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Abstract—In this work an iterative solution to build a network
lifetime-preserving sampling strategy for WSNs is presented.
The paper describes the necessary steps to reconstruct a graph
from application data. Once the graph structure is obtained,
a sampling strategy aimed at finding the smallest number
of concurrent sensors needed to reconstruct the data in the
unsampled nodes within a specific error bound, is presented.
An iterative method then divides the sensor nodes into sets to be
sampled sequentially to increase lifetime. Results on a real-life
dataset show that the reconstruction RMSE can be easily traded
off for a larger number of disjoint sampling sets which improve
the network lifetime linearly.

I. INTRODUCTION

Extending the lifetime of a Wireless Sensor Network
(WSN) without compromising its sensing capabilities is a
key objective if wireless solutions will ever replace wired
ones [1], [2]. The great advantage of having untethered
sensors is that they can be positioned where most needed
or even randomly scattered in an environment. Specific
applications in which sensors are difficult to reach or difficult
to replace (e.g. sensors embedded in concrete structures [3]
or spread over agricultural areas [4]) call then for a careful
analysis of lifetime-extending strategies, identifying the key
components of energy efficiency in WSNs [5]. Aside from
creating more energy efficient sensors, or designing specific
radio protocols to enhance energy conservation, a simple yet
effective solution is to sense only when and where necessary.
The sensing and data forwarding is, in fact, the most energy
expensive task performed by the sensor [5]. Unnecessary
sample transmissions affect both the lifetime of the sensor
node as well as the overall network performance as they
generate overhead [6]. Adaptive sampling techniques adjust
the sampling rate of every sensor while ensuring that global
performance targets (in terms of overall sensing accuracy) are
met. For example, in [7] the authors present a comparative
study of different adaptive sampling strategies aimed at
increasing the sleep time of each sensor and reducing the
sense and transmit intervals. In general, traditional adaptive
sampling strategies aim at determining the best sampling
intervals of each sensor in order to reduce the duty-cycle, but
they do not address the topology of the sensor network and
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how the sensors might be correlated with one another with
regards to the application data being sensed. In Compressive
Sensing (CS), on the other hand, recent work has focused
on reducing both the number of sensing nodes as well as
compressing the measured data as it gets relayed over the
WSN [8]. Traditional Compressive Sensing techniques do
rely on time-domain sparsity or, at the very least, allow for
a sparse representation of the signal to be sampled, where a
sampled observation is compressed at the sensing node and
then the aggregate samples are reconstructed at the sink or
receiving node [9]. In order to develop a lifetime-preserving
scheduling strategy for WSN based on CS techniques, the
authors in [10] have presented a probabilistic solution which
determines which sensor nodes are correlated (in space and
time) and maximise network lifetime by maximising the
sleep time of the nodes while keeping coverage high (enough
sensors are engaged to cover the sensing area completely).
All the above solutions require either sparsity in the time
domain or strong time-domain correlation.

Current advancements in the field of Graph Signal Pro-
cessing (GSP) have shown that it is possible to extend tra-
ditional signal processing methods for time-varying signals
onto irregular structures such as graphs. A graph signal is,
in fact, a signal which is sampled over the vertices of a graph
rather than on a time line; by incorporating the topology of a
graph, it is then possible to include the additional information
on how a signal propagates over a graph, across vertices (in
a WSN analogy: how sampled measurements are related be-
tween sensor nodes) [11]. As in traditional signal processing,
where downsampling a time varying signal means reducing the
time-domain samples in order to limit the datarate, in GSP
downsampling implies sampling a graph signal over only a
subset of nodes. The problem lies thus in reconstructing the
complete graph signal for this subset [12], [13]. Considerable
work has been presented on how to reconstruct a graph signal
from few nodes [11], [12] and on what would be an optimal
sampling subset given a limitation on the possible bandwidth
of the sampled graph signal [14]–[16]. On the other hand,
in WSNs, once sensors are deployed it is often impractical
to retrieve them and certainly wasteful to have wireless and
battery operated sensors and not use them as they might not
be part of the optimal sampling subset.

In order to guarantee optimal sensing performance and
network lifetime, it is then important to take into consideration
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that:

• the sensing performance of the WSN needs to be guar-
anteed and thus sampling strategies aimed at reducing
energy should not impact it;

• all sensors nodes should contribute to the sensing and
• in order to guarantee robustness, all sensor nodes should

be energy depleted at the same time.

