
ar
X

iv
:1

90
4.

12
23

9v
2 

 [
ee

ss
.S

P]
  1

9 
Ju

n 
20

19

Ergodic H-S/MRC Mutual Information

Zeliang Ou, Chongjun Ouyang, Pei Yang, Lu Zhang and Hongwen Yang

Wireless Theories and Technologies Lab

Beijing University of Posts and Telecommunications

Beijing, China

{ouzeliang, DragonAim, yp, zhangl 96, yanghong}@bupt.edu.cn

Abstract—This paper studies the ergodic mutual information of
hybrid selection/maximal-ratio combining (H-S/MRC) diversity
system under BPSK/QPSK modulations. We consider a simple
single-input multiple-output (SIMO) channel, where a subset
of branches are selected and combined using maximal-ratio
combining (MRC) to maximize the instantaneous Signal to Noise
Ratio (SNR) at the receiver. For independent and identically
distributed (i.i.d.) Rayleigh flat fading, a general recursive ex-
pression is developed to estimate the ergodic input-output mutual
information of the whole system. Besides analytical derivations,
simulations are provided to demonstrate the feasibility and
validity of the derived results.

Index Terms—H-S/MRC, ergodic mutual information,
BPSK/QPSK

I. INTRODUCTION

The concept of hybrid selection/maximal-ratio combining

(H-S/MRC) diversity system was first proposed by Moe Z.

Win and Jack H. Winters in 1999 [1]. In this system, a

subset of antennas with the largest Signal to Noise Ratio

(SNR) are selected to receive messages at each instant, and

these branches are combined using MRC to maximize the in-

stantaneous SNR. Under single-input multiple-output (SIMO)

channels, this H-S/MRC technology is usually adopted to

alleviate the requirement on radio-frequency (RF) chains but

keep considerably high spectral efficiency.

Since 1999, many researches on the H-S/MRC system were

presented [2]–[9]. For example, Win et al., in [2] derived

the mean and variance of the received SNR in H-S/MRC

systems based on the novel virtual branch method. Later, this

method was further used to formulate closed-from expressions

of symbol error rate (SER) for H-S/MRC system under

Rayleigh fading [3]. After that, more formulas of SER were

continuously presented for different multi-path fading types

[4]–[6]. Besides the rich results on SER, theoretical results on

the input-output mutual information (MI) of H-S/MRC system

were also widely studied in the literature [7]–[9]. Molisch et

al., in [7], proposed an analytical expression of the ergodic MI

over Nakagami-m fading. Furthermore, the works in [8] and

[9] investigated the asymptotic ergodic MI when the receiver

was equipped with large-scale antenna array. Nevertheless,

nearly all these aforementioned works have assumed that

the input signals followed Gaussian distribution. Actually, a

significant situation which must be studied when considering

a practical communication system is the scenario when the

channel inputs are drawn from discrete constellations.

However, existing literature on the ergodic MI, under finite-

alphabet inputs, failed to formulate any closed-form expres-

sions for it. Motivated by this, this paper concentrates on

the ergodic mutual information under Rayleigh fading and

formulates a recursive expression for the ergodic mutual infor-

mation on the basis of the important derivation of H-S/MRC

system, ever developed in [3], and the recent development

in ergodic mutual information of single-input single-output

(SISO) channels under Nakagami-m fading. To the best of

our knowledge, this is the first time to propose a recursive

expression of ergodic MI for H-S/MRC systems under finite-

alphabet inputs. For the sake of brevity, assume that the

modulation mode is BPSK/QPSK.

The remaining parts of this manuscript are structured as

follows: Section II describes the system model. In Section III,

the recursive expression for the ergodic mutual information is

derived. Then, two special cases are analyzed in Section IV.

Finally, Section V concludes the paper.

