
Evaluation of Age Control Protocol (ACP) and
ACP+ on ESP32

Umut Guloglu∗, Sajjad Baghaee†, Elif Uysal‡
∗ † ‡ Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey

∗umut.guloglu@metu.edu.tr, †sajjad@baghaee.com, ‡uelif@metu.edu.tr

Abstract—Age Control Protocol (ACP) and its enhanced
version, ACP+, are recently proposed transport layer protocols
to control Age of Information of data flows. This study presents
an experimental evaluation of ACP and ACP+ on the ESP32
microcontroller, a currently popular IoT device. We identify
several issues related to the implementation of these protocols on
this platform and in general on short-haul, low-delay connections.
We propose solutions to overcome these issues in the form of
simple modifications to ACP+, and compare the performance of
the resulting modified ACP+ with that of the original protocols
on a small-delay local wireless IoT connection.

Keywords—Age of Information (AoI), Experimental AoI, ACP,
ACP+, Internet of Things, IoT, ESP32

I. INTRODUCTION

In the IEEE special report on Internet of Things issued
in March 2014, the term of Internet of Things (IoT) was
described as: “A network of items — each embedded with
sensors — which are connected to the Internet.” IoT has
applications in numerous domains such as intelligent infras-
tructures, smart healthcare, smart agriculture, and many more.

Remote monitoring, control and automation applications of
IoT in areas including, but not limited to, the above domains,
have gained importance in recent years.The freshness of infor-
mation updates, such as those involving sensor measurements,
is often important to decision-making in computing, accessing,
and storing information. For instance, in tracking an object, the
latest true and fresh location information of the object enables
remote monitoring to estimate the last position accurately [1].

Age of Information (AoI) [2] is a metric characterizing
the freshness of an information flow. It is defined as the
time that has elapsed since the newest data belonging to this
flow, currently available at the destination, was generated at
the source. As it is directly related to the freshness of status
update based flows, age is gaining popularity as a new Key
Performance Indicator (KPI) for machine-type communication
systems such as IoT and other status update type applications.
The analysis of AoI in queuing models [3], [4] revealed that
this metric behaves quite differently from delay. For example,
under First-Come-First-Served (FCFS) service, age exhibits
non-monotone behaviour with load, i.e., as the load (arrival
rate) is increased, age first decreases and then increases.
This naturally calls for an optimization, where the packet
generation rate can be optimized to keep the load at a point
that minimizes age, and more importantly, service policies that
favor newer packets. When possible, though, more freedom
to this optimization is provided by controlling the packet
generation process to respond to the flow’s instantaneous age.

Age-optimal generation of update packets for a single-hop
network was investigated in [5], [6], while [7] characterized
AoI in multiple server systems. A majority of the aforemen-
tioned studies focused on time average age. Often, in IoT
systems, peak values of age, or age at certain decision instants
may be more meaningful as a determinant of performance. To
quantify the freshness decision epochs when the freshness of
updates is only important at some decision epochs, age upon
decisions (AuD) was introduced in [8]. While the theoretical
models developed in the literature capture an abstraction of
the transport layer to a certain degree, such models and the
resulting optimizations require knowledge of network delay
statistics, which are not often available in practice.

Recently, a number of efforts have considered AoI in
real-life networks [9]. An open-source network emulator was
used to investigate the AoI in wireless access in [10]. A
similar study in [11] combined emulation and real-world AoI
measurement experiments, reporting AoI measurements for an
end-to-end data flows traversing wireless/wired links, affected
by various medium access, transport, and network layer sce-
narios. Effect of synchronization error on AoI measurement
and a solution for calculating an estimate of average AoI
without any synchronization requirements has been shown in
[12]. Authors in [13] utilized several transport protocols such
as TCP, UDP, and WebSocket to measure AoI on wired and
wireless links. Their study includes practical issues such as
synchronization and selection of hardware along with transport
protocol and their effects on AoI measurements.

