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Abstract— Based on the application of the Sum-Product
algorithm (SPA) over factor graphs, this paper presents a graphi-
cal representation of generalized frequency division multiplexing
(GFDM) and filter bank multicarrier with offset QAM (FBMC-
OQAM). FBMC-OQAM was chosen because it has the advantage
of reducing the algorithm’s complexity, since it is directly related
to the number of possible values assumed by the transmitted
data symbols. The receiver algorithm performance is evaluated
by the bit error ratio (BER) estimation considering two channel
models, additive white Gaussian noise (AWGN) and flat-fading
time-variant (Rayleigh). Likewise, a computational complexity
analysis is presented. Numerical results show that the BER curves
of the proposed scheme present a good match compared with
theoretical bit error probability curves.

Index Terms— Iterative detection, factor graphs, FBMC-
OQAM, GFDM, SPA, wireless communications.

I. INTRODUCTION

RECENTLY, non-orthogonal waveforms, such as filter

bank multicarrier with offset quadrature amplitude mod-

ulation (FBMC-OQAM) [1] and generalized frequency divi-

sion multiplexing (GFDM) [2], have been considered alter-

natives for the well employed orthogonal frequency division

multiplexing (OFDM) [3]. These non-orthogonal counterparts

present advantages over OFDM. For instance, FBMC-OQAM

presents improved spectral efficiency, low out-of-band emis-

sion, and robustness against multiuser interference as advan-

tages. Similarly, GFDM presents advantages in low latency

communications, spectral efficiency, and flexibility with the

possibility of adapting its parameters for attending different re-

quirements and covering other waveforms as corner cases [2].

Non-iterative detection schemes for the mentioned waveforms

are well-known [2][4]. However, most of these approaches

need channel equalization prior to demodulation, e.g., zero

forcing, and equalizers often need the noise variance estima-

tion, e.g., minimum mean square error (MMSE) equalizer.

This paper presents an iterative detection algorithm based

on the Sum-Product algorithm (SPA) over factor graphs [5]

for estimating complex-valued data symbols transmitted using

a modified version of GFDM that emulates FBMC-OQAM.

This setting is referred as Linear GFDM [6]. The algorithm is

tailored for Linear GFDM, since it presents benefits in terms of

complexity due to the separation of real and imaginary parts of

transmitted QAM symbols. However, the proposed algorithm

can be extended for conventional GFDM.

The SPA is an instance of the broader class of message

passing algorithms, and they are often employed for dealing

with inference problems that involve estimating marginal prob-

abilities in graphical models. In fact, if a factor graph is cycle

free, the algorithm converges to the exact marginal distribution

related to the variables in the graph. On the other hand, if the

graph naturally contains cycles, an iterative schedule shall be

used for approaching the exact marginals.

The performance of the proposed receiver algorithm is

evaluated through the estimated bit error ratio (BER) under

additive white Gaussian noise (AWGN) and flat-fading time-

variant (Rayleigh). Notably, numerical results and theoretical

bit error probability curves present a good match.

The remainder of the paper is organized as follows: Section

II presents a background on GFDM and FBMC-OQAM.

Section III describes the proposed receiver based on the SPA

with some implementation aspects. Section IV presents the

BER performance evaluation of the proposed scheme. Section

V concludes the paper.

II. NON-ORTHOGONAL WAVEFORMS

GFDM and FBMC are non-orthogonal multicarrier wave-

forms, and, hence, present intrinsic intersymbol (ISI) and/or in-

tercarrier (ICI) interference. However, according to the Balian-

Low Theorem [7], setting aside full orthogonality leads to a

new degree of freedom when projecting the waveform charac-

teristics, such as time-frequency localization. The following

subsections present a short background on FBMC-OQAM

and GFDM and briefly demonstrates how to emulate FBMC-

OQAM using the GFDM matrix formulation.

