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Abstract—The rapidly increasing demand in indoor smallcell
networks has given rise to the concept of local beyond 5G
(B5G) operator (OP) for local service delivery. The local B5G
OP aims to provide wireless network using licensed subbands
in an indoor area and tries to gain profits by renting out the
infrastructure to the mobile network operators (MNOs). With
local B5G OP deployment, the quality of service (QoS) can be
guaranteed at mobile broadband users (UEs) and smart devices,
i.e., machine type communications (MTC) and ultra reliable low
latency (uRLLC). In this paper, we consider the scenario that
the local B5G OP aims to maximize profit by optimizing its
infrastructure rental fee while renting out cache-enabled smallcell
base stations (SBSs) to the MNOs. Each MNO tries to minimize
the cache intensity subject to latency constraint at mobile UE. The
concept of infrastructure sharing is also deployed at the local B5G
OP such that multiple MNOs can utilize the same cache-enabled
SBSs simultaneously and the local B5G OP will cache the popular
files according to the MNO’s largest demand. The optimization
problems of the local B5G OP and the MNOs can be transformed
into geometric programming problems. Then, we show that the
Stackelberg equilibrium is obtained through successive geometric
programming (SGP) method. Lastly, we perform an extensive
performance evaluation that reveals interesting insights including
the optimal SBS intensity that MNOs should rent from the
local B5G OP as to satisfy end-to-end latency, 10−3 sec, of
data transmission from each SBS to UE. The optimal price of
renting out infrastructure for the local B5G OP at the Stackelberg
equilibrium is also illustrated.

Index Terms—local beyond 5G operator (local B5G OP), 6G,
edge caching, infrastructure sharing, geometric programming,
Stackelberg equilibrium.

A. Motivation

The 5G and beyond 5G (B5G) technologies will need to
support extremely diverse use-cases for example, (i) Extreme
mobile broadband (xMBB) with data rates up to several
Gbps, more videos, more live streaming and reliable broad-
band access over large coverage areas. (ii) Massive machine
type communications (mMTC) which is a service category
consisting of sensing, tagging, and monitoring require high
connection density. (iii) Ultra reliable low latency (uRLLC)
which is a service category to support the latency-sensitive
services such as, remote control, autonomous driving car
and tactile Internet [2]. Industrial, manufacturing companies,

This paper considers an aspect of the local B5G OP where a full version
has been under major revision in IEEE Transaction of Mobile Computing
(IEEE TMC) while only an optimization problem of one MNO (MNO’s part)
has been published in Globecom 2018 [1]

sport areanas and smart hospitals cannot completely rely on
unlicensed wireless band to serve such kind of services. Also,
traditional macro cellular networks deployed by the mobile
network operators (MNOs) is insufficient to rapidly serve
the UEs in an indoor area with the quality of experience
(QoE)/quality of service (QoS) garunteeed.

The huge traffic of the above applications is generated from
indoor areas [2], the new business model of the MNOs needs
to be developed to serve local services with specific require-
ments [3]–[7]. Therefore, the most prominent and efficient
solution is to deploy the concept of local B5G operator (OP)
to offer wireless networks for mobile UEs and smart devices
in indoor with local licensed spectrum subbands. The facility
owner with the capability of deploying small cell base stations
(SBSs) in an indoor area with licensed subbands can become
local B5G OP [6]–[7]. The local B5G OP can serve the MNO’s
mobile UEs with licensed subbands while renting out the
infrastructure, i.e., SBSs, edge computing servers, and cache
storages to the MNOs.

None of the existing work has formally formulated the
business model of local B5G OP and multiple MNOs using
game theoretical approches while taking latency constraint at
each UE into account. The stochastic geometry modeling for
BS placement with single/multiple sellers and multiple buyer
MNOs and Cournot oligopoly game was proposed in [8]–
[9]. Multiple-MNO spectrum sharing using matching game
for small cell networks was explored in [10]. Apart from
the efficient spectrum and infrastructure utilization, achieving
low latency for xMBB with virtual reality services is also a
critical challenge for the MNOs. Therefore, the concept of
proactive caching was introduced [11]–[15] in which popular
contents are stored at the edge/radio access network (RAN),
e.g., cache-enabled BSs to reduce the wireless access delay.
In the context of economic modeling of caching, the work
in [14], the authors considered a Stackelberg game with a
single MNO and multiple content providers. The MNO, as
the leader, decides on the price to charge to content providers
such that the revenue is maximized. The content providers,
as the followers, compete with each other to obtain sufficient
cache space to improve the QoS to its UEs. In [15], the cache
is partitioned into slices and each partition is allocated to
the content providers. The utility based approach is used to
formulated the problem of content providers.