Efforts to carry the intuition from theory to practice has
included dynamically adaptive approaches such as those that
employ Machine Learning methods to age optimization in
a network [14]. Modifications have been proposed in the
transport and application layers to control congestion with an
age objective, to keep the “pipe just full, but not fuller” as
suggested in [15]. Recent protocols in that vein include [16]–
[18]. Shreedhar et al. [18] have introduced the Age Control
Protocol (ACP) for multi-hop IP networks, enabling timely
delivery of updates by adapting the sending rate. They also
compared the performance of ACP with the Lazy Policy
in their study. The aim of the Lazy policy is to transmit
data with an interval around Round Trip Time (RTT). An
improved version of ACP, named ACP+, was presented in [19].
According to [19], ACP+ has superior performance for timely
delivery of updates over fat pipes and long paths.

The goal of this paper is to report experimental test results
of ACP and ACP+ over shorter paths, and low rates, in an IoT

ar
X

iv
:2

10
8.

03
47

6v
1

 [
cs

.N
I]

 7
 A

ug
 2

02
1

Fig. 1: A status update communication setup.

t1 t2 t3 t4 tn tn+1t'1 t'2 t'3 t'4 t'n t'n+1

Q1
Q2

Q3
Q4

Qn

Δ(t)

Δ0

Δ(t'1)

Δ(t'2)

Δ(t'3)
Δ(t'4) Δ(t'n)

Δ(t'n+1)

t
0

Tinit Tfinal

TΔ

t'0 t1t0

Fig. 2: Sample path of the age process: ∆(t)

scenario, and to suggest how the protocol may be modified for
this scenario. The outline of the rest of the paper is as follows.
Section II provides the definition of age and an expression
for the computation of its time average on a given packet
trace. Descriptions of ACP and ACP+ and their distinctions
are presented in Section III. Section IV describes the testbed
used in our study. Section V provides a discussion related
to the issues and solutions of using ACP and ACP+ on the
ESP32 microcontroller. Results and conclusions are presented
in Section VI and VII, respectively.

II. AOI: DEFINITION AND COMPUTATION

Consider a status update scenario (Fig.1), where a process
running at a destination node needs samples (status updates)
from a remote source. After the generation of an update at
timestamp U(t) at the source, that update will start aging.
When the receiver is not fed with fresh updates, the process at
the receiver may suffer due to stale data. Once a fresh update
is received, the age on the monitoring side is updated with
the age of the recently arrived update. The status age, ∆(t),
is calculated as ∆(t) = t − U(t), where t is the time of the
newest update available at the monitoring side.

Based on this definition, age is a continuous-time
continuous-valued process with sample paths that follow a
sawtooth pattern (Fig. 2). Without loss of generality, let us
assumed that the observation begins at t = 0 and update
generation starts at t > 0 with empty transmitter and receiver
queues. The initial age is ∆(0) = ∆0 ≥ 0. The source
generates status updates at t0, t1, · · · , tn, which reach the
monitor at t′0, t′1, · · · , t′n.

The area under the age graph within a time window of
length T∆ = Tfinal − Tinit, (Fig. 2) normalized by T∆

provides the time average age within this window:

∆ =
1

T∆

∫ Tfinal

Tinit

∆(t)dt =

∑n
i=1Qi
T∆

(1)

In practice, consider a packet trace including n updates
and age graph as shown in Fig. 2. The area under this graph
is made up of n trapezoidal areas, where Q1, Qi for 2 ≤ i ≤
n− 1 and Qn, are calculated as (2),(3) and (4).

Q1 =
1

2
(Tinit + t′1 − 2t0)(t′1 − Tinit) (2)

TABLE I: Decision algorithm of ACP

δk bk ACP targets to:
> 0 > 0 Decrease the backlog
> 0 < 0 Increase the backlog
< 0 > 0 Increase the backlog
< 0 < 0 Decrease the backlog

Qi =
1

2
(t′i + t′i−1 − 2ti−1)(t′i − t′i−1) (3)

Qn =
1

2
(Tfinal + t′n − 2tn)(Tfinal − t′n) (4)

III. AGE CONTROL PROTOCOL (ACP) AND ACP+
ACP and ACP+ are transport layer protocols designed to

minimize the age of information at the monitor (receiver) by
altering the updating (sending) rate of the source (sender)
according to the estimated network conditions. In this section,
we describe ACP and the differences between ACP and ACP+.