A. FBMC-OQAM

The Balian-Low Theorem states that it is impossible to

synthesize a waveform that presents at the same time the

following characteristics: i) orthogonality in the complex field,

ii) good time and frequency localization and iii) operates at

the Nyquist rate, i.e., R = 1/T , where R represents the data

symbol rate and T its time spacing. OFDM lacks in time-

frequency localization, which often leads to undesired levels

of out-of-band emission [3]. FBMC-OQAM presents ii) and

iii). However, only it presents real orthogonality, i.e., the real

part of a symbol suffers from interference from the imaginary

part and vice-versa. For overcoming this limitation OQAM

is often employed in conjunction with FBMC [1]. OQAM

http://arxiv.org/abs/1909.00612v1


avoids ICI by introducing a π/2 phase rotation among adjacent

subcarriers, and a time shift between imaginary and real parts

from the transmitted symbol.

Ideally, FBMC-OQAM continuously sends data symbols

over K subcarriers. Thus, the discrete-time transmit signal is

described as

x[n] =

+∞
∑

m=−∞

K−1
∑

k=0

d
(I)
k,mg

(I)
k,m [n] + jd

(Q)
k,mg

(Q)
k,m[n], (1)

where dk,m = d
(I)
k,m+ jd

(Q)
k,m represents the QAM data symbol

sent through the kth subcarrier in the mth time slot, and

g
(I)
k,m[n] and g

(Q)
k,m[n] are respectively given by

g
(I)
k,m[n] = p [n−mK] exp

(

j2π
k

K
n+ j

π

2
k

)

(2)

g
(Q)
k,m[n] = p

[

n−mK −
K

2

]

exp

(

j2π
k

K
n+ j

π

2
k

)

, (3)

where p[n] represents the prototype filter impulse response.

B. GFDM

Similarly to FBMC, GFDM is also based on a prototype

filter. However, it employs circular filtering for shaping data

symbols, which are transmitted in K subcarriers and M
time slots, referred as subsymbols. Hence, one GFDM frame

carriers N = KM QAM data symbols [2].

Matrix formulation can be used for describing the transmit

signal. Thus, the transmit vector is given by

x = Ad, (4)

where d represents the N × 1 data symbol vector, and A

represents the N ×N transmit matrix. The transmit matrix is

assembled as

A = [g0,0 g1,0 · · ·gK−1,0 · · · g0,M−1 · · ·gK−1,M−1] (5)

where gk,m represents the vector with samples from the

prototype filter modulated on the kth subcarrier and circularly

shifted to the mth subsymbol.

The received vector can be expressed as

y = Ψd+w, (6)

where w is the additive white Gaussian noise (AWGN) vector

with zero mean and variance σ2, and the equivalent matrix is

given by

Ψ := HA, (7)

where H represents the linear Toeplitz matrix from the channel

impulse response.

Notably, GFDM is a frame generator for other waveforms.

For instance, if M = 1 and rectangular filter is chosen

as the prototype filter, the resulting waveform is OFDM.

Analogously, the next subsection explores this flexibility for

generating FBMC-OQAM from GFDM.

C. Linear GFDM

GFDM displays circular filtering behavior, whereas FBMC

displays linear behavior. For achieving such linear filtering in

GFDM it is necessary to zero pad the prototype filter [6]. The

length of the zeroed sequence that is padded to the prototype

filter impulse response is given by

LZ = KM −K/2, (8)

where M is total number of subsymbols, which can be

translated as the overlapping factor in the FBMC-OQAM

context.

OQAM can be created by employing two modulation ma-

trices A
(L)
I and A

(L)
Q , where one is K/2 samples shifted in

relation to the other. Both matrices are assembled similarly to

(5), with the samples from the zero padded prototype filter.

