θu,ℓ)g(τu,ℓ)
T ∈ C

N×Q, (2)

a(θu,ℓ) =
[

1, . . . , e−π(N−1) cos(θu,ℓ)
]T

∈ C
N ,

g(τu,ℓ) = [g(−τu,ℓ), . . . , g((Q− 1)T − τu,ℓ)]
T
∈ C

Q

denote the BS-UE u uplink channel matrix, the array steering

vector (spatial response), and the effective pulse-shaping vec-

tor (temporal response), respectively. Model (1) assumes that

the channel is block-fading, i.e., Hu remains constant over a

frame of K symbol periods.

Let us consider that the BS wishes to extract from x[k] the

symbols of UE u while regarding the signals from the other

(U − 1) users as interference. To emphasize this scenario, we

rewrite (1) as

x[k] = Husu[k] +

U
∑

j 6=u

Hjsj [k] + b[k] (3)

where the first term corresponds to the desired signal and the

other terms to interference and noise. The covariance matrix of

(3) is defined as Rxx = E
[

x[k]xH[k]
]

. From our assumptions,

the covariance matrix can be written as Rxx = Rdd +Rii +
Rbb, where Rdd = HuRssH

H

u , Rii =
∑U

j 6=u HjRssH
H

j ,

Rss = σ2
sIQ, Rbb = σ2

nIN .

III. EQUALIZATION METHODS

We consider an equalizer filter to extract the desired signal

from the observed signals and to compensate for channel

distortions, multi-user interference, and noise. Let w ∈ CN

represent the equalizer weights vector. The filter output can

thus be written as y[k] = wHx[k]. We are interested in

designing the equalizer weights to minimize the difference

between filter output and the desired symbol sequence (lagged

by some δ due to the propagation delay). We consider the

mean square error (MSE) as an optimization metric, therefore

the equalizer design problem can be stated as

min
w

E
[

|su[k − δ]− y[k]|2
]

. (4)

In the following, we recall the classical MMSE filter, which

is the optimal solution to (4). We discuss some of its properties

and drawbacks. Next, we propose a novel equalizer design

method based on tensor algebra that addresses some issues of

the classical MMSE equalizer.

A. Linear MMSE Filter

Let J(w) = E
[

|su[k − δ]− y[k]|2
]

denote the MSE objec-

tive function. It can be rewritten as

J(w) = σ2
s − pHw −wHp+wHRxxw, (5)

where p = E [x[k]s∗u[k − δ]] = HuRsseδ is the cross-

covariance vector between the elements of x[k] and su[k− δ],
and eδ = [0, . . . , 1, . . . , 0]T is a Q-dimensional vector with 1
at its δ-th entry and 0 elsewhere. Since J(w) is convex, its

global minimizer can be found by solving ∇J(w) = ∂J
∂w∗

=
0N×1. The MMSE filter is then given by

wMMSE = R−1
xxp. (6)

The minimum MSE is obtained by substituting (6) into (5):

J(wMMSE) = σ2
s − pHR−1

xxp

= σ2
s − eTδRssH

H

uR
−1
xxHuRsseδ. (7)

Equation (7) reveals that the choice of δ determines the

minimum of the objective function. Therefore, to minimize (7)

with respect to δ, one has to simply select δ as the index of

the largest diagonal element of RssH
H

uR
−1
xxHuRss.

The a priori knowledge of Rxx and p is hardly prac-

tical, and, thus, the statistics need to be estimated. In this

case, one can consider a K-length training symbol sequence.

Define X = [x[0], . . . ,x[K − 1]] ∈ CN×K and su =
[su[−δ], . . . , su[K − 1− δ]]

T
∈ CK . The sample estimates

are then given by

Rxx ≈
1

K

K−1
∑

k=0

x[k]xH[k] =
1

K
XXH, (8)

p ≈
1

K

K−1
∑

k=0

x[k]s∗u[k − δ] =
1

K
Xs∗u. (9)



Unfortunately, the MMSE filter faces some issues when

sample estimates are considered in the large-scale scenario.