ACP is built on the User Datagram Protocol (UDP), and
operates on each end host of a session and consists of two
phases: the initialization phase, and the “epochs” phase. In
the initialization phase, the source sends a certain number
of packets to the monitor, waits for the ACK packets, and
computes a Round-Trip Time (RTT) estimate based on these.
The purpose of this phase is to configure the initial update
rate of the source. This phase is followed by the epochs
phase, divided into periods called epochs. In each epoch,
labeled with k, the average AoI (∆k) and average backlog
(Bk) (average number of packets sent to the monitor, but not
yet acknowledged) are computed. ACP decides to increase or
decrease the backlog according to changes in ∆k and Bk. The
decision algorithm of the protocol is shown in Table I, where
δk is defined as ∆k −∆k−1 and bk is defined as Bk −Bk−1.

When an ACK packet arrives at the source, the exponen-
tially weighted moving average (EWMA) of RTT (RTT), and
the EWMA of inter-ACK arrival times (Z) are calculated. ACP
uses these to infer network conditions and set an appropriate
update rate (λk), which will be used during the next epoch. By
changing λk, the protocol can alter the backlog and thereby
control the age. For that purpose, ACP chooses an action and
aims to change the average backlog by b∗k+1 packets according
to changes in Bk and ∆k, where b∗k+1 is the desired backlog
change. The computation of the update rate is given by (5).

At each epoch, one of the following three actions, de-
scribed in Table II, are chosen: “INC”, “DEC”, and “MDEC”.
Each action results in a certain corresponding b∗k+1. The value
of step-size parameter κ, see Table II, is constant during packet
transmission. It is crucial for ACP as the actions “INC” and
“DEC” aim to change the average backlog by κ packets. ACP
uses the “MDEC” action to obtain a multiplicative decrease
when “DEC” does not decrease Bk sufficiently fast.

λk =
1

Z
+

b∗k+1

min(RTT ,Z)
(5)

ACP also assigns the length of each epoch (T) using (6) at
epoch boundaries. The epoch duration must be short enough to
respond to the changes promptly and long enough to provide
an accurate estimate of network conditions.

TABLE II: Table of actions and corresponding b∗k+1 values

The Action b∗k+1

Increase (INC) κ
Decrease (DEC) −κ

Multiplicative Decrease (MDEC) −(1− 2−γ)Bk

T = 10×min(RTT ,Z) (6)

ACP+, an enhanced Age Control Protocol, is based on
ACP, with several modifications:

• Computation of λk: While ACP uses (5) to update
λk, ACP+ uses a slightly altered equation where
min(RTT ,Z) is replaced by RTT .

• Setting κ = 1 and clamping λk: The other sub-
stantial difference is that κ is set to 1 in ACP+, and
λk is clamped in order not to alter the update rate
dramatically. In [19] authors specified the clamping
boundaries as 1.25 × λk−1 (Max update rate) and
0.75× λk−1 (Min update rate) in which λk−1 stands
for the update rate of the previous epoch.

• Modification in Eq. (6): ACP+ uses (7) to set T . This
is obtained by replacing min(RTT ,Z) in (6) by 1

λk
.

This roughly corresponds to ACP+ targeting to send
about 10 packets over an epoch duration.

T =
10

λk
(7)

IV. THE TESTBED

Our motivation is to determine whether ACP and ACP+,
which were successfully tested on long-haul, high rate con-
nections, also successfully minimize the age of information
in small-delay real-world IoT networks, and if not, explore
whether certain modifications can be proposed to better cater
for these settings. For this purpose, we designed a test setup
(Fig. 3), which contains two ESP32 low-power systems with
on chip microcontrollers and integrated Wi-Fi, and a cellular
phone used as a Hotspot. In our setup, one of the ESP32
devices is assigned as a source (TX), whereas the other is
appointed as a monitor (RX). The transmitter node sends
packets using UDP. By listening to the serial port of TX, data
logging in each epoch is done. It follows by visualizing and
analyzing the results via MATLAB software.

In this experiment, ACP/ACP+ are implemented in the
transmitter node. The transmitter sends packets, and the re-
ceiver reflects the incoming packet back to the sender in place
of an ACK. The transmitter node calculates all necessary
information related to ACP/ACP+ and decides the action
which must be taken. The receiver node acts as an echo server
in this experiment.

