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Abstract—Large scale natural disasters can cause unpre-
dictable losses of human lives and man-made infrastructure.
This can hinder the ability of both survivors as well as search
and rescue teams to communicate, decreasing the probability of
finding survivors. In such cases, it is crucial that a provisional
communication network is deployed as fast as possible in order to
re-establish communication and prevent additional casualties. As
such, one promising solution for mobile and adaptable emergency
communication networks is the deployment of drones equipped
with base stations to act as temporary small cells. In this paper, an
intelligent solution based on reinforcement learning is proposed to
determine the best transmit power allocation and 3D positioning
of multiple drone small cells in an emergency scenario. The
main goal is to maximize the number of users covered by the
drones, while considering user mobility and radio access network
constraints. Results show that the proposed algorithm can reduce
the number of users in outage when compared to a fixed transmit
power approach and that it is also capable of providing the same
coverage, with lower average transmit power and using only half
of the drones necessary in the case of fixed transmit power.

Keywords—FEmergency Communication Network, Machine
Learning, Reinforcement Learning, (Q-Learning, Drone Small Cells

I. INTRODUCTION

One of the most vital aspects during emergency situations
is the ability of isolated people and survivors to communicate
with the outside world. In addition, search and rescue teams
also need to communicate not only among themselves in order
to establish which areas need to be or were already covered and
may contain survivors [1]. However, natural disasters, such as
hurricanes, earthquakes and tsunamis often lead to a complete
failure in existing communication infrastructure, hindering the
performance of the on-field workers [1]. Since the first 72
hours after a tragedy, also known as the Golden Hours, are the
most crucial ones to find survivors, the deployment of a quick,
adaptable and efficient Emergency Communication Network
(ECN) is vital in catastrophic situations [1], [2].

Existing methods to deploy an efficient ECN lack adapt-
ability, and are restricted by environment and space, such as
debris blockage or flooding. To overcome these challenges,
one emerging technology that has received increased attention
recently is the deployment of drone small cells (DSCs) [3].
For instance, in 2017, when the communications infrastructure
of Puerto Rico was devastated by hurricane Maria, AT&T

and Verizon deployed Long-Term Evolution (LTE) equipped
drones to provide wireless service, while the network was
being restored [4]. It was the first time DSCs were utilized
to provide large scale wireless communication after a disaster.
This was made possible due to the flexibility, adaptability and
mobility provided by the DSCs. As such, they are able to
be deployed quickly and to provide service exactly where
required [1], [4]. Moreover, these DSC capabilities can be
coupled with machine learning algorithms to enable a fast,
autonomous and intelligent deployment of an aerial ECN.

Based on that, in this paper, a joint 3D positioning and
power allocation algorithm based on Reinforcement Learning
(RL), more specifically @-learning, is proposed. Assuming
an area in which a catastrophe has occurred, completely
destroying the previous wireless communication infrastructure,
the aim is to deploy a flexible and efficient local area ECN
based on DSCs. The proposed solution determines the more
appropriate position and transmit power of each DSC in
order to minimize overall user outage, therefore improving the
network performance.

A. Related Work

The usage of DSCs in communication networks has at-
tracted a significant attention from both academia and industry
recently [1], [2], [S]-[9]. Several studies focus on the problem
of drone positioning in mobile networks. For instance, in [5],
the authors attempt to find the best position of multiple DSCs
analytically. They propose a drone management framework for
efficient operation, considering different environments. In [10],
the optimal altitude of DSCs for maximum coverage is derived,
with results showing that to maximize coverage, there is an
optimal separation distance between drones. Wang et al., in [6],
propose an expression for determining the optimal position
of a DSC to maximize its coverage area considering energy
constraints. In [7] the utilization of DSCs with a new path
loss model is proposed. Results show that higher backhaul
data rates can be achieved when compared to a solution with
only a terrestrial infrastructure. Another work that investigates
wireless backhaul constraints is [8], in which the authors study
the usage of drones considering different types of backhaul
links in order to analyze user coverage and throughput.

Moreover, other related works focus on ECN. In [9], for
example, the positioning of DSCs in an emergency scenario is



investigated, with the aim of improving the network through-
put. In addition, the work in [2] surveys network architectures
for different scenarios, using DSCs for disaster management.
Zhao et al. propose in [11] a framework of DSC-assisted
ECNs with or without a terrestrial Base Station (BS) and also
optimize the flight trajectory of the DSC in both scenarios.