The majority of the above work consider neither infras-



tructure sharing nor the latency constraint at the UE for
data transmission in the context of local B5G OP with edge
caching. We therefore significantly extend the existing work
by developing a framework to model and analyze latency-
constrained for radio resource sharing with cache-enabled
SBSs in local B5G OP while modeling the location of BSs
using stochastic geometry.

The contributions of the paper are as follows:
• We model the local B5G OP that virtualized cache-

enabled SBSs to MNOs as a Stackelberg game, where
the local B5G OP is the leader and the MNOs are the
followers. Each MNO aims to minimize the cost of
renting cache intensity from the local B5G OP subject
to latency constraint at the mobile UE.

• With the concept of infrastructure sharing, the local B5G
OP can deploy cache storage efficiently such that the
local B5G OP handles only the largest cache intensity
required by the MNOs. The problem of the local B5G
OP is formulated as to maximize its revenue while
minimizing the power consumption at the BSs. We obtain
the Stackelberg equilibrium analytically via successive
geometric programming.

B. Organization

The rest of the paper is organized as follows. Section I
describes the system model. Section II presents the optimiza-
tion problem of each MNO as to minimize the cache intensity
subject to the latency constraint at a UE. This corresponds to
the follower subgame in the Stackelberg game formulation.
Section III presents the problem of the local B5G OP as
to maximize the revenue which corresponds to the leader
subgame. The numerical results are presented in Section IV
before the paper is concluded in Section V.

I. SYSTEM MODEL

We consider a heterogeneous network with a local B5G
OP and a set K of MNOs such that |K| = K. The local
B5G OP is assumed to already rented some licensed subbands
from multiple MNOs then, attach those licensed subbands
to its cache-enabled SBSs while allowing multiple MNOs to
simultaneously utilize its cache-enable SBSs. The local B5G
OP is assumed to provide the licensed spectrum subbbands
while providing a set of cache-enabled SBSs, Φb, which are
spatially distributed according to a homogeneous Poisson point
process (PPP) with spatial intensity λ. Each MNO-k, k ∈ K,
wants to rent a set of cache-enabled SBSs, Φk where Φk ⊆ Φb
with the SBS intensity, λk, from the local B5G OP.

Fig. 1 gives an example for the general case of the cache-
enabled BSs required by MNO-1, MNO-2 and MNO-3. Since
the local B5G OP deploys resource virtualization, some of
the cache-enabled SBSs can be utilized by all three MNOs
simultaneously while some are used by one or two MNOs.
Each MNO-k operates over orthogonal spectrum, and thus
there is no inter-MNO interference. The MNO-k leases out
Wk bandwidth with Lk subchannels to the local B5G OP.
Each SBS operates in one of the Lk available subchannels

Fig. 1. Virtualized Cache-enabled SBSs shared between MNO-1, MNO-2,
and MNO-3.

assigned by the local 5G OP. The subchannel of the same
MNO can be accessed by more than one SBS and therefore,
the intensity of interfering SBSs which causes intra-MNO
interference of the MNO-k is given by λk

Lk
. Every BS and

UE are assumed to be equipped with a single antenna. For
each MNO-k, the SBS serves one UE in a given time slot
by using the assigned subchannel with the maximum transmit
power pk. A UE subscribed to an MNO-k associates with
the nearest SBS that the MNO-k rents from the local B5G
OP. The SBS intensity that a typical UE of the MNO-k can
associate itself with is λk. First we consider the analysis of a
single MNO-k downlink SINR coverage probability, expected
data rate and goodput. We assume that the signal undergoes
Rayleigh fading with the channel gain, gk. Let αk > 2 denote
the path-loss exponent for the path-loss model r−αkk , where rk
is the distance between the tagged UE and the nearest SBS-
k. Let σ2

k denote the noise variance, and again pk denote the
transmit power of each SBS rented by MNO-k. For a given
threshold T̄ , the SINR coverage probability for the tagged UE
is defined as Pc = P(SINRk > T̄ ). We use tigh approximation
of Pc in Eqn (13) in [8, Proposition 1] but using the intensity
of interfering SBSs and the SBS intensity that a typical UE can
associate itself with from our case as λk

Lk
and λk, respectively.