We primarily compared ACP with ACP+ and the Lazy
Policy in [18]. The Lazy Policy essentially tries to keep the
sending period around RTT, hence the update rate is set to

1
RTT

at the end of each epoch. This policy tries to keep the
backlog around 1 following the guidelines given in [15], and
was used as a simple benchmark following [18].

WiFi
Hotspot

Tx Rx

UDP UDP

RTT Starts

RTT Ends

Fig. 3: The schematic of the testbed

A set of 5 different experiments were carried out, running
Lazy, ACP+, and ACP side by side. In each experiment, there
were 5 runs for each of the 8 different κ values. In each run,
the transmitter sent 10.000 packets to the receiver. Each packet
had a 4-byte payload.

In the second set of experiments, we focused on improving
ACP+ for small-delay networks and testing this modified
(improved) version. The original ACP+ clamps λk if it is
bigger than 1.25× λk−1 or smaller than 0.75× λk−1. During
the experiments, we noticed that ACP+ clamps approximately
81% of the designated λk values and realized the boundaries
of clamping are far from λk−1, which makes ACP+ a greedy
protocol for small-delay networks. Therefore, we modified
ACP+ by altering clamping boundaries as 1.1 × λk−1 and
0.9×λk−1 and ran the test 5 times for the original and modified
ACP+ versions with two different epoch length scenarios.
These scenarios are detailed in Section V. We also ran ACP
with κ value giving the best result in terms of AoI to compare
with the new ACP+ version. The estimated average ∆k values
under the original and modified ACP+ versions are reported
in Table III. Lastly, we traced the age over time for ACP+ and
Lazy Policy and tested whether the feedback mechanism, see
Sec. V, is successful in peak age violation cases.

V. DISCUSSIONS

Several issues that we have recognized to possibly affect
the success of the protocols under study will be discussed
next. This will be followed by suggested solutions. Some of
the issues are due to the particular device hardware (which we
believe will be typical of other IoT devices), while others are
due to the parameter settings of ACP, or ACP+.
A. Issues
• Issue 1: Unnecessary Queuing Delay in ESP32’s
While sending and retrieving the packets, it is noticed that

the measured RTT values are larger than the expected ones
on occasion. This issue has been encountered in independent
work [13], which suggested an underlying buffer management
error for its cause. It is observed that ESP32 starts to process
the incoming packet after several packets arrive at the buffer.

• Issue 2: Error in Average Age Calculation
The average age in each epoch is calculated by dividing

the area under the age graph by the duration of the epoch.
However, there is a fringe effect due to the time interval
between the arriving time of the last received data and the
ending, or starting, time of the epochs, i.e., Q1 and Qn in
Fig. 2. This results in a small overestimation of average age,
which may incorrectly alter the chosen action of ACP and
ACP+ in the case of small epoch durations.

• Issue 3: Failure of The System Due to Issue 1
Assume Issue 1 occurs, and packets incur a long delay

in the queue. In this case, RTT and Z increase, which

triggers the system to decrease λk. Normally, the “INC”
action increases Bk by κ packets according to (5), if the
calculated RTT and Z are true values. However, in our case,
ACP estimates the network conditions like an intercontinental
network and sends data with a slow rate. If the problem
continues, it always overestimates RTT and Z, and cannot
increase the update rate to the optimal levels since it is the
right move according to the algorithm. Thus, it enters a loop
that is tough to exit.
B. Proposed Solutions
• Solution 1: Increasing the Length of the Epochs
Increasing the length of the epochs is a solution for Issue

1 and Issue 2. In [18], [19], the epoch length is calculated
by (6) and (7) for ACP and ACP+, respectively. This can
be called T10 case. In our design, we defined the length as
30×min(RTT ,Z) for ACP and 30

λk
for ACP+ by aiming to

increase the length. This case is named T30. Except in the
test to compare these two cases, the T30 case is used in the
rest of this study.

Suppose Issue 1 is occasionally encountered. In that case,
an increase in the age and thereby an abnormal increase in
the area under the AoI curve is expected. By increasing the
epoch length sufficiently, the effect of this temporary increase
may be mitigated. Of course, as the length is increased, the
system reacts more slowly than the one with a shorter length
case to sudden packet traffic variations and RTT changes. We
tested the outcomes of increasing the epoch length. According
to the results (Section VI), it is deduced that even if this is
a considerable issue in dynamic networks, it is beneficial for
small-delay networks like the one under consideration.