Although the importance and contributions of previous
works are clear, all surveyed works consider only analytical
solutions for positioning drones, while just a few considered
emergency situations. As such, to apply the above solutions to
an ECN, a great amount of previous network knowledge would
be necessary, such as the number of users, their positions,
channel state information, efc., which would be unrealistic
in a constantly changing environment. Considering this issue,
Klaine et al. in [1] propose the intelligent positioning of
multiple DSCs utilizing a RL-based algorithm. Such algorithm
can analyze the environment, adapt itself and explore its
possibilities to determine the best actions to be taken by the
DSCs. The proposed solution employs ()-learning in every
DSC to find their best position in a disaster scenario. Moreover,
the algorithm considers user mobility and network constraints,
with results showing better coverage than fixing the drones
either in random or circular positions, or positioning them in
the locations of hot-spots that existed when the network was
fully operational.

B. Contributions

This paper is an extension of [1]. However, we assume that
the previous cellular network infrastructure was completely
destroyed, while in [1] the authors consider the assistance
of a terrestrial macro BS. Similarly to [1], to restore cellular
coverage, a number of DSCs is deployed to create an ECN,
without any prior knowledge of position and channel state
information, thus demanding self-optimization. In this sense,
we propose a new solution based on (-learning that jointly
optimizes DSC positioning and allocates transmit power for
maximizing coverage, while mitigating interference between
DSCs and minimizing the number of users in outage. Results
show that when power allocation is used, instead of a fixed
power as in [1], it is possible to either increase the number
of users covered, or even to use considerably fewer DSCs to
achieve the same performance.

The remainder of this paper is organized as follows. Sec-
tion II describes the urban path loss model, the network and the
users distribution. Section III presents the proposed solution
and the metrics used to measure the system performance.
Section IV discusses simulation results. Lastly, Section V
highlights the key findings and concludes the paper.

II. SYSTEM MODEL

This section introduces the parameters used in the urban
path loss model in Section II-A, the DSCs network in Sec-
tion II-B and the user distribution in Section II-C, respectively.

A. Urban Model

The urban environment model used in this paper follows
the International Telecommunication Union (ITU-R) docu-
ment [12], as in [1], [13], which recommends a standardized
model for urban area based on the following parameters:

e  «: the ratio of built-up land area to the total land area.
e  [3: average number of buildings per square kilometer.

e  ~: scale parameter describing building height distribu-
tion.

In order to model an urban scenario for this paper, ITU sta-
tistical parameters and a Manhattan grid layout are considered
for building distribution, following [1], [13]. The buildings
have a square area of width W and are separated by a space S.
The height of the buildings are generated following Rayleigh
distribution using the parameter «. The selected urban scenario
is deployed in an L x L square area, while W and S are given,

in meters, by [1], [13]
«
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B. Temporary Network

The solution proposed in this paper considers the deploy-
ment of DSCs to create an ECN in a disaster scenario. To
provide the necessary coverage to support the communication
of rescue teams and to minimize users in outage, the DSCs
are equipped with an antenna which has a given directivity. As
such, it is considered that the DSCs antenna has an aperture
angle 6, as in [1], which is the region that concentrates the
major lobe of the antenna and has the highest gain. Thus, the
coverage radius of a DSC can be expressed as

p = hq-tan (2)7 (3)

where hq is the DSC height. Moreover, we also consider that
the irradiated signal outside p is highly attenuated [1].

Considering a set of U = {1, 2, ..., N, } users randomly dis-
tributed in the L x L square area and a setof D = {1,2, ..., Ng}
DSCs, the path loss x; ; between user ¢ and DSC j, with
i € Uand j € D, can be determined. The path loss (in dB)
is composed by a free-space path loss component, with an
additional loss & depending on the line of sight (LOS) between
a DSC and a user [13], so that

47 cdi 1
Xi,j = 20logyq (fc J) +¢&, 4

where d; ; is the distance between user ¢ and DSC j, c is
the speed of light and f. is the carrier frequency. According
to [10], ¢ adopts different deterministic values for LOS and
non line of sight (NLOS) links.

C. Users Association

In order to associate users to DSCs, the Reference Signal
Received Power (RSRP) between user ¢ and DSC j, needs to
be computed, and can be expressed, in dB, as

RSRPlJ = EIRPJ — Xi7j7 (5)

where the Equivalent Isotropically Radiated Power (EIRP) is
the sum of the transmit power with the antenna gain [1]. Based



on that, the Signal to Interference plus Noise Ratio (SINR) is
expressed as

RSRP,
N+ ij;l;,#j RSRP; ;.
where [V is the additive white Gaussian noise power.

