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Abstract—In this paper, we study the trade-off between relia-
bility and latency in machine type communication (MTC), which
consists of single transmitter and receiver in the presence of
Rayleigh fading channel. We assume that the transmitter does not
know the channel conditions, therefore it would be transmitting
information over a fixed rate. The fixed rate transmission is
modeled as a two-state continuous-time Markov process, where
the optimum transmission rate is obtained. Moreover, we conduct
a performance analysis for different arrival traffic originated
from MTC device via effective rate transmission. We consider
that the arrival traffic is modeled as a Markovian process
namely Discrete-Time Markov process, Fluid Markov process,
and Markov Modulated Poisson process, under delay violation
constraints. Using effective bandwidth and effective capacity
theories, we evaluate the trade-off between reliability-latency and
identify QoS (Quality of Service) requirement, and derive lower
and upper bounds for the effective capacity subject to channel
memory decay rate limits.

I. INTRODUCTION

The next generation of communication systems will bring

new business models and revolutionary changes in several

industry chain processes due to ultra-reliable low latency com-

munication (URLLC) and massive MTC (mMTC) use cases,

enabling the industrial Internet of Things (IoT). As a result,

there are foreseeable benefits in terms of efficiency, safety and

sustainability for the industry and society. Therefore, it can be

easily inferred that MTC is one of the core elements in the

IoT revolution that will be required for achieving ambitious

goals planned for future wireless networks [1].

Ultra-reliable low latency communication (URLLC) aims

to provide communication services where stringent QoS re-

quirements are imposed in terms of reliability and latency.

This type of communication is normally used in mission

critical applications such as vehicle-to-vehicle communication

(V2V), remote surgery and critical links between industrial

processes. On the other hand, mMTC refers to the kind of

network services that can support large number of connected

smart devices. It can be used to cover monitoring, automation

and infrastructure of buildings, smart agriculture, logistics,

tracking and fleet management. The devices are normally used

to collect and forward information in both real as well as non-

real time modes. These connected devices are expected to be

greater than 50 billion by 2020 [2].

MTC (mMTC and URLLC) has attracted much interest

in the recent years which promises a huge potential and

market growth for the technology. Furthermore, research and

development suggest that cellular networks are suitable to

largely satisfy the requirements of MTC in terms of global

reach, QoS, scalability, security and diversity. A traffic model

is a stochastic process that matches the behaviour of physical

quantities of measured data traffic. Current cellular networks

are based on the standard traffic model, which is designed

and optimized for typical behaviour of human subscribers.

Moreover, the traffic behaviour of MTC is different, since it is

mostly uplink dominant; uses short as well as less number

of packets; is (Non) real-time, periodic and event driven.

It is usually bursty in nature (suddenly the volume of data

flow increases in response to trigger of certain events) and

coordinate in nature (i.e. simultaneous access attempts from

many machines reacting to the same events), while HTC

(Human Type Communication) is uncoordinated one. The

QoS requirements of MTC are different in terms of security,

reliability and latency [3].

Consequently, there is a prominent need for traffic models

that can not only capture the behaviour of MTC traffic but

can also provide the adequate communication services for both

types of traffic with required QoS. Traffic models are mainly

characterized into source and aggregated traffic models. The

source traffic model captures the behaviour of individual users

or sources. These models are often based on Poisson process

which is an appropriate choice for capturing the properties

of individual MTD (Machine Type Devices) generated traffic.

On the other hand, the aggregate traffic model where a large

number of MTD are assigned to one aggregator for capturing

the traffic pattern of an individual user due to it’s homogenous

and coordinated nature of the traffic [4].

The key design issue for traffic generated by MTD is how

to achieve acceptable performance and efficiently use delay

bound guarantees for timely transmission within the specified

QoS requirements in a wireless channel. Wireless channel is

highly time varying channel due to the random changes in

the environment or obstacles. These changes in wireless signal

usually lead to variations in the strength of the received signal,

which directly affects the QoS guarantee in a MTC. Therefore,

deterministic delay bound QoS constraints are usually difficult

to satisfy. Alternatively, the statistical QoS provisioning is a

powerful tool to characterize and implement delay bound QoS

guarantees for wireless real time traffic [5].



In this context, effective capacity is a statistical QoS provi-

sioning metric and can be defined as the maximum constant

arrival rate that a given time varying service process can

support while providing statistical latency guarantees [6]. It

is derived from the large deviation theory and incorporates

the statistical QoS constraint by capturing the decay rate

of the buffer occupancy probability for the queue length.