This work builds on the previous GSP sampling results
and presents an iterative sampling strategy which aims to
reconstruct the graph signal by dividing the network into
disjoint partitions, where sampling each of them will guarantee
good signal reconstruction within an arbitrary bound. Each
partition might be sampled sequentially, so that the sampling
procedure’s overall energy cost decreases linearly with the
number of partitions.

II. A PRIMER ON GRAPH SIGNAL PROCESSING FOR
SIGNAL SAMPLING

This section presents a brief overview of the GSP methods
used in this work to develop an energy efficient sampling
strategy for WSNs. Firstly, the basic notation is given.

Consider an undirected graph G = (V,E) where V rep-
resents the set of vertices V = 1, ..., n and E represents
the edges connecting the vertices E = wi,j . wi,j ∈ R+ is
the weight associated to the edge between vertices i and j.
The adjacency matrix W can then be defined as a matrix
containing the weights of the edges between vertices, with
elements Wi,j = wi,j ; if an edge is missing the associated
weight will be zero. The degree matrix D indicates the relative
importance of each vertex with respect to all the other ones
and is defined as D = diag(d1, ...dn) where di is the number
of edges attached to each vertex and is the degree of vertex i.
Using the degree matrix D and the adjacency matrix W one
can define the graph Laplacian matrix as L = D−W.

According to the spectral decomposition theorem, there
exists a matrix U such that

L = UΛUT . (1)

where the columns of U = [u1u2...uN ] are the eigenvectors
of L and Λ = diag(λ1, λ2, ..., λN , ) is a diagonal matrix con-
taining the N eigenvalues λi associated with the eigenvectors
ui in U.
UT is the Graph Fourier Transform (GFT), which contains
information on the variability of signals over the graph in a
similar way as the Fourier transform does for time-domain
signals [17]. If one defines a graph signal x as the signal
sampled over all the vertices of the graph, then the GFT of x
can be defined as

x̃(i) =

N∑
k=1

x(k)ui(k) = UTx (2)

The eigenvalues of the Laplacian are then the analogous of
frequencies and the eigenvectors are the Fourier basis.

A. Building a graph from measurements

Given a set of measurements over the sensor nodes, the first
step is to determine the graph structure that better describes
the relationships between the sensors themselves. In [18],
the authors have shown a way to learn the graph structure
under smoothness assumption of the graph signals. This entails
that, given T measurements on each node of the network,
the set of measurements can be defined as a T × N matrix
X = [x1x2...xN ] where each vector xi contains the T samples
measured over each node i. The columns of X are thus the
graph signal. The smoothness assumption in [18] requires that
the differences between signals in connected nodes is small.
The distance between signals of well connected nodes can be
quantified as [18]:

1

2

∑
i,j

wi,j ||xi − xj || (3)

which in matrix form becomes:

tr(XTLX). (4)

There is then a graph Laplacian L which will minimise
the distance between signals of connected nodes. The graph
construction process is thus the search for this Laplacian by
performing the following optimisation:

min
L
tr(XTLX) + f(L), (5)

where f(L) is a function which prevents L from being trivial,
such as containing only zeros, and can impose further structure
using prior information on the graph [18]. Since X is known,
by solving (5) it is possible to directly learn the graph topology
behind the data [18].

B. Reconstructing a signal from a subset of nodes

It is now possible to make use of the discovered graph
Laplacian to determine the graph signal’s missing values.

The well known Total Variation principle states that, if the
graph signal is smooth, there is a limit to the variation that a
signal can have going from a vertex i to its adjacent vertices
[19]. Similarly then to Equation (5) the Total Variation of a
graph can be expressed as:

TVG(x) =

N∑
i=1

|x(i)− x̂(i)| = ||x−Wx||1, (6)

in which x̂(i) is the shifted signal at the neighbours of vertex
i. In the quadratic form, (6) becomes:

TV q
G(x) =

1

2
||x−Wx||22, (7)

Given a graph signal in the form x =

[
xM

xU

]
in which xM

represents the known signal sampled over M nodes and xU

is the missing signal which needs to be reconstructed, it is
possible then to recover the missing signal by solving the
following unconstrained optimisation [20]:

x∗ = argmin
1

2
||x̂M − xM ||22 + ηTV q

G(x). (8)



In Equation (8), η is a tuning parameter which controls
the impact of the smoothness criterion on the minimisation
process. A large η places more weight on the smoothness of
the solution while a smaller η puts more emphasis on fitting a
solution onto the known measurements. As Equation (8) is a
convex quadratic problem, it has a closed-form solution, and
in turn this means that η can be tuned efficiently based on
actual graph signals.