Long training symbol sequences are necessary to obtain

sufficiently accurate statistics due to the large dimension of

Rxx. Moreover, the number of computations in (6) may be

exceedingly large. To be more specific, one needs to carry out

N2K+NK products to estimate (8) and (9), and O(N3)+N2

products to calculate (6), which yields a total of

PMMSE(N,K) = N2K +NK +O(N3) +N2 (10)

products. For large arrays, the cubic and quadratic terms

in (10) yields a substantial number of products.

B. Low-Rank Tensor MMSE (LR-TMMSE) Filter

In this section, we introduce a tensor equalizer which solves

the computational complexity issues of the classical MMSE

filter. First, assume the number N of antennas at the BS can

be factorized as N =
∏D

d=1 Nd. Then, we reshape the column

vector w into a D-th order tensorW ∈ CN1×···×ND . The entry

wn of w relates to the entry wn1,...,nD
of W as n = n1 +

(n2−1)N1+· · ·+(nD−1)
∏D−1

m=1 Nm for n ∈ {1, . . . , N} and

nd ∈ {1, . . . , Nd}, ∀d ∈ {1, . . . , D}. With such a reshaping

operation, the equalizer output is rewritten as

y[k] = wHx[k] =

N
∑

n=1

w∗
nxn[k]

=

N1,...,ND
∑

n1,...,nD=1

w∗
n1,...,nD

xn1,...,nD
[k],

where X [k] ∈ CN1×···×ND denotes the D-dimensional re-

shape of x[k].

In previous works [3], [4], we consider rank-1 separable

tensor filters, i.e., W is written as an outer product of vectors.

However, such a structure is too strict for some applications.

For example, the channel matrix (2) cannot be separated as

a Kronecker product, and, thus, rank-1 tensor filters would

exhibit poor equalization performance. To overcome this lim-

itation, let us decompose W as a sum of R rank-1 terms:

W =

R
∑

r=1

w1,r ◦ . . . ◦wD,r. (11)

where wd,r ∈ CNd×1 for d ∈ {1, . . . , D}, r ∈ {1, . . . , R} and

R denotes the filter rank. Note that (11) is known as the canon-

ical polyadic (CP) decomposition in tensor literature [12], [13].

It is interesting to mention the relationship between the outer

and Kronecker product notations. Specifically, by vectoriz-

ing (11), we obtain vec(W) =
∑R

r=1 wD,r ⊗ . . .⊗w1,r [12].

The extra degrees of freedom brought by the R separable

components allow the CP tensor to better equalize non-

separable systems such as (2). Note that R is a parameter

to be chosen by the filter designer. As it grows, the filter

has more degrees of freedom, but also more parameters to

estimate. Therefore a judicious choice of R which balances

the performance-complexity trade-off is preferred.

Algorithm 1 Low-Rank Tensor MMSE Equalizer

Require: Received signals X ∈ CN×K , training sequence

su ∈ CK , filter rank R, filter order D, filter dimensions

Nd for d ∈ {1, . . . , D}.
1: Initialize wd,r as [1, 0, . . . , 0]T, d ∈ {1, . . .D}, r ∈
{1, . . . , R}

2: repeat

3: for d = 1, . . . , D do

4: Build Ud,r for r = 1, . . . , R by (18)

5: Form Ud =
[

UT

d,1, . . . ,U
T

d,R

]T

6: Estimate Rudud
and pud

by (19)

7: Update wd by (15)

8: end for

9: until convergence criterion triggers

10: Form tensor filter W using (11) and (13)

11: w ← vec(W)

Assuming structure (11), the filter coefficients can be written

as

wn1,...,nD
=

R
∑

r=1

D
∏

d=1

[wd,r]nd
,

which allows us to recast the equalizer output y[k] as follows

y[k] =

N1,...,ND
∑

n1,...,nD=1

w∗
n1,...,nD

xn1,...,nD
[k]

=

N1,...,ND
∑

n1,...,nD=1

(

R
∑

r=1

[w1,r]
∗
n1

. . . [wD,r]
∗
nD

)

xn1,...,nD
[k].