Therefore, the coverage probability can be expressed as,

Pc =

[
1 +

β − 1

Lk
+

α

2πλkΓ
(

2
αk

) (Tσ2

pk

)2/αk
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, (1)

where β = 2(T/pk)2/αk
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Egk [g

2/α
k (Γ(−2/αk, T gk/pk)) −

Γ(−2/αk)] and Γ(z) is the Gamma function. For the
interference-limited case when λk → ∞, the last term in (1)
will become 0 and the expression of Pc can be simplified to

Pc '
Lk

β + Lk − 1
. (2)

To derive the expected data rate, given the SINR coverage
probability, the downlink transmission rate at a typical UE is,

E[Rk] =

∫ ∞
0

Pc(e
T̄ − 1)dT̄ =

∫ ∞
0

Pc(T̂ )dT̂ , (3)



where T̂ = eT̄ − 1. The expected rate can be derived using
the Pc in (1) for general case as,
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where 2F1(a, b, c, z) is the Hypergeometric function. We also
can derive the goodput of the UE, Gk, for the interference-
limited case by using Pc in (2),

Gk =
Wk

β + Lk − 1
log2(1 + T̄ ). (5)

However, in [1], only the goodput, Gk, has been considered.

II. THE MNO-k OPTIMIZATION PROBLEM :
MINIMIZATION OF CACHE INTENSITY WITH LATENCY

CONSTRAINT

In this section, we deal with the minimization of cache
intensity for each MNO-k where the cache intensity is defined
as the product of SBS intensity and cache size. For the
interference-limited transmission scenario, we then transform
the problem into a geometric program and provide an exact
solution.

A. Optimization Problem Formulation

The optimization problem for an MNO-k, where k ∈ K,
so as to minimize the cost of renting cache intensity while
satisfying the latency of each typical UE for data transmission
is as follows:

(P0) minλk,Sk ωλkSk (6)
s.t. P(Dk ≥ Dth) ≤ ε, (7)

where λk ≥ 0 and Sk ≥ 0. Here, the latency constraint is given
in (7). It is a probabilistic constraint that limits the probability
of the delay experienced by a UE while downloading the file,
Dk, to be above a certain threshold Dth to a small value ε,
ε ∈ (0, 1). The ω is the price per unit of cache intensity,
which is set by the local B5G OP. Since Dk is a random
variable whose distribution is not known, in order to make the
optimization problem more tractable, we can use the Markov’s
inequality to linearize the probabilistic constraint in (7). Using
Markov’s inequality, we have P(Dk ≥ Dth) ≤ E[Dk]

Dth
. If we

ensure that E[Dk]
Dth
≤ ε, then the Markov inequality implies that

constraint (7) is also satisfied. We show that the delay, Dk is
a random variable which depends on λk in next subsection.

B. Wireless Access Delay and Hit Probability

In our case, we consider the delay for downloading file only
due to the downlink transmission delay, DTx , if the requested
file is already cached at the serving SBS. If the file is not
in the cache, the delay experiencd by the UE is the sum of
downlink transmission delay plus the backhaul delay as Dk =
DTx + Dbh. In order to transfer a file of fixed size xf , the
downlink transmission delay is DTx =

Nkxf
Gk

, where Nk is the
number of serving UEs in the cell. The expected number of
UEs inside an average Voronoi cell formed by the PPP SBSs
is given by E[Nk] = ξk

λk
, where ξk is the intensity of the UEs.

E[DTx] =
E[Nk]xf
Gk

=
ξkxf
λkGk

. (8)

We substitute goodput Gk from (5). Since we are using Gk for
interference limited case in (5), the Gk of each UE becomes
a constant. In (8) the SBS intensity λk is a variable that the
MNO will need to decide when renting the infrastructure from
the local 5G OP. We assume that the SBSs connect to the cloud
through optical fiber thus, the backhaul delay, Dbh, becomes
a constant value. However, the availability of the file in SBS
cache is given by the hit probability Phit. The expected total
delay is as follows,

E[Dk] = E[DTk]Phit + E[DTx +Dbh] (1− Phit)

= E[DTx] + E[Dbh](1− Phit). (9)

The tight asymptotic approximation of cache hit probability,
Phit(Sk), can be derived as [1, Lemma 2],