C. Optimal Sampling Strategy

The authors in [11] have shown that there is a random sam-
pling strategy that guarantees a bound on the reconstruction
error in noisy signals, based on sampling the nodes where
the signal energy is most concentrated. The method works by
determining the number n of vertices that need to be sampled
to enable correct reconstruction. Let m be a sampling vector
(in which mi = 1 if vertex i is sampled and zero otherwise),
then for any δ ∈]0, 1[:

(1− δ)||x||22 ≤
N

n
||mx||22 ≤ (1 + δ)||x||22. (9)

Equation (9) (Theorem 2.2 in [11]) is a sufficient condition
for making sure that m satisfies the bandlimitness of the
graph signal and indicates that sampling O(k log k) vertices is
enough to recover the complete signal, where k is the index of
the highest spectral component in the graph signal. This entails
that, given a chosen δ there exists an m, which represents the
sampling mask, allowing to reconstruct the signal correctly.

III. AN ITERATIVE GRAPH PARTITIONING STRATEGY

The solution proposed in this work combines the previous
results into a greedy iterative heuristic search, aiming at sam-
pling the lowest possible number of nodes while keeping the
reconstruction error as small as possible. The reconstruction
error is thus defined by using the Root Mean Square Error:

RMSE =

√∑N
i=1 x̂(i)− x(i)

N
, (10)

in which x̂(i) is the reconstructed graph signal at vertex
i. First the graph is constructed from successive sampled
measurements by solving problem (5). By solving problem
(9), a sampling mask m which satisfies the bandlimitness
of the graph signal given the signal measurements and the
graph topology is found. The sampling mask derived from
(9) provides which nodes contain the highest amount of
information. The nodes are then placed in descending order to
be sampled using disjoint sets containing the fewest number
of nodes per set while still respecting the imposed RMSE
reconstruction threshold.

The proposed solution selects the best node according to (9)
and reconstructs the signal using (8). If the RMSE computed
according to (10) is below the given threshold then the selected
node becomes a set. Otherwise, the next node in the list is
added in the sampling set and the process continues until the
RMSE is below threshold; in which case the set is complete. A
new sampling set begins by selecting the next best node. The
process is continued until all the nodes are sampled. Algorithm
1 shows the whole procedure.

Algorithm 1: Iterative Sampling Strategy
Result: The variable S contains the disjoint sampling

sets which satisfy the reconstruction error
condition.

1 initialisation: RMSE = ∞, Sampled nodes = [],
Choose threshold ε;

2 Receive X signal from nodes;
3 Build graph according to (5);
4 Determine sampling distribution by using (9);
5 Order nodes in descending order of sampling

importance in list L;
6 while Sampled nodes < total nodes N do
7 Sampling mask m = [];
8 while RMSE > ε do
9 Select first node in L and add to sampling

mask m;
10 Reconstruct graph signal X̂ using (8);
11 Compute RMSE according to (10);
12 Remove sampled node from list L;
13 end
14 Store sampling mask m in set S;
15 Add selected nodes to Sampled node list;
16 end
17 return S

Fig. 1. Sensor network used in [21] to collect the measurements. The sensors
are indicated as black dots and they all communicate with a central controller.

IV. THE WIRELESS SENSOR NETWORK

The dataset used in this paper is composed by temperature mea-
surements collected by distributed sensors in an indoor environment;
the dataset is openly available and was collected by the ”Intel
Research Berkeley Lab” [21]. The sensor network is composed by
54 Mica2Dot wireless nodes positioned in an area of 1200 m2; each
sensor measures local temperature, sampling the environment every
31 seconds and sends the measured value to a unique gateway.

As the communication between the sensors and the gateway is
wireless, packet losses are present due to fluctuating channel quality
and collisions. This entails that not all measurements are received
from all nodes at the same time and thus the complete information
over all the sensors needs to be collected during multiple time
intervals.