• Solution 2: Adding a Feedback Mechanism
This is a solution for Issue 3, and it can only be used in

one-hop networks with one client and one server. It is designed
for test purposes. The update rate must be increased to exit
from the loop caused by Issue 3. If ACP increases the update
rate, the buffer is filled in a shorter time. Thus, the difference
between the measured age value, which is not correct due to
Issue 1, and the actual age value decreases. For this purpose,
we designed a feedback algorithm that will be active when
the age exceeds a predefined peak age threshold value. In
our experiments, 200 ms is set as the peak age threshold. In
this algorithm, the minimum value of RTT of each epoch is
calculated. If the peak age is violated, the feedback mechanism
is activated, and the new RTT is calculated by (8).

RTT =
RTT + ζ ×RTTmin,epoch

ζ + 1
(8)

ζ in (8) is set to 0 initially. After each epoch, the mech-
anism checks whether there exists a peak age violation or
not. If the peak age is violated, ζ is increased by 1, and it
becomes 0 otherwise. In other words, if the violation occurs
consecutively, the aggressiveness of the mechanism increases.
As a result, RTT decreases considerably, which leads to an
increase in the update rate. The pseudocode of the mechanism
is shown in Algorithm 1.

This feedback mechanism aims to exit from the loop and
return to the optimum update rate’s vicinity. As explained

Algorithm 1 Feedback Mechanism for Test Measurements

Input: ∆k, T and ζ ← 0
while true do

if ∆k > Peak Age Threshold then
ζ = ζ + 1

else
ζ ← 0

update RTT and wait T

previously, it is designed for peer-to-peer communications over
a one-hop system. If there is more than one source or more
than one monitor, or another source sending data using the
same access point, it is not possible to know whether Issue 1
or the traffic congestion is the reason for the violation.

VI. RESULTS

To examine the effect of the step-size parameter (κ) on AoI
in ACP, a series of experiments have been conducted. Fig. 4a
and Fig. 4b compare ACP with different κ values, original
ACP+ and Lazy Policy in terms of empirical ∆k (average
age over an epoch). Experimentally, ACP with κ = 0.1 is the
best from the point of average ∆k, see Fig. 4a, and median
∆k, see Fig. 4b. Smaller κ values lead to higher age as ACP
cannot react in time. On the other hand, larger values of κ also
lead to higher age because ACP becomes over-greedy, causing
redundant λk oscillations. The cumulative distribution function
(CDF) of ∆k under ACP protocol is depicted in Fig. 5. The
reason for the flatter curves in the κ = {0.5, 1, 2} cases is
the unnecessary oscillations as stated before. As a result, it
appears that κ must be chosen with care to obtain optimal
results. However, as noted in [19], κ is a parameter difficult
to set in general. ACP with the same κ value might work
differently in different time intervals and networks. The main
strength of ACP+ is the avoidance of the choice of κ.

Fig. 6 shows the estimated ∆k values versus time graph
for original ACP+, modified ACP+ and Lazy Policy. As seen
in the figure, there are several peaks in both versions of ACP+.
We notice that only the first peak of the original ACP+, blue
line in Fig. 6, occurs due to Issue 1. The second and third
peaks exist since λk is increased too much (see Fig. 7), i.e.,
the clamping boundaries are too far. The reason for the peak
in the modified one is over-increased λk as well, but the age
is relatively lower than the original ACP+. Modified ACP+
generally gives better results with low variance compared to
the original ACP+ and Lazy Policy. The empirical variances of
∆k are calculated as 13.38, 20.93, and 3.24 for Lazy Policy,
original ACP+, and modified ACP+, respectively. Top-right
plot in Fig. 6 is a magnified part of the trace from t = 35.6
sec to t = 40.1 sec.