Effective capacity ensures the QoS guarantee on the constant

arrival rates. Here, we are particularly interested to conduct

a throughput analysis of random and bursty source traffic

patterns by using Markovian source models including discrete

time Markov, Markov fluid and Markov modulated Poisson

sources with effective capacity.

Effective capacity [7] has extensively been used over the

past few years to evaluate the trade-off among the relia-

bility, latency, security and energy efficiency. For example,

the authors [8] evaluate the trade-off between reliability and

energy efficiency under QoS constraints. In [9], an optimal

power allocation scheme is proposed to maximize the energy

efficiency under given QoS constraint. In [10], the authors

assess the performance of security in MTC networks using

secure statistical QoS provisioning. In [11], the authors have

considered fixed-rate transmission modelled as a two-state

(ON/OFF) continuous-time Markov chain and utilize effective

capacity to analyse energy efficiency.

In this paper, we conduct performance analysis of optimum

fixed rate model. By using effective capacity theory, we aim

at meeting the adequate reliability and latency requirement

in point-to-point MTC network. We follow the recent con-

tribution in [12] to incorporate Markovian arrival traffic so

that its impact on the optimum transmission rate performance

of the network can be evaluated. We derive upper and lower

bounds of the effective capacity for high and low channel

memory values. Our work is different from [12] as we assume

a fixed rate transmission over Rayleigh fading channel which is

modelled as continuous time Markov chain. This model allows

us to identify the level of reliability and latency that each

transmission possesses and therefore design the appropriate

optimum transmission rate by formulating an optimization

problem, that not only maximizes the effective capacity but

also increases the allowed maximum average arrival rate at

sources. Hence the satisfactory reliability and latency require-

ment are achieved under statistical QoS constraints which are

satisfied by the system.

II. PRELIMINARIES

A. System Model

In this paper, we consider single transmitter and receiver in

the presence of Rayleigh fading. The input output relation of

the channel model can be expressed as

yptq � hptqxptq � nptq, (1)

where xptq and yptq are the complex valued input and out-

put signals, respectively, and nptq is zero mean, circularly-

symmetric, complex Gaussian noise. Finally, hptq is the

Rayleigh fading coefficient which denotes the multiplicative

Fig. 1. System Model, where λ is the arrival rate at the source, and Q is the
length of the queue at the transmitter. The channel coefficient is denoted as
h and AWGN noise as n. Transmission in wireless link is also modeled as
a continuous-time Markov chain with ON and OFF states, whose transition
rate of fading states are measured by ν and µ.

fading component expressing the attenuation and phase shift

experienced in the channel, and it is assumed to be a zero-

mean complex Gaussian process. Therefore, zptq = |hptq|2 has

an exponential distribution and assume unit variance.

In this paper, we assume that the receiver is able to estimate

the channel coefficient hptq, whereas the transmitter does

not know this information. Therefore the transmitter would

be transmitting information over a fixed rate R bits/s. The

wireless channel changes slowly and hence, hptq stays constant

over each coding block, the instantaneous channel capacity of

Gaussian channel model is given by

Cptq � log2p1� γz ptqq bits{s, (2)

where γ is the average transmitted signal-to-noise ratio.

When R   Cptq, then the channel is considered to be in ON

state. Hence, the transmitted message is decoded correctly and

reliable communication is accomplished. While R ¥ Cptq,
then the channel is considered to be in OFF state; outage arises

and retransmission is needed.

The transition rate from ON to OFF state is denoted by ν,

and OFF to ON state is µ as illustrated in Fig. 1. Then, we

can write that the channel ON state probability is equivalent

to Prtzptq ¡ Ψu �
³8
Ψ
e�z dz � e�Ψ � ν

ν�µ
, where Ψ �

2R�1
γ

, and the OFF state probability is as Prtzptq ¤ Ψu �³Ψ
0
e�z dz � 1� e�Ψ � µ

ν�µ
. Hence, we have ν � κe�Ψ and

µ � κp1�e�Ψq. These equations are necessary to determine ν

and µ. It is noted that the channel memory of these two-state

Markov process exponentially decay at rate ν � µ � κ [11].

B. Throughput of delay constrained networks

It is assummed that before transmission, data generated by

random sources is stored in First in First out (FIFO) buffer as

illustrated in Fig. 1. Thus, delay may occur in transmitting the

data because of the long waiting time of data in the buffer.

Moreover, the delay overflow probability is given by [6]

PrtD ¥ du � ζe�θapθqd, (3)

where D is the queueing delay, d is the delay threshold, θ

is the delay QoS constraint, apθq is the effective bandwidth

and ζ is the probability of non-empty buffer. Larger value of



θ Ñ8 implies that stringent QoS constraint is imposed, while

for loose QoS constraint the value θ Ñ 0 is small [13].