Users are allocated to the DSC with the best SINR. Besides
that, the association also depends on the available capacity of
the DSC Radio Access Network (RAN). If the SINR is above
a specific threshold and there is enough RAN capacity for the
user, then it is associated to the DSC. However, if the user
SINR is below a threshold or if the DSC has no resource
blocks (RB) available in its RAN, the next DSC (in terms of
SINR) is considered as a candidate for association'. If a user
is unable to connect to a DSC in a time slot after trying to
connect to all DSCs at range, then the user is considered in
outage for that time slot.

SINR, ; = (©6)

III. PROPOSED SOLUTION

This work proposes a RL-based method, using -learning,
to jointly optimize DSCs 3D position and transmit power,
creating a local network of DSCs, with the intention of
minimizing the number of users in outage in a disaster scenario
where the previous network infrastructure was destroyed.

A. Q-learning

Machine learning algorithms have played an important role
in communication networks in recent years [14], with special
attention to intelligent applications offered by RL algorithms,
which can be used, e.g., as a solution for positioning DSCs
in wireless networks [1], [3]. A RL system is composed of
an agent, which interacts with an environment and acquires
knowledge from it. This knowledge is gathered in a trial and
error approach, in which the agent tries different actions and
collects the responses from the environment, in what is known
as the reward. This is performed in order to discover which
actions to take at specific states and this knowledge is stored
in a table, known as the action-value function [15].

Q@-learning, one of the most practical algorithms in RL,
utilizes this idea and updates its action-value function, also
known as the (Q-table, via [15]

Q(st,ar)  Q(s¢,a)+ (7N
A [Tt-u + ¢m3XQ(3t+17 a) — Q(se, a)|,

where A is the learning rate, r;; is the reward yielded by the
environment and ¢ is the discount factor (which dictates the
value given to future rewards).

This table defines the value of being in a state s;, at time
t, and taking an action a;. After the agent performs an action,
the environment takes the agent to a new state and generates
a reward. The agent will then evaluate the reward in the new
state and update the value of the previous state, now that it
has the complete knowledge. Based on that, the algorithm can
try different actions in different states (exploring) or choose
the highest value of the ()-table which leads to better rewards
at other states (exploiting) [15].

!t is considered that each user consumes 1 RB when associated to a DSC.

B. Proposed Method

In this paper, the goal of the proposed solution is to
maximize user coverage by allocating power and positioning
the DSCs in a dynamic system where users are moving and
have different requirements. Next, the (-learning parameters
are presented.

e  Emvironment: the disaster scenario, with buildings and
moving users.

e Agents: each DSC is an independent agent, each
having a different Q)-table.

e  States: three dimension position of a DSC plus its
transmit power.

e Actions: each drone can take nine possible actions:
move up, down, right, left, forward, backward, in-
crease or decrease its transmit power, or do nothing.

e  Reward: the reward r is given by the total number of

allocated users,
Ng
r=>Y_Uj, (8)
j=1

where U; is the number of users allocated to DSC
7. The DSCs are assumed to have access to the total
number of allocated users by means of a central entity.
Note that the DSCs must have backhaul connection to
the core network, and such central entity is in the core
network. The backhaul is assumed ideal in this work.

e  Policy: DSCs choose their actions according to an e-
greed policy, with e decaying over time [15].

e  Update: each DSC updates its ()-table as in (7).

e [nitialization: all the drones are initialized at random
locations and with their (J-tables set to zero.

e  FEpisode: the episodes are subsequences of the agent-
environment interaction. In the proposed problem, an
episode can be described as a snapshot of the network.
In each episode, DSCs take actions based on their
current state and evaluate their reward. This process
is repeated for a certain number of iterations until one
of the stopping criteria is met.

e  Stopping criteria: three different conditions are stop-
ping criteria for the proposed method: i.) the reward
has not improved after a certain number of iterations
Max;;,, ii.) a maximum number of iterations Max;;
has been carried out, or iii.) the DSC has used all
RBs. When the DSC meets one of these conditions, it
moves to the state which yields the best reward and
stops until the next episode.

The proposed method runs in a distributed and independent
fashion in each DSC, and is summarized in Algorithm 1.