Fig. 8a and Fig. 8b demonstrate the CDFs of ∆k and RTT
for Lazy Policy, ACP with κ = 0.1, and both versions of
ACP+, respectively. There is an error margin in RTT because
of Issue 1 explained in Sec. V, the temperature of ESP32’s,
or other interfering signals. It is observed that the system did
not encounter Issue 1 in ACP experiments with κ = 0.1,
but this problem is observed in ACP+ cases. Even though
these problems may affect the results, it is expected that the
differences in measured RTT ’s between the protocols mainly

10-2 10-1 100
0

10

20

30

40

50

60 Lazy

ACP

ACP+

(a) The empirical average ∆k results

10-2 10-1 100
0

5

10

15

20

25

30

35

40

45

Lazy

ACP

ACP+

(b) The empirical median ∆k results

Fig. 4: The empirical ∆k results for Lazy Policy, ACP with
different κ values and ACP+

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5: The empirical AoI CDFs for ACP with different κ

occur due to queueing delays in the hotspot and ESP32’s. It
can clearly be seen that modified ACP+ gives the best results
in terms of AoI, whereas ACP gives the best results in terms
of RTT . One can deduce that modified ACP+ succeeded in
minimizing AoI even if RTT is higher than ACP.

We have conducted another test to measure the success of
the designed feedback. Fig. 9 shows the trace of AoI and RTT
values of ACP with κ = 0.5. We set the peak age threshold as
200 ms. When t = tv , RTT is equal to 201.4 and ∆k is equal
to 262.6. In other words, there is a peak age violation that
triggers the feedback mechanism. After feedback activation,

20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

Original ACP+

Lazy Policy

Modified ACP+

36 37 38 39 40
5

10

15

20

Fig. 6: The trace of Lazy Policy and both versions of ACP+

20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

50

100

150

200

250

300

AoI

Update Rate

Fig. 7: AoI and update rate variations for original ACP+

the decrease of RTT is observed. It decreases to 165.02 ms
and triggers an increase on λk and thereby decreasing ∆k.

As stated in Solution 1, we multiplied min(RTT ,Z) by
30 for ACP and 1

λk
by 30 for ACP+ to designate T so far, i.e.,

T30 case is used. In T30 case, we observe that modified ACP+
outperforms the original one in terms of average AoI (see
Table 3). Lastly, we examine the effects of T over the age of
information. One can see that the average age increases when
(7) is used to determine the length, which stands for the T10

case for ACP+. The reason is that ACP+ updates λk frequently
and creates redundant oscillations in the T10 case. Even
though original ACP+ might have higher resiliency to network
condition alterations, modified ACP+ offers prospering results
for small-delay networks in both T10 and T30 cases.

VII. CONCLUSIONS

This study evaluated ACP and ACP+ [18] on IoT devices,
specifically ESP32’s. We have reported several issues related
to applying ACP and ACP+ in this setting and suggested
solutions to solve these issues. A feedback mechanism was
designed to exit from the loop which ACP and ACP+ enter
due to ESP32’s buffer management error. AoI measurements
in real-world networks under ACP for different κ values, the

TABLE III: The estimated average AoI values

Original ACP+ Modified ACP+
T10 9.15 ms 8.93 ms
T30 9.01 ms 7.54 ms

6 8 10 12 14 16 18

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lazy Policy

ACP

Original ACP+

Modified ACP+

(a) The empirical AoI CDFs

4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lazy Policy

ACP

Original ACP+

Modified ACP+

(b) The empirical RTT CDFs

Fig. 8: The empirical CDFs for Lazy Policy, ACP with
κ = 0.1 and two versions of ACP+

Fig. 9: Feedback Test

Lazy Policy in [18] and ACP+ have been conducted. Results
indicate that the original ACP+ is too greedy for small-delay
networks. A modified version of ACP+ was designed to solve
this problem of the original ACP+, and results show that
modified ACP+ gives superior results. As future work, we plan
to make clamping boundaries RTT-dependent such that ACP+
become compatible and deployable for every IoT device in
every network.

VIII. ACKNOWLEDGEMENTS

This study has been supported by TUBITAK grants
117E215 and 119C028. We also would like to thank Tanya
Shreedhar for discussions.

REFERENCES

[1] S. Baghaee, S. Z. Gurbuz, and E. Uysal-Biyikoglu, “Implementation
of an enhanced target localization and identification algorithm on a
magnetic wsn,” IEICE Transactions on Communications, vol. E98.B,
no. 10, pp. 2022–2032, 2015.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, March 2012, pp.
2731–2735.