Phit(Sk) ' 1

HF,ν

[
ζ(ν)− (Sk + 1)1−ν

ν − 1

]
, (10)

where ζ(ν) is the Riemann zeta function. The F is the set of
files available for caching in the clound and Sk is the set
of files can be stored in each SBS of each MNO-k, such
that Sk ⊆ F . We model the popularity of the files by the
Zipf distribution and ν > 0 reflects the skewness of the file
popularity distribution. Then substitute Phit(Sk) from (10) and
E[DTk] from (8) into (9) to obtain the total delay E[Dk],
while Dbh is constant value. Finally, the problem (P0) can
be transformed into geometric programming problem. The
optimal solutions λ∗k and S∗k can be computed analytically
as in [1, Proposition 4].

III. THE LOCAL B5G OP: MODEL-BASED CACHE
INTENSITY PRICING FOR MULTIPLE MNOS

We develop a novel strategy of the local B5G OP for
renting out its infrastructure to K MNOs. The SBSs and cache
can be shared by multiple MNOs. We assume that the local
B5G OP cache sufficient certain amount of files requested by
the MNOs. The MNOs request files based on most popular
files thus, there is overlapping of the most popular files. For
example, let MNO-1 requests S1 = 15 most popular files
{f1, . . . , f15} to be cached and MNO-2 requests S2 = 20 most
popular files {f1, . . . , f20}, assuming that the popularity rank
of the file corresponds to the file’s index, with file f1 being the



most popular and file f20 being the least popular. The local
B5G OP can satisfy the requests of both MNOs by caching
S∗I = max(S1, S2) = 20 most popular files {f1, . . . , f20},
since {f1, . . . , f15} ⊂ {f1, . . . , f20}. This is much less than
the aggregate amount S1+S2 = 35 required to be stored when
the cache is not shared among the MNOs.

In general, since Sk is the set of most popular files requested
to be cached by the MNO-k, we can order the sets Sk as
Sπ(1) ⊆ · · · ⊆ Sπ(K), where π represents the permutation
of set K. Thus, it is sufficient for local B5G OP to cache
the largest set Sπ(K) of a certain MNO that also meets the
demands of all other MNOs. Since the largest set of most
popular files also contains the smaller sets of most popular
files and the local B5G OP allows cache-enable BSs to be
shared among multiple MNOs, the local B5G OP will handle
only the largest requested set of files by the MNO denoted
as as λ∗IS

∗
I = maxk{λ∗kS∗k}. The local B5G OP aims at

maximizing its revenue obtained by renting out the cache BSs
to the MNOs, while minimizing the power consumption. We
assume the maximum interference case from all MNOs, where
all K MNOs use the same SBSs simultaneously, as such the
transmit power at each SBS will be pt = Kpk + Kpc. Since
the local B5G OP is renting out λ∗I SBSs per unit area and,
since we assume that all K MNOs use the same SBSs at the
same time, the power consumption per unit area is then given
by, Y (λ∗I) = λ∗I(Kpk + pc), where pc denotes a fixed amount
of circuit power.

The local B5G OP will compute the optimal price of cache
intensity, ω∗. The local B5G OP problem is shown in (Q0)
in (11). After the local B5G OP computes the price of cache
intensity, the local B5G OP will declare the total rent to all
MNOs.

A. Optimization Problem of the local B5G OP

When the cache-enable BSs are shared by K MNOs, we
can formulate the optimization problem of the local B5G OP
as follows:

(Q0) maxω ωλISI − γY (λI), (11)

where ω is the price of cache per unit area, and γ is the price
of areal power consumption, where ω, γ > 0. Note that we are
not dealing with how other resources, e.g., computing, server,
or transmission capacity are shared. We only consider the case
where the cache storage in a unit area is shared among the
MNOs.

To obtain the solution of the Stackelberg game, we use
backward induction method. Accordingly, we first solve the
follower subgame problem. This essentially is to solve the
optimal strategy of the MNO with the largest required cache
intensity. The follower’s solution is then used in the leader
subgame problem, after which the leader problem is solved.
The solution to the leader subgame gives the Stackelberg
equilibrium.