In this paper, we consider three types of Markov arrival

sources namely Discrete-Time Markov source (DTMS), Fluid

Markov source (FMS) and Markov Modulated Poisson source

(MMPS). These Markov sources are using two-state ON and

OFF model. In ON state, data arrives with rate λ bits/block

and the OFF state refers to no arrival of data as illustrated in

Fig. 1. For these sources, effective bandwidth provides a mean

to characterize the minimum constant service rates required to

support the random arrival of data into the buffer constrained

to some statistical QoS requirements, namely buffer violation

probability in (3). Let the time accumulated arrival process at

instant t be Aptq �
°t

k�1 apkq. Then the effective bandwidth

is defined as [6]

apθq � lim
tÑ8

1

θt
logEteθAptqu , (4)

Effective capacity (CE) is the dual concept of effective

bandwidth, where it defines the maximum constant arrival rate

that a given time-varying service process can support in order

to guarantee a statistical QoS requirement specified by the QoS

exponent θ. The effective capacity for a given QoS exponent

is obtained from [14]

CEpγ, θq � � lim
tÑ8

1

θt
logEte�θSrtsu, (5)

where Srts �
°t

k�1 P rks is the time accumulated service

process and tP rks, k � 1, 2, � � � u shows the discrete time sta-

tionary and ergodic stochastic service process. So P rks � R,

when it is ON state and otherwise 0 in OFF state.

We formulate a two-state continuous-time Markov chain

fixed rate effective capacity model for a given statistical

constraint, where θ as

CEpγ, θ,Rq �
1

2θ
rθR� pν � µq � ξs , (6)

where ξ �
a
pθR� pν � µqq2 � 4νθR, and (6) represents a

simplified version of the effective capacity.

Remark 1. The upper bound of effective capacity is expressed

as below

CE � lim
κÑ8

1

2θ
rθR� pν � µq � ξs � Re�Ψ, (7)

describes that CE is asymptotic at the high channel memory

decay rate towards Re�Ψ, which is free from QoS constraints

θ. Meanwhile, there is a lower bound for CE , which ap-

proaches zero for very low channel memory decay rate as

follows

CE � lim
κÑ0

1

2θ
rθR� pν � µq � ξs � 0. (8)

It is fairly hard to investigate the performance of the

communication system when the arrival of data and chan-

nel characteristics are random in nature with certain target

guarantees. We assume the maximum average arrival rate is

the throughput metric of Markovian arrival sources that can

support wireless fading channel and satisfy QoS guarantees

illustrated in (3). Thus, QoS constraints are fulfilled when

the effective bandwidth of the arrival process is equal to the

effective capacity of service [6], therefore

apθq � CEpγ, θ,Rq, (9)

Then we can find maximum arrival rate that can support fixed

rate transmissions at given γ and θ.

III. MAXIMUM ARRIVAL RATE OF MARKOVIAN SOURCES

A. Discrete - Time Markov Sources

In the DTMS model, the arrival of data in the buffer is

discrete in time. We assume a simple two-state ON/OFF

model. In ON state λ bits arrive in the buffer, whereas no

arrival of data in OFF state. Effective bandwidth in this case

is defined by [12]

apθq �
1

θ
loge

�
1

2

�
p11 � p22e

θλ

�
b
pp11 � p22eθλq2 � 4pp11 � p22 � 1qeθλ




, (10)

where p11 denotes the probability of staying in OFF state,

while p22 determines the probability of ON state. The tran-

sition probabilities from one state to another are denoted by

p21 � 1 � p22 and p12 � 1 � p11. PON is the probability

of ON state in the steady state regime, which is used to the

calculate average arrival rate as

λavg � λ � PON � λ
1� p11

2� p11 � p22
, (11)

when the queue is in steady state then arrival rate is equal to

the departure rate [12].

We substitute the effective bandwidth expression of discrete

time Markov source (10) in (9) and solve as follows

pp11 � p22e
λθ � 2eθCEpγ,θqq2 � pp11 � p22e

λθq2 (12)

� 4pp11 � p22 � 1qeλθ.

After solving (12) for λ, we obtain maximum ON state arrival

rate as

λ�pθq�
1

θ
loge

�
e2θCEpγ,θq � p11e

θCEpγ,θq

p1� p11 � p22q�p22eθCEpγ,θq



. (13)

By incorporating (11) we can express the maximum average

arrival rate as a function of QoS exponent, effective capacity

fading channel and state transition probabilities as [12]

λ�avgpγ, θq�
PON

θ
loge

�
e2θCEpγ,θq � p11e

θCEpγ,θq

1� p11� p22 � p22eθCEpγ,θq



. (14)

Let us further simplify our analysis by assuming p11 � 1�s

and p22 � s, we obtained a simplified version of the source

model in which single parameter s measure the burstiness of

the source [6].