[3] S. K. Kaul, R. D. Yates, and M. Gruteser, “Status updates through
queues,” in 2012 46th Annual Conference on Information Sciences and
Systems (CISS), March 2012, pp. 1–6.

[4] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in 2016 IEEE International Symposium on Information Theory (ISIT),
July 2016, pp. 2574–2578.

[5] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in 2015 IEEE International Symposium on Information Theory
(ISIT), June 2015, pp. 3008–3012.

[6] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of infor-
mation under energy replenishment constraints,” in 2015 Information
Theory and Applications Workshop (ITA), Feb 2015, pp. 25–31.

[7] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
2016 IEEE International Symposium on Information Theory (ISIT), July
2016, pp. 2569–2573.

[8] Y. Dong, Z. Chen, S. Liu, P. Fan, and K. B. Letaief, “Age-upon-
decisions minimizing scheduling in internet of things: To be random
or to be deterministic?” IEEE Internet of Things Journal, vol. 7, no. 2,
pp. 1081–1097, 2020.

[9] E. Uysal, O. Kaya, S. Baghaee, and H. B. Beytur, “Age of information
in practice,” CoRR, vol. abs/2106.02491, 2021. [Online]. Available:
https://arxiv.org/abs/2106.02491

[10] C. Kam, S. Kompella, and A. Ephremides, “Experimental evaluation of
the age of information via emulation,” in MILCOM 2015 - 2015 IEEE
Military Communications Conference, Oct 2015, pp. 1070–1075.

[11] C. Sönmez, S. Baghaee, A. Ergişi, and E. Uysal-Biyikoglu,
“Age-of-Information in practice: Status age measured over TCP/IP
connections through WiFi, Ethernet and LTE,” in 2018 IEEE Inter-
national Black Sea Conference on Communications and Networking
(BlackSeaCom), June 2018, pp. 1–5.

[12] H. B. Beytur, S. Baghaee, and E. Uysal, “Measuring age of information
on real-life connections,” in 2019 27th Signal Processing and Commu-
nications Applications Conference (SIU), 2019, pp. 1–4.

[13] H. B. Beytur, S. Baghaee, and E. Uysal, “Towards aoi-aware smart iot
systems,” in 2020 International Conference on Computing, Networking
and Communications (ICNC), 2020, pp. 353–357.

[14] E. Sert, C. Sönmez, S. Baghaee, and E. Uysal-Biyikoglu, “Optimizing
age of information on real-life TCP/IP connections through reinforce-
ment learning,” in 2018 26th Signal Processing and Communications
Applications Conference (SIU), May 2018, pp. 1–4.

[15] L. Kleinrock, “Internet congestion control using the power metric: Keep
the pipe just full, but no fuller,” Ad Hoc Networks, vol. 80, pp. 142–157,
2018.

[16] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” ACM Queue, vol.
14, September-October, pp. 20 – 53, 2016. [Online]. Available:
http://queue.acm.org/detail.cfm?id=3022184

[17] A. Alós, F. Morán, P. Carballeira, D. Berjón, and N. Garcia, “Con-
gestion control for cloud gaming over udp based on round-trip video
latency,” IEEE Access, vol. 7, pp. 78 882 – 78 897, 06 2019.

[18] T. Shreedhar, S. K. Kaul, and R. D. Yates, “An age control transport
protocol for delivering fresh updates in the internet-of-things,” in 2019
IEEE 20th International Symposium on ”A World of Wireless, Mobile
and Multimedia Networks” (WoWMoM), June 2019, pp. 1–7.

[19] T. Shreedhar, S. K. Kaul, and R. D. Yates, “An empirical
study of ageing in the cloud,” 2021. [Online]. Available: https:
//arxiv.org/abs/2103.07797

https://arxiv.org/abs/2106.02491
http://queue.acm.org/detail.cfm?id=3022184
https://arxiv.org/abs/2103.07797
https://arxiv.org/abs/2103.07797

	I Introduction
	II AoI: definition and computation
	III Age Control Protocol (ACP) and ACP+
	IV The Testbed
	V Discussions
	V-A Issues
	V-B Proposed Solutions

	VI Results
	VII Conclusions
	VIII Acknowledgements
	References