II. SYSTEM MODEL

Consider a SIMO system, where the transmitter and receiver

are respectively equipped with 1 and Nr antennas. At the

receiver, the received signal vector is given by

y = hx+w, (1)

where x is the transmitted signal constrained by finite constel-

lation size, such as BPSK, and unit power; w∼CN (0, INr) is

the additive white Gaussian noise (AWGN). Suppose that the

channel suffers from independent and identically distributed

(i.i.d.) Rayleigh flat fading, in other words, the magnitude

of each element in the channel matrix h∈CNr×1 follows

i.i.d. Rayleigh distribution with the same probability density

function (PDF) as follows:

f(x) =
2x

γ̄
e

−x2

γ̄ , (2)

where γ̄ is the average per-antenna or per-branch SNR at the

receiver.

Now, assume that L (L ≤ Nr) out of Nr receive anten-

nas corresponding to the strongest L branches are activated.

Additionally, assume that the channel state information (CSI)

is only available at the receiver and maximal-ratio combining

is applied. Let h̃, ỹ and w̃ denote the channel matrix, the

received signal and the additive noise after antenna selection,
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thus ỹ = h̃x + w̃ holds. Moreover, the result obtained from

MRC can be written as [10]

ŷ =
h̃†

||h̃||
ỹ = ||h̃||x+ ŵ, (3)

in which ŵ = h̃
†

||h̃||w̃ ∼ CN (0, 1) and (·)† is the Hermitian

operator.

As stated before, the input signals, modulated by BPSK

or QPSK, follow non-Gaussian distribution, thus the classical

Shannon formula log2 (1 + SNR) can not be directly utilized

to measure the input-output mutual information of this H-

S/MRC system. Furthermore, it is sufficient to consider BPSK

since QPSK is the superposition of two orthogonal BPSK

modulations. Consequently, we assume that the transmitted

data stream are i.i.d. zero-mean binary symbols with equal

probabilities, and the input-output MI (in “nats/symbol”) in

terms of the SNR γ under BPSK modulation over AWGN

channels can be formulated as [11]

I (γ) = ln 2−
∫ +∞

−∞

1√
2π

e−
u2

2 ln
(
1 + e−2

√
γu−2γ

)
du. (4)

Additionally, the equation I (x; ŷ) = I (x; ỹ) holds, for the

MRC is a lossless operation i.e., ỹ can be generated from ŷ.

Define Γ = ||h̃||2 as the received SNR after antenna selection,

the ergodic input-output mutual information of BPSK in the

H-S/MRC system can be written as

C̄ =E [I (x; ỹ)] = E

[
I
(
||h̃||2

)]
=

∫ +∞

0

I(γ)FΓ(γ)dγ

= ln 2−
+∞∫

0

+∞∫

−∞

e−
u2

2√
2π

ln
(
1 + e−2

√
γu−2γ

)
FΓ(γ)dudγ,

(5)

where FΓ (·) denotes the PDF of Γ.

III. ERGODIC MUTUAL INFORMATION

In the following section, we will first investigate the expres-

sion for FΓ (·) and then derive the analytical expression for C̄.

According to the derivation in [3], the characteristic function

of FΓ (·) can be written as

ΨΓ(φ) =

(
1

1− φγ̄

)L Nr∏

n=L+1

(
1

1− φγ̄ L
n

)
. (6)

Moreover, Equ. (6) can be rewritten into the simple canonical

structure. On the basis of partial fraction decomposition (PFD),

the canonical expansion of

t(x) =

N∏

n=1

(
cn

cn + x

)µn

(7)

where the {−cn} are the N poles of t(x), each having

algebraic multiplicity µn, can be expressed as

t(x) =

N∑

n=1

µn∑

k=1

An,k

(
cn

cn + x

)k

. (8)

And the weighting coefficients of the canonical expansion are

given by

An,k =
1

ckn (µn − k)!
t(µn−k)
n (0) ,

n = 1, · · · , N, k = 1, · · · , µn

(9)

where t
(k)
n (0) represents the kth derivation of tn(x) =

xµnt (x− cn) evaluated at x = 0. According to Equ. (7) and

Equ. (8), the canonical structure of Equ. (6) can be expressed

as

ΨΓ(jω) =

L∑

k=1

A1,k

(
1

1− jωγ̄

)k

+

Nr−L+1∑

n=2

An,1

(
1

1− jωγ̄ L
L+n−1

)
.