λ�avgpγ, θq �
s

θ
log

�
eθCEpθq � p1� sq

s



. (15)



B. Markov Fluid Sources

In this model, the data continuously arrive in the buffer and

the effective bandwidth is expressed by [6]

apθq�
1

2θ

�
θλ�pα�βq�

a
pθλ� pα� βqq2 � 4αθλ

�
, (16)

where α shows the transition rate from OFF state to ON state

and β is the transition rate from ON state to OFF state. Then,

we attain the steady state probability of being ON as

PON �
α

α� β
. (17)

We follow a similar procedure as for the DTMS to determine

the maximum average arrival rate of two-state ON/OFF model

for the MFS as [12]

λ�avgpγ, θq � PON

θCEpγ, θq � α� β

θCEpγ, θq � α
CEpγ, θq. (18)

C. Markov Modulated Poisson Sources

In Markov modulated Poisson process, the arrival of data in

the buffer is a Poisson process, whose intensity is controlled

by a continuous time Markov chain. In OFF state, there is no

arrival of data which means arrival intensity is zero. On the

other hand, λ is the arrival intensity in ON state. In this case

the effective bandwidth is defined as [6]

apθq �
1

2θ

�
peθ � 1qλ� pα� βq

�

�
1

2θ

b
p peθ � 1qλ� pα� βqq2 � 4αpeθ � 1qλ.

(19)

Similar to the previous sources models, we determine the

maximum average arrival rate for the MMPS source model

as [12]

λ�avgpγ, θq�PON

θrθCEpγ, θq � α�βs

peθ � 1qθCEpγ, θq � α
CEpγ, θq. (20)

IV. OPTIMAL FIXED RATE TRANSMISSION

Fig. 2 shows the maximum average arrival rate of Marko-

vian sources as a function of transmission rate R for fixed

values of QoS constraint θ, κ, γ and PON. It is clearly

visible that the maximum average arrival rate is maximized as

transmission rate increases, but after certain limit the effective

capacity gradually starts to decrease due to fixed value of γ.

If one transmits with higher rate, it will degrade the overall

throughput. Therefore, efficient use of transmission rate boosts

the performance of communication system. Furthermore, it

is noticed that optimum transmission rate which maximizes

the λavg has similar value for all markovian models. We

conclude that optimizing the effective capacity with respect

to the transmission rate, allows for high link throughput while

allowing larger arrival rates as we shall see next.

The optimization problem to maximize CE subject to a non-

negative transmission rate

C�
Epγ, θ,Rq � max

R¥0

"
1

2θ
rθR� pν � µq � ξs

*
(21)
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Fig. 2. Maximum average arrival rate of Markovian sources as a function of
transmission rate R for fixed values of QoS constraint θ, κ, γ and PON.

Now, taking first derivative of (21) and equating it to zero

yields the optimum value of R.

BC�
Epγ, θ,Rq

BR
�

θ �
2θpRθ�κq�4θν� 22�R

R logp2qν
γ

ξ

2θ
� 0. (22)

After some algebraic manipulation, we have

γ ξ � γpRθ � κq � 2γν � 2Rν logp2q 2R � 0 (23)

Further, we simplify (23) to reach

R
� �

γpξ � κ� 2νq

γθ � 2ν logp2q2R� . (24)

However, closed form solution for (24) does not exist. In order

to obtain optimum transmission rate R
�, we use fzero Matlab

root function.

V. RESULTS AND DISCUSSION

Herein, Fig. 3 shows the effective capacity as a function

of channel memory κ for different value of γ and θ, when

R� 3 bps. High values of κ measure the channel memory

decays fast which corresponds to good channel state and bears

higher transmission rate but has less probability of this event

occurred. We observe that the effective capacity is maximized

at high level of channel memory rate for low γ curve as

compared to high γ when stringent QoS constraint is imposed

and then it saturates. It is shown in Remark 1 that channels

with high channel memory κ produce an asymptotic boost

in effective capacity up towards an upper bound, which is

physical phenomena that can measure with κ but do not

control. We conclude that, larger channel memory κ or γ above

a certain level will not increase effective capacity.