V. RESULTS

As described in Section III the algorithm first builds a graph
from successive collected measurements, Figure 2 shows the graph
built from 10 consecutive measurements. As some packets containing



sampled data get lost due to poor channel quality or collisions,
the graph is built from consecutive measurements until all nodes
are sampled and the resulting graph Laplacian does not change
anymore. Figure 3 shows the convergence time until the Laplacian
of the discovered graph has stabilised in function of the received
measurements.

Fig. 2. Final graph built from consecutive measurements. It is visible that
all the nodes are well connected and thus the measurements present strong
correlation in the vertex domain, that is to say the graph signal is smooth.
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Fig. 3. Convergence time of the Laplacian as a function of the received
graph signal. As new measurements arrive, new nodes partake in the graph
formation until the structure is stable.

Once the graph is complete, Algorithm 1 determines the disjoint
sampling sets iteratively. Figure 4 presents the sampling sets results
when the MSE threshold is fixed at ε = 0.3. The 54 sensors are then
divided into 9 disjoint sets, each of which is able to reconstruct the
signal within the given RMSE threshold.

To showcase the impact of the threshold selection in the set
creation and thus the overall number of concurrent sensors engaged,
Figure 5 presents the number of disjoint sets as a function of the
RMSE threshold ε. As the the threshold increases, a lower resolution
is necessary and thus a smaller number of concurrent sensors is
selected in the sampling mask M to reconstruct the signal. This
implies that the number of sets increases as fewer sensors are engaged
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Fig. 4. The sensors are split into 9 disjoint sampling sets when the Threshold
ε = 0.3 is selected. The signals sampled from each set allows a reconstruction
with an RMSE within the selected threshold.

at the same time. The number of sets is then monotonically dependent
on the threshold but not necessarily linear, in fact, in the studied graph
the curve appears to have a sigmoid behaviour as small values of the
RMSE threshold require the engagement of large number of nodes
to bound the error and the number of sets grows slowly. Very large
values of the RMSE threshold, on the other hand, slow down the
creation of new sets as the size of each set approaches the single
sensor.
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Fig. 5. The sensors are split into different sets of varying size depending on
the RMSE threshold set at the sampling selection strategy.

While the RMSE threshold bounds the maximum error allowed
per set, the actual RMSE measured per set might be lower than the
imposed threshold. Since the graph signal reconstruction is highly
dependent on the inferred graph topology, the proposed greedy
approach combines nodes so that the worst case performance of the
discovered sets is within the chosen bound.

Figure 6 shows the highest RMSE measured as a function of the
chosen threshold. The behaviour has the same monotonic nature as
in Figure 5, but the values are consistently lower than the thresholds.
This signifies that, although effective, the proposed method might be
improved by selecting nodes using an optimisation process in which
the given RMSE threshold is met exactly in very set. This would
provide a larger number of sets at the cost of increased complexity.

The relation between number of sets and energy efficiency of the
system is evident from Table I. The table presents the duty cycle per
sensor as a function of the total number of sets. As more sets are
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Fig. 6. Highest measured RMSE as a function of the number of the selected
RMSE threshold. The proposed method provides sets with RMSE consistently
lower than the threshold.

selected, fewer concurrent sensors need to be used, and this decreases
the amount of energy per sensor linearly with the the number of
sets. Depending on the application requirements, it is then possible
to trade reconstruction error for energy expenditure. Following the
results above, as the RMSE threshold ε increases, the WSN can be
divided into an increasing number of disjoint sets. By definition,
activating each set of sensors sequentially would enable the same
sensor network to live longer while keeping the error bound within
the chosen threshold.

TABLE I
SENSOR DUTY CYCLE AS FUNCTION OF NUMBER OF SETS.

Number of Sets 1 2 21 44 49 51
Sensor Duty Cycle [%] 100 50 4.76 2.27 2.041 1.96

VI. CONCLUSIONS

This paper describes a novel graph sampling method designed to
keep the signal reconstruction error bound within a threshold while
increasing a sensor network’s lifetime. The proposed iterative solution
is simple and makes use of all the nodes in the network, in order to
ensure even utilisation and maximise lifetime by choosing the highest
number of disjoint sampling sets which guarantees reconstruction
performances. The provided graph signal processing framework en-
ables the reader to adapt the proposed solution to various graph
sampling problems in which the reconstruction process might need
to be adjusted for specific applications such as distributed learning
over graphs for WSNs, traffic analysis, or biological networks.
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