The transmit vector is obtained by adding the in-phase

component with the quadrature component, yielding to

x = A
(L)
I ℜ{d}+ jA

(L)
Q ℑ{d}

= xI + xQ,
(9)

In this case, the received vector can be expressed as

y = ΨIℜ{d}+ jΨQℑ{d}+w

= yI + yQ +w,
(10)

Since intrinsic ICI is eliminated by OQAM, half-Nyquist

pulses can be employed as prototype filter for eliminating

ISI with matched filtering demodulation. However, dispersive

channels ruin the orthogonality created by OQAM, and equal-

ization prior to demodulation becomes necessary. The next

section describes a non-linear algorithm that demodulates data

symbols without the need of prior equalization and knowledge

of the signal-to-noise ratio.

III. SUM-PRODUCT ALGORITHM BASED RECEIVER

The SPA comes from the class of message passing algo-

rithms that operate over factor graphs. Factor graphs can be

defined as a graphical representation of the relation among a

set of variables in a probabilistic model. It is a bipartite graph

composed by variable nodes and function (or factor) nodes.

Variable nodes are represented by circles and factor nodes are

represented by filled squares. Many well known algorithms

in coding and estimation theory may be viewed as specific

instances of message passing on factor graphs [5].

For Linear GFDM, there is one particular graph for each

equivalent matrix ΨI and ΨQ. The non-zero values of each

matrix determine the edges that connect factor nodes to

variable nodes. Consequently, real and imaginary parts are

estimated separately. The SPA will estimate marginal prob-

abilities related to each variable node of the graph. Hence, it

is possible to use the maximum a posteriori criterion (MAP)

for estimating the most probable transmitted data symbol.

The factor graph that represents the relation among the real

part of the transmit data symbol vector and in-phase compo-

nent of the received vector is illustrated in Fig. 1 considering

K = 2 subcarriers, M = 3 subsymbols. The graph for
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Fig. 1: Factor graph showing the relation among yI and dI = ℜ{d} over single tap channel.

the imaginary part and quadrature component is constructed

similarly. For that configuration the resultant transmit vector

has length given by Lx = KM +KM −K/2, i.e., the length

of the data vector plus the zeroed sequence. Hence, for the

given example the graph contains eleven factor nodes from

the received signal samples and six variable nodes from the

data vector.

For this paper, full channel state information (CSI) is as-

sumed available at the receiver. Messages from the factor node

fi to variable node d(j) over the tth iteration are calculated

as follows

µ
(t)

fi→d(j)

(

d(j)
)

=

∑

∼{d(j)}







exp



−

∥

∥

∥

∥

y(i) −
∑

k∈N(fi)

Ψ(i,k)d(k)

∥

∥

∥

∥

2










×
∏

u∈N(fi)\j

µ
(t−1)

d(u)→fi

(

d(u)
)

,

(11)

where ith sample from the received vector is represented by

y(i), the ith factor node is represented by fi, and Ψ(i,k)

represents the element in the ith line and kth column of Ψ.

The notation N(fi)\j represents the set of variable nodes

connected to fi excluding the jth node. Messages must be

calculated for the in-phase and quadrature components. How-

ever, in (11) the subindex (I) and (Q) were removed for the

sake of brevity. The notation
∑

∼{·} represents the summary

operation described in [5]. The sum in (11) is carried over an

alphabet of possible values assumed by d(k). The alphabets

for the in-phase and quadrature components are described as

DI ∈ ℜ{D} (12)

DQ ∈ ℑ{D} (13)

where D is the the J-QAM mapping alphabet.

Messages from variable node d(j) to factor node fi over

the tth iteration are given by

µ
(t)

d(j)→fi

(

d(j)
)

=
∏

u∈N(d(j))\i

µ
(t−1)

fu→d(j)

(

d(j)
)

, (14)

where N(d(j))\i represents the set of factor nodes connected

to d(j) excluding the ith node.