In a wireless communication system, it is generally pre-

sumed that by increasing signal power, the performance of

the system improves. Fig. 4 illustrates the maximum average

arrival rate λ�avg of Markovian models as a function of γ for

different values of PON when we set QoS exponent θ � 1

and κ � 50. It is clear that as the γ increase throughput also

improves. The increase in burstiness of sources (i.e, when PON

decreases) implies that the data arrives less frequently which
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Fig. 3. Effective capacity as a function of κ for different values of γ pSNRq
and θ when R� 3.
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Fig. 4. Maximum average arrival rate λ�avg as a function of γ pSNRq for
distinct Markov source models with different value of PON.

means that the source is bursty. Moreover, the arrival rate in

ON state becomes higher.

The low value of θ is examined in Fig. 5, we plot the

maximum average arrival rate λ�avg as function of QoS con-

straint θ for distinct Markov source models with different

value of source characteristic PON when we set γ � 10 and

κ � 50. It is noted that higher value of λavg can be sustained

for the loose QoS constraints. Hence, throughput does not

depend on channel memory and source characteristics. When

the QoS constraints becomes too stringent, the throughput

tends to zero, since assigned arrival rate must satisfy short

delay requirement. This reduction in λ�avg is more severe in

bursty sources (i.e, when PON � 0.1). Moreover, maximum

average arrival curve of MMPS sources is generally smaller

and declines fast, when stringent QoS constraint are imposed.

This can be the natural attributed to the much more ran-

domness/burstiness tolerated at high γ regime for the DTMS

and FMS. Furthermore, MMPS throughput is less affected by

burstiness because MMPS sources exhibit a higher level of

variation in this sense and can be regarded as a more bursty

source.

Fig. 6 includes subplots for the outage that occurs due to

delay violation probability as a function of γ, QoS exponent θ

and source characteristic PON. It is obvious that the reliability

and latency tradeoff is described in terms of delay violation
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Fig. 5. Maximum average arrival rate λ�avg as a function of θ for distinct
Markov source models with different value of PON.
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Fig. 6. Delay violation probability as function of (a) γ assuming fixed θ, (b)
θ assuming fixed γpSNRq and (c) PON.

probability. Enhancing reliability requires large values of γ,

tight QoS requirements and sources should behave less bursty.

The relation between reducing latency and enhancing reli-

ability is a trade-off subject to the design requirements. In

Fig. 6(a), as γ increases, good channel quality is available

for optimal transmitting rate, which tends to boost reliability.

Fig. 6(b) shows that as QoS requirement increases, the waiting

time of data in buffer shorten which uplifts reliability level. In

Fig. 6(c), delay violation probability is plotted as a function of

PON for fixed arrival rate of 1 bps and fixed QoS requirements

θ � 0.01. Burstiness is measured from the average arrival

of data in ON state. It is observed that more bursty sources

degrade the maximum average arrival rate, which directly rises

delay violation probability. Furthermore, the MMPS sources

tolerate lower delay violation probability. Hence, the reliability

of MMPS is greater as compared to DTMS and FMS in the

presence of random/bursty sources.

In Fig. 7, we investigate the impact of optimum effec-

tive capacity C�
E on the random/bursty sources under QoS

Constraints. It is clearly observed that bursty sources (i.e.,

less PON ) have higher arrival rate in ON state because of

maintaining average arrival rate nondecreasing function as

defined (11). However, with the same departure rate, it is

challenging to keep throughput non-decreasing when QoS

constraints are imposed. Therefore, the higher arrival rate

is required to achieve C�
E when the source becomes bursty
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Fig. 7. Arrival rate vs PON for different C�
E

of Markovian sources.

(i.e.PON   1). It is also observed that due to more bursty

sources MMPS has a small rise in arrival rate required to

support given C�
E as compared to DTMS and FMS. Thus

MMPS is more stable and convenient for modelling bursty

or random source traffic.

VI. CONCLUSIONS

In this work, we conducted the detailed performance analy-

sis of effective transmission rate model to achieve adequate re-

liability and latency trade-off in single point-to-point machine

type devices. Effective transmission rate model is based on

effective capacity for continuous time markov chain model. We

characterized the upper and lower bounds of effective capacity

as a function of channel memory decay rate and defined

the optimum fixed transmission rate which maximizes the

throughput for Markovian source models. The results showed

that source, buffer, channel memory and transition rates have

major impact on the system performance when certain re-

liability and latency constraints are imposed. Furthermore,

increased source burstiness and stringent QoS requirement all

need an increase in SNR and decay rate of channel memory to

fulfill the requirement of reliable communication. Moreover, it

is observed that MMPS model is more stable for more bursty

sources when compared to FMS and DTMS in the presence

of QoS constraints.
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