By isolating wd,r from the other (D − 1) factors, we get:

y[k] =

R
∑

r=1

Nd
∑

nd=1

[wd,r]
∗
nd





Nq
∑

nq=1

D
∏

q 6=d

[wq,r]
∗
nq
xn1,...,nD

[k]





=
R
∑

r=1

Nd
∑

nd=1

[wd,r]
∗
nd
[ud,r[k]]nd

= wH

dud[k] (12)

where we define

ud,r[k] = X(d)[k]w̄
∗
d,r ∈ C

Nd ,

ud[k] =
[

uT

d,1[k], . . . ,u
T

d,R[k]
]T

∈ C
RNd ,

wd =
[

wT

d,1, . . . ,w
T

d,R

]T

∈ C
RNd , (13)

w̄d,r =

D
⊗

q 6=d

wq,r ∈ C
N̄d×1, N̄d =

D
∏

q 6=d

Nq.

Matrix X(d)[k] ∈ CNd×N̄d denotes the d-mode matrix

unfolding of X [k]. The tensor element (n1, . . . , nD) maps

to the X(d)[k] element (nd, j) as j = 1 +
∑D

j 6=d(nj −

1)
∏j−1

m 6=dNm [13]. For more information on tensor notation,

the reader is kindly referred to [12], [13]. Equation (12)

explicits the multilinear property of our tensor filter since y[k]
is linear with respect to wd given that w̄d,r is fixed for all

d ∈ {1, . . . , D}.



The multilinear filter output (12) allows us to reformulate

the linear equalization problem (4) as

min
wd

E
[

|su[k − δ]−wH

dud[k]|
2
]

, d ∈ {1, . . . , D}. (14)

There are several ways to solve (14). We propose an alternating

minimization approach in which we solve for each wd sequen-

tially until a convergence criterion is satisfied. For a given d,

(14) can be seen as a low-dimensional MMSE problem. Hence,

we have that

wd,MMSE = R−1
ud,ud

pud
∈ C

RNd , (15)

Rud,ud
= E

[

ud[k]u
H

d [k]
]

∈ C
RNd×RNd , (16)

pud
= E [ud[k]s

∗
u[k − δ]] ∈ C

RNd (17)

for d ∈ {1, . . . , D}.
Let us calculate the sample estimates of Rudud

and pud
. To

this end, define X ∈ CN1×···×ND×K as the tensor reshaping

of X . Now, consider the following tensor-vector product [13]

evaluated at the tensor modes Jd = {j = 1, . . . , D | j 6= d}

Ud,r = X×
j∈Jd

wH

j,r ∈ C
Nd×K . (18)

The elements of (18) are given by

[Ud,r]nd,k =

N1
∑

n1=1

. . .

Nd−1
∑

nd−1=1

Nd+1
∑

nd+1=1

. . .

ND
∑

nD=1

[X ]n1,...,nD,k

∏

j∈Jd

[wd,r]
∗
nj
.

Define Ud =
[

UT

d,1, . . . ,U
T

d,R

]T

∈ CRNd×K . The statistics

(16) and (17) may be estimated as

Rudud
≈

1

K
UdU

H

d , pud
≈

1

K
Uds

∗
u (19)

for d ∈ {1, . . . , D}. Henceforth, this method is referred

to as low-rank tensor MMSE (LR-TMMSE) filter and it is

summarized in Algorithm 1.

The LR-TMMSE equalizer is an iterative method. Let us

assume that it converges within I iterations. Each iteration

carries out R(D − 1)NK products to compute Ud, N2
dK +

NdK to estimate the statistics and O(N3
d )+N2

d for each wd.

Therefore, LR-TMMSE carries out a total of

PLR-TMMSE({Nd}, D, I,K) = (20)

I

[

D
∑

d=1

R(D − 1)NK +N2
dK +NdK +O(N3

d ) +Nd

]

products.