(10)

Under this circumstance, the coefficients {cn} and {µn} in

An,k are given by

µn =

{
L n = 1

1 n = 2, · · · , Nr − L+ 1

cn =

{
−1/γ̄ n = 1
−(L+n−1)

Lγ̄
n = 2, · · · , Nr − L+ 1.

(11)

To obtain FΓ (·), it is necessary to apply Fourier transform into

ΨΓ(jω), thus the PDF of the received SNR can be written as

FΓ (γ) =
L∑

k=1

A1,k
γk−1

Γ (k) γ̄k
e−

γ
γ̄

+

Nr−L+1∑

n=2

An,1
L+ n− 1

γ̄L
e−

γ
γ̄L/(L+n−1) .

(12)

As a result, the ergodic mutual information can be summarized

as

C̄ =

L∑

k=1

A1,k

∫ +∞

0

I (γ)
γk−1

Γ (k) γ̄k
e−

γ
γ̄ dγ

︸ ︷︷ ︸
Λ1

+

Nr−L+1∑

n=2

An,1

∫ +∞

0

I (γ)
L+ n− 1

γ̄L
e−

γ(L+n−1)
γ̄L dγ

︸ ︷︷ ︸
Λ2

.

(13)

Notably, in Equ. (13), Λ1 and Λ2 can be treated as the ergodic

mutual information over SISO channels under Nakagami-

m and Rayleigh fading, respectively. Meanwhile, Rayleigh

fading can be regarded as Nakagami-1 fading. Consequently,

the ergodic mutual information of H-S/MRC systems under

Rayleigh fading can be equivalent to the superposition of

the mutual information of SISO systems under Nakagami-m
fading. To this end, it is necessary to derive the ergodic mutual

information of SISO systems under Nakagami-m fading. How-

ever, there is no closed-form solution to the ergodic mutual

information in Nakagami-m fading due to the complicated

form of Equ. (4).



Fortunately, a recursive expression for the ergodic

Nakagami-m SISO mutual information can be obtained even

though the closed-form expression is hard to figure out, that

is [12]

IB (m, γ̄) = ln 2−F(m,m, γ̄), (14)

in which γ̄ denotes the average per-antenna SNR and

F(m,n, γ̄) =
2H1m

m

γ̄mΓ(m)
+

(n− 1) γ̄

m
F(m,n− 1, γ̄)

− γ̄

2m

∞∑

k=0

(−1)kBk(m,n, γ̄),

(15)

where Bk(m,n, γ̄) satisfies the following relationship

Bk(m,n, γ̄)

(
1− (2k + 1)2γ̄

2(m+ 0.5γ̄)

)

=
H2m

m

γ̄mΓ(m)
+

(n− 1) γ̄

m+ 0.5γ̄
Bk(m,n− 1, γ̄)

−
√
2(2k + 1)mm(2n− 3)!!

2n−1γ̄m−n−0.5Γ(m)(m+ 0.5γ̄)n+0.5
,

(16)

and

H1 =

{
γ̄ ln 2
2m , n = 1

0 n 6= 1
, (17)

H2 =

{
2γ̄

m+0.5γ̄ , n = 1

0 n 6= 1
. (18)

Besides, F (m, 0, γ̄) = Bk (m, 0, γ̄) = 0 for k = 0. Therefore,

ergodic H-S/MRC mutual information can be also represented

into a recursive form as follows:

C̄ =

L∑

k=1

A1,kIB (k, kγ̄) +

Nr−L+1∑

n=2

An,1IB
(
1,

γ̄L

L+ n− 1

)
.

(19)

IV. SPECIAL CASES

A. L = 1

When L = 1, the H-S/MRC system degrades into the system

with selection combination (SC). Under this circumstance, the

ergodic mutual information is formulated as:

C̄ =

Nr∑

n=1

An,1IB (1, γ̄/n) =

Nr∑

n=1

An,1 [ln 2−F (1, 1, γ̄/n)] .