After τ iterations, the non-normalized marginal probability

distribution of each data component is given by the multipli-

cation of all incoming messages at the variable nodes d(j), as

follows

p
(

d(j)
)

=
∏

u∈N(d)

µ
(τ)

fu→d(j)

(

d(j)
)

. (15)

Thus, p
(

d(j)
)

is the probability mass function that contains

the likelihood of each possible value assumed by d(j), and

MAP criterion can be used for estimating the received data

components.

It is important to emphasize that messages must be calcu-

lated for the in-phase and quadrature components, leading to

two different algorithms that can operate in parallel. This char-

acteristic leads to a less complex algorithm since the message

computation complexity is directly related to transmit data

symbols alphabet. In fact, the number of possible values is re-

duced by a factor of 2 since the algorithm is dealing separately

with real and imaginary parts of QAM symbols. Hence, with

this separation complexity is reduced when compared with

an algorithm designed to estimate complex-valued symbols.

Another key point of this demodulating approach lies in the

fact that estimation of noise variance and equalization prior to

demodulation are not necessary for message computation.

Considering the graph shown in Fig. 1, one can see that it

is a cyclic graph with girth equals four, and iterative message

passing becomes necessary for convergence. Although the

resulting marginal probabilities will not be exact, numerical

results show that it can deliver acceptable BER performance

under AWGN and Rayleigh channels.

IV. PERFORMANCE EVALUATION

Firstly, for evaluating the performance of the proposed

receiver algorithm we resort to the BER under two different

channel models was estimated through Monte Carlo simula-

tion. The simulation parameters are shown in Table I. Com-

plexity analysis in terms of number of complex multiplications

is also presented in this section.



TABLE I: Waveform simulation parameters.

Parameter Value

Waveform Linear GFDM

Mapping QPSK

Prototype filter Martin [8]

Number of subcarriers K = 2

Number of subsymbols M = 3

Number of iterations τ = 1 and 7
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Fig. 2: BER performance of the algorithm considering τ = 1
iteration and τ = 7 iterations.

A. BER

Figure 2 shows the estimated BER of the proposed scheme.

For the Rayleigh channel, CSI is assumed to be available

at the receiver. Although the girth of the graph equals four,

one can observe that the proposed receiver algorithm holds

acceptable performance, which is the same as theoretical

OFDM bit error probability under the simulation assumptions.

This phenomenon is attributed to the random nature of the

channel, since the edge values vary with the channel gain

at each frame transmission. Therefore, the performance loss

expected from the cycles in the graph is not present in this

scenario. Moreover, note that the short girth does not degrade

performance even for just a single iteration.

For the AWGN channel, edge values are fixed, and due to

the short girth, performance degradation is observed. For τ =
7 iterations, performance under AWGN channel was slightly

improved.

B. Complexity

For the complexity analysis, we take into account the

number of complex multiplications performed for estimating

one J-QAM data symbol vector whose length is given by

N = KM . For computing the messages described by (11),

one needs N − 1 for loops. These loops’ index run from 1 to

J/2 because real and imaginary parts of the QAM symbol

are estimated independently. Taking into consideration that

the algorithm performs message calculations iteratively, and

adding the computation of (14). The algorithm built in such

manner that the number of complex multiplications required

is given by

C =

[

(

8N3 − 4N2K − 8N2 + 2NK + 2N
)(

J/2
)N−1

+ 2N3 − 8N2 + 6N

]

τ. (16)

Therefore, the complexity is O(cN ).

V. CONCLUSION

In this paper an iterative demodulation algorithm for Linear

GFDM was described employing the SPA over the factor

graph representation. The graph that represents the relation

among data symbols and received waveform samples is also

derived. Numerical results show that the proposed algorithm

holds the same performance as OFDM without the need of

previous channel equalization and noise variance estimation

when transmission over Rayleigh fading channel is assumed.

Hence, it presents an alternative to the well known MMSE

estimator. Nevertheless, further investigation for designing less

complex message computation algorithms that avail redundant

calculation remains an open issue.
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