IV. SIMULATION RESULTS

In this section, we present simulation results conducted to

analyze the performance of the proposed LR-TMMSE equal-

izer. In all simulations, the sample-based MMSE is considered

as the benchmark equalizer. We consider two figures of merit:

(i) number of products to obtain the filter weights vector

according to (10) and (20), (ii) the signal to noise and interfer-

ence ratio (SINR) after equalization. For a given equalizer w,
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Fig. 1. N = 512 antennas, I = 2 iterations, filter rank R = 3.
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Fig. 2. K = 600 symbols, I = 2 iterations, filter order D = 3.

we have SINR(w) = (wHRxxw)/(wH(Rii + Rbb)w). The

figures presented in this section were obtained by averaging the

results from 1000 independent experiments. Each experiment

consists of generating a K-length QPSK-modulated symbol

sequence for all U UE, building a channel realization, forming

the observed signals and finally applying the equalizers. The

desired signal delay δ is optimized for all equalizers as

explained in Sec. III-A. We consider the following parameter

setup in our simulations: U = 4 users, σ2
s = 1, L = 5

channel paths, the directions of arrival θu,ℓ are drawn from a

random variable uniformly distributed in [−90◦, 90◦], the sinc

function is set as the effective pulse-shaping waveform g(t).
LR-TMMSE achieves convergence when ‖wi+1 −wi‖

2
2 < ǫ,

where i denotes the iteration number and ǫ is a small positive

threshold. We set ǫ = 0.1 and, according to a preliminary

simulation, the algorithm typically converges within I = 2
iterations.

The computational complexity of LR-TMMSE is studied

in Figures 1 and 2. In the former figure, we investigate the

influence of the training sequence length K on the number

of products for tensor equalizers with different order D. We

fix the number of antennas to N = 512 and we consider D-

order tensor filters such that their dimensions {Nd} satisfy
∏D

d=1 Nd = 512. Figure 1 reveals that LR-TMMSE computes

fewer products than the benchmark for the considered param-

eters. Moreover, it shows that the complexity of LR-TMMSE

increases with D. Although the cubic term in (20) tends to

become less important as D grows, we observe a significant
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overhead associated with the computation of the Ud matrices.

We plot the computational complexity as a function of the BS

array size N for different ranks R in Figure 2. We observe that

R does not influence much on the complexity. Besides, LR-

TMMSE is more computationally efficient than the benchmark

even for very large array sizes.

We investigate the SINR performance for different ranks

R and orders D for only K = 600 training symbols in

Figures 3 and 4. We consider the theoretical MMSE as an

SINR upper bound. Figure 3 shows that R = 1 performs

poorly, as expected. This is because the signal model (1) is

not separable. Therefore, it is necessary to increase the filter

rank R to better equalize the system. However, we note that

SINR is rather similar for R = 3 and R = 4, indicating that

the LR-TMMSE performance is bounded with respect to this

parameter. We plot the SINR for R = 3 and different D in

Figure 4. This result suggests that the tensor order has a limited

effect on the SINR. Still, the difference between D = 2 and

D ∈ {3, 4, 5} at 30 dB SNR is 5 dB.

We finally analyze the effects of the training sequence length

K on the SINR for N = 512 antennas in Figures 5 and 6.

LR-TMMSE yields its worst performance when R = 1. In

this case, even the benchmark performs better for K ≥ 700.

However, when we increase the filter rank, we notice an SINR

gain, which becomes bounded at R = 4, confirming the

discussion in the previous paragraph. In Figure 6, we notice

that SINR slightly varies for different D. Yet, LR-TMMSE

provides the worst SINR for short sequences with D = 2.

V. CONCLUSION

In this paper, we introduced a novel low-rank tensor MMSE

equalizer based on the MMSE filter for non-separable (low-

rank) MIMO channels. Our simulation results indicate that

the proposed method is more robust to short training symbol

sequences and more computationally efficient than the bench-

mark (linear MMSE) solution. The obtained results also show

that the tensor equalizer performance increases with the filter

rank up to a certain level. The tensor filter order has shown

to be less relevant to the equalizer SINR, although third-order

filters yield the best performance.
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Fig. 6. N = 512 antennas, SNR = 20 dB, filter rank R = 3.
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[16] L.-M. Dogariu, S. Ciochină, J. Benesty, and C. Paleologu, “System
identification based on tensor decompositions: A trilinear approach,”
Symmetry, vol. 11, no. 4, p. 556, 2019.

[17] O. Filiz and A. Yener, “Rank constrained temporal-spatial matrix filters
for CDMA systems,” IEEE Transactions on Wireless Communications,
vol. 3, no. 6, pp. 1974–1979, Nov. 2004.

[18] P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. Degli-Esposti,
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