(20)

On the basis of Equ. (9), the coefficients are derived as

An,1 =

(
n−1∏

i=1

ci
ci − cn

)(
Nr∏

i=n+1

ci
ci − cn

)

=

(
n−1∏

i=1

i

i− n

)(
Nr∏

i=n+1

i

i− n

)
.

(21)

Moreover, by Equ. (15), we have F (1, 1, γ̄) = ln 2 −
γ̄

2

∑∞
k=0(−1)kBk(1, 1, γ̄). Next, let us turn to Bk(1, 1, γ̄).

On the basis of Equ. (16), Bk (m, 1, γ̄) can be simplified as

follows:

Bk (m, 1, γ̄) =

√
4γ̄

2m+ γ̄

mm

γ̄mΓ (m)

1

k + Tm (γ̄)
, (22)

and

Tm (γ̄) =
1

2

(
1 +

√
1 +

2m

γ̄

)
. (23)

Therefore, Bk (·, ·, ·) terms, when m = 1 and n = 1, are given

by

Bk(1, 1, γ̄) =

√
4γ̄

2 + γ̄

1

γ̄

1

k + T1 (γ̄)
. (24)

In summary, the final result for the ergodic mutual information

of BPSK can be derived as

C̄ =

Nr∑

n=1

An,1

√
γ̄/n

2 + γ̄/n

[
+∞∑

k=0

(−1)
k

k + T1 (γ̄/n)

]
. (25)

To accelerate the convergence of the series in Equ. (25),

the following formula of β−function can be utilized, which

satisfies the following expression [13, Equ. (8.372)]:

β(x)
(1)
=

+∞∑

k=0

(−1)k

x+ k

(2)
=

+∞∑

k=0

2−(k+1)k!

x(x + 1)(x+ 2) · · · (x+ k)
.

(26)

In Equ. (26), (1) is the definition formula and (2) is the expan-

sion. Due to the term 2−(k+1), the expansion will decreases

exponentially, causing the fast convergence speed in the final

result. By Equ. (26), Equ. (25) becomes

C̄ =

Nr∑

n=1

An,1

√
γ̄/n

2 + γ̄/n

×
[
+∞∑

k=0

2−(k+1)k!

T1

(
γ̄
n

)
(T1

(
γ̄
n

)
+ 1) · · · (T1

(
γ̄
n

)
+ k)

] (27)

B. L = 2

For L = 2, the ergodic H-S/MRC mutual information can

be formulated as

C̄ =A1,2IB (2, 2γ̄) +

Nr−1∑

n=1

An,1IB (1, 2γ̄/(n+ 1))

=A1,2 [ln 2−F (2, 2, 2γ̄)]

+

Nr−1∑

n=1

An,1

[
ln 2−F

(
1, 1,

2γ̄

n+ 1

)]
.

(28)

On the basis of Equ. (9), the coefficients are derived as

A1,2 =

Nr−1∏

i=2

(
i + 1

i − 1

)
, (29a)

A1,1 = −Nr (Nr − 1)

Nr−1∑

i=2

1

i− 1
, (29b)

An,1 =

(
2

1− n

)2
(

n−1∏

i=2

i+ 1

i− n

)(
Nr−1∏

i=n+1

i+ 1

i− n

)
(n > 1) .

(29c)



Since F (1, 1, γ̄) has been solved in the last subsection, it is

sufficient to calculate F (2, 2, γ̄).

F (2, 1, γ̄) =
2 ln 2

γ̄
− γ̄

4

+∞∑

k=0

Bk (2, 1, γ̄) , (30a)

F (2, 2, γ̄) =
γ̄

2
F (2, 1, γ̄)− γ̄

4

+∞∑

k=0

Bk (2, 2, γ̄) . (30b)

Furthermore,

Bk (2, 1, γ̄) =
8

γ̄2

√
4γ̄

4 + γ̄

1

k + T2 (γ̄)
, (31a)

Bk (2, 2, γ̄) =
8γ̄−0.5

(4 + γ̄)
1.5

1

k + T2 (γ̄)
+

4γ̄−1

4 + γ̄

1

(k + T2 (γ̄))
2 .