Accordingly, we compute the largest cache intensity that
the local B5G OP needs to provide to MNOs as λISI =
max(λ∗kS

∗
k) by using λ∗k and S∗k of each follower MNO-k. We

can express λ∗k and S∗k in terms of ω as λ∗k = Tk
ω and S∗k =

Ukω
− 1

(ν−1) , where Tk = (A + R)/(q∗k/ω) and Uk = [V (ν −
1)/(q∗k/ω)]1/(ν−1). Note that, in these expressions for Tk and
Uk, from [1, Proposition 4], the term q∗k/ω is independent of ω,
making Tk and Uk independent of ω as well. This transforms
the first term of (11), which is ωmaxk{λ∗kS∗k} = ωλ∗IS

∗
I , into

max
k
{UkTk} ω−1/(ν−1) = UTω−1/(ν−1).

That is, UT = maxk{UkTk}. Also, the second term in (11)
is transformed into

γY (λ∗I) = λ∗Iγ(Kpk + pc) = Tpω−1,

where p = γ(Kpk). Therefore, we can rewrite the maximiza-
tion problem in (11) as an equivalent minimization problem:

(Q1) minω>0 Tpω−1 − UTω−1/(ν−1). (12)

The problem (Q1) is a signomial optimization problem over
the price variable ω. In general, the problem (Q1) is a non-
convex problem. However, this problem becomes convex at
some values of ν. The solution of the problem (Q1) gives the
global optimal solution to the problem (Q0). In order to solve
(Q1), let us introduce an auxiliary variable z ≥ 0 such that it
upper bounds the objective function in (12) as follows:

z ≥ Tpω−1 − UTω−1/(ν−1). (13)

Since minimizing the upper bound z minimizes the objective
function in (12) as well, the problem (Q1) can be equivalently
re-written in terms of this auxiliary variable as follows:

(Q2) χ = minω>0 z (14)

s.t.
Tpω−1

z + UTω−1/(ν−1)
≤ 1. (15)

Here, the constraint in (15) is obtained after some algebraic
manipulations of the bound in (13). To see the equivalence, for
fixed ω, the optimal value of zis z = Tpω−1−UTω−1/(ν−1).
The problem (Q2) is also referred to as a complementary
geometric program. We can obtain the solution to the problem
in (Q2) via successive geometric programming (SGP) which is
equivalent to the solution of (Q0). More details are described
in the journal version.

IV. NUMERICAL RESULTS

The transmit power of BS of each MNO-k is pk = 1 Watt,
noise power is σ2 = −150 dBm, the number of video files
in the cloud is F = 105, the size of the file requested by
each UE is xf = 105 bits, path-loss exponent is α = 5, i.e.,
suburban area without line of sight [19]. The SINR threshold is
T̄ = 10 dB. Each MNO-k is assumed to have the same number
of subchannels as Lk = 4. The latency of data transmission
should be less than 10−3 sec therefore, we limit the total delay
to be P(D ≥ 10−3) ≤ 0.01 in (7). The backhaul delay through
optical fiber is assumed to be E[Dbh] = 0.0051 sec.



A. Optimal Price (ω∗) and Maximum Profit (z∗) of the local
B5G OP

The local B5G OP will then compute the optimal price ω∗

of the infrastructure so as to maximize its profit z∗ by using
the successive geometric programming algorithm (SGP). In
Figs. 2–3, we demonstrate the optimal strategy of the leader
local B5G OP at the Stackelberg equilibrium. We assume the
bandwidth and the UE intensity to be [W1,W2,W3]= [1GHz,
1.5GHz,2GHz] and [ξ1, ξ2, ξ3] = [10, 15, 20]/(π × 1002),
respectively.
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Fig. 2. Convergence of the optimal price of infrastructure (ω∗) and
maximum profit (z∗)
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V. CONCLUSION

We have proposed a novel deployment of indoor wireless
networks for local B5G OP with virtualized cache-enabled
BSs. The local B5G OP provides the infrastructure, consisting
of SBSs and edge caching, to multiple MNOs. With infras-
tructure sharing deployment, multiple MNOs are able to use
the cache-enabled BSs simultaneously. Each MNO aims to
minimize the cost of rented cache intensity subject to latency
constraint at each UE while SBSs transmit contents/videos to
the UEs. We have modeled the pricing problem for sharing
the cache-enabled SBSs infrastructure between the local B5G
OP and the MNOs as a Stackelberg game where the local
B5G OP is the leader and the MNOs are the followers.
Then, we have obtained the optimal strategy of the local B5G

OP at the Stackelberg equilibrium via successive geometric
programming.
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