C. Outage Metric

The metric utilized to analyze the results of the proposed
solution is the percentage of users in outage, which is given
by D, = 100 - N,/N,, where N, is the number of users in
outage and is given by N, = N, — Z;V:dl U;.



Algorithm 1 DSCs Power Allocation and Positioning

Require: Initialize DSC locations and ()-tables
Ensure: Power allocation and positioning of DSCs
for Every episode do
while Stopping criteria not met do
DSC selects action according to e-greedy policy
Update DSC state
Allocate users and receive reward, 7441
Update )-tables
end while
Allocate power and move to state with best reward
Allocate users
end for

IV. SIMULATION RESULTS

In this section we compare the proposed solution to the
method in [1], in which every DSC employs a fixed transmit
power of EIRP = 0 dBW. A summary of the simulation param-
eters is shown in Table I. Simulation results are generated and
averaged out by 15 independent runs, each with 100 episodes.
Before the first episode, user positions are generated. Each
episode is divided into iterations, in which users are considered
static and DSCs try to find the best power allocation and
position. After a certain number of iterations, depending on
the stopping criteria, DSCs decide their transmit power and
best position for that episode. For the next episode users move
randomly, with a maximum displacement of 3 m in either X-
axis or Y-axis, while DSCs start in the same learned position
of the previous episode with the knowledge of the computed
Q-tables. This series of actions is repeated for each run.

Figure 1 plots the evolution of the percentage of users in
outage versus the number of episodes, in a scenario with 9
DSCs, comparing the proposed solution and the method in [1].
As we can observe, the percentage of users in outage decreases
rapidly with the number of episodes, reaching near zero for
both methods after around 10 episodes. In order to consider
only the steady state performance, in the following we present
numerical results using the average of a number of episodes
beyond such transient behavior. In particular, next we consider
the average performance during episodes 11 to 100.

Figure 2 shows the percentage of users in outage per
number of DSCs. It can be seen that the performance achieved
by the fixed transmit power solution using 9 DSCs, [1], can be
achieved with just 5 DSCs when using the proposed solution.
In addition, the new method yields the best overall results,
having a percentage of users in outage much smaller than
the case with fixed transmit power when considering 9 DSCs.
Moreover, in the case of 9 DSCs the average transmit power is
only EIRP = —10 dBW, whereas the average transmit power
for the fixed power solution is EIRP = 0 dBW, as shown
in Figure 3. Hence, the proposed solution presents a better
performance not only in terms of users in outage, but also in
average transmit power.

Finally, Figure 4 illustrates the position of 9 DSCs for a
particular episode, including their transmit power and RAN
load. Different drones prefer different heights, in order to
maximize coverage and minimize interference. DSCs with
higher altitude use the increased coverage to serve users that

Table I: Simulation parameters.

Parameters Value

Ratio of build-up to total land area (cv) 0.3
Average number of buildings () 500 buildings/k
Scale parameter for building heights () I5m
£ LOS 1 dB
& NLOS 20 dB
Side of the square area (L) 500 m
Drone X-axis and Y-axis step 50 m
Drone Z-axis step 100 m
Minimum Drone height 200 m
Maximum Drone height 1,000 m
Users X-axis and Y-axis step I m
Number of users (Ny) 200
User height (hy) 1.5 m
DSC antenna directivity angle () 60°
Possible DSC EIRP {-20, -10, 0} dBW
RBs in DSC 50
Carrier frequency (fc) 1 GHz
Total number of episodes 100
Number of independent runs 15
Max iterations per episode (Max;) 3600
Max iterations, same reward (Max;; ) 70
Min iterations per episode (Min;¢, ) 200
Learning Rate () 0.9
Discount Factor (¢) 0.9

T T
16 =L} Fixed Power [1] |
—(O— Power Allocation

2 4 6 8 10 12 14
Episode

Figure 1: Example of algorithm evolution as a function of the
episodes, in a scenario with 9 DSCs.

would be in outage. Regarding RAN load, none of the DSCs
uses full capacity, resulting in more DSCs using lower transmit
power, mitigating interference and improving coverage.

V. CONCLUSION

In this paper, DSCs were used to deploy an ECN in a
catastrophe scenario. The proposed solution consisted of a
distributed implementation of (-learning, to optimize the posi-
tion and power allocation of each DSC, while maximizing the
number of covered users. Results showed that power allocation
at the DSCs positively impacts the network performance.
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