(31b)

Substituting Equ. (30) and Equ. (31) into Equ. (28), the ex-

pression for the ergodic mutual information can be developed

after some basic mathematical manipulations, that is

C̄ = A1,2

(
1

4 + 2γ̄

+∞∑

k=0

(−1)
k

[k + T2 (2γ̄)]
2

)

+A1,2

(√
γ̄

2 + γ̄

3 + γ̄

2 + γ̄

+∞∑

k=0

(−1)k

k + T2 (2γ̄)

)
+

Nr−1∑

n=1

An,1

√
2γ̄/(n+ 1)

2 + 2γ̄/(n+ 1)

[
+∞∑

k=0

(−1)k

k + T1 (2γ̄/(n+ 1))

]
.

(32)

Similar to Equ. (27), to accelerate the convergence, the β-

function can be continuously used, the final result is shown in

Equ. (33). Notably, Ξ1 is acquired through the derivative of

the series expansion in Equ. (26), which is

d

dx

(
n∏

i=1

(
1

x+ ai

))
=

−1
n∏

i=1

(x+ ai)

n∑

i=1

(
1

x+ ai

)
.

(34)

Moreover, Ξ2 and Ξ3 can be easily derived by expanding β-

function.

V. SIMULATION

In this part, numerical results will be provided to examine

the feasibility and validity of the former derivations. And it

should be noticed that all the following experiments are based

on BPSK modulation. Besides, the ergodic mutual information

in the simulation results is measured by “bits/symbol”.

Fig. 1 compares the simulated and analytical ergodic mutual

information in terms of γ̄ for selected values of Nr when

L = 1. The simulated results are all obtained on the basis

of Monte-Carlo experiments and the analytical values are

calculated by Equ. (27). As explained earlier, the expansion

of the β-function in Equ. (27) converges much faster than the

definition formula, thus it is enough to sum up the first K
terms in the expansion for highly accurate computation of the

mutual information. In our simulations, K is fixed to be 10.

Most importantly, it can be observed that the analytical results

match well with the simulations for the curves and circles

almost coincided with each other, which verifies the validity

of the previous deduction. Another important observation is

that the largest ergodic mutual information of BPSK is limited

by 1 bits/symbol due to the discrete inputs, which is totally

different from that of Gaussian inputs. Fig. 2 provides the

numerical results of L = 2. The analytical mutual information

is calculated by Equ. (33). As can be seen from this graph,

the analytical values also fit well with the simulated values,

which again supports the former derivations.

Next, let us turn to the convergence rate of the series

expansion in Equ. (27) and Equ. (33). As stated before, the

expansion of β-function in Equ. (26) converges much faster

than the definition formula. To further examine the conver-

gence of the expansion, Fig. 3 illustrates the change trend of

the β-function with the number of summation terms, K , when

x = 1. As it shows, the expansion, denoted by dashed line, will

converge to be constant when K = 6. In contrast, the definition

based result, denoted by solid lines, has not converged even

though K = 100. Taken together, it makes sense to calculate

the mutual information with the expansion. Furthermore, Fig.

4 plots the change of ergodic mutual information as a function

of K for different antenna deployment when γ̄ = 0 dB. It is

clear that the series expansions in Equ. (27) and Equ. (33) can

approximate the real results well, thus it is accurate enough

to utilize the summation of the first K terms to estimate the

exact values.

VI. CONCLUSION

This paper investigates the ergoidc mutual information of

H-S/MRC under BPSK/QPSK modulations and a general

recursive formula is developed to analytically calculate the

ergodic mutual information. Furthermore, based on this gen-

eral formula, series expressions, with high precision, for the

mutual information can be formulated once L and Nr are

fixed. Numerical results show that the series expansion has a

fast-convergence rate and provides a simple and numerically

efficient way to calculate the ergodic mutual information of

H-S/MRC systems.
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C̄ =A1,2




1

4 + 2γ̄

+∞∑

k=0

2−(k+1)k!
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Ξ1
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√
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2 + γ̄
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2 + γ̄

+∞∑

k=0
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Ξ2
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√
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