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Abstract—As dense low Earth orbit (LEO) constellations are
being planned, the need for accurate synchronization schemes
in high-speed environments remains a challenging problem to
tackle. To further improve synchronization accuracy in chan-
neling environments, which can also be applied in the LEO
networks, we present a new method for estimating the carrier
frequency offset (CFO) and frame misalignment in orthogonal
frequency division multiplexing (OFDM) based inter-satellite
links. The proposed method requires the transmission of pilot
symbols to exploit 2-D estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) and estimate the CFO and
the frame misalignment. The Cramer-Rao lower bounds (CRLB)
of the joint estimation of the CFO and frame misalignment are
also derived. Numerical results show that the difference between
the proposed method and the state-of-art method is less than 5dB
at its worse.

Index Terms—Frequency synchronization, timing synchroniza-
tion, Doppler shift, harmonic retrieval, inter-satellite links.

I. INTRODUCTION

The standardization activities in the integrated 5G networks

and low earth orbits (LEO) mobile satellite communica-

tion (SatCom) systems and the emerging plans about LEO

constellations, introduce a renewed research interest in the

performance of inter-satellite links (ISLs) [1]–[3]. With the

technological advances in small satellites, such as cubesats,

ISLs will serve as the essential link to enable the satellites

to work together to accomplish the same task and satellite

formation flying missions [4]–[6].

Orthogonal frequency division multiplexing (OFDM)

emerges as the leading waveform candidate for ISLs due

to the inherent advantages to provide high data rates at

relatively low complexity. OFDM is a multicarrier modulation

technique widely adopted by modern mobile communication

systems such as WiFi networks (IEEE 802.11a-802.11be),

Long Term Evolution (LTE), and LTE-Advanced. It is also

considered as the basic waveform for the 5G New Radio

(NR). Although OFDM has very desirable traits including high

spectral efficiency, achievable high data rates, and robustness

in the presence of multipath fading, it is also very sensitive

to synchronization errors such as the carrier frequency offset

(CFO) and frame misalignments [7]. Due to the high speed

movement of the LEO satellites, synchronization is expected

to be a major challenge in ISLs with the high Doppler shifts

[1], [8]. In the presence of a high Doppler shift, the subcarriers

of an OFDM system with CFO may no longer be orthogonal

and the resulting inter-carrier interference (ICI) may degrade

the performance of the system. Another synchronization issue

arises when the starting position of the discrete Fourier trans-

form (DFT) window at the receiver is misaligned. Depending

on the position of the misalignment, the effects of the frame

misalignment may range from a simple phase offset to ICI.

Although the research on carrier and frame timing syn-

chronization for OFDM systems is very mature [9]–[14], in

this paper, we aim to provide a fresh perspective to OFDM’s

synchronization problem by also aiming to combat the resid-

ual Doppler shifts that may be encountered in ISLs due to

their high mobility. Estimating the Doppler shifts is not only

important for dealing with CFO effects but the Doppler shifts

can also be used for securing the ISLs between spacecrafts,

by using them as a mutually shared secret [15].

The proposed method transforms the estimation of the

CFO and the frame misalignment in an OFDM based inter-

satellite link into a 2-D harmonic retrieval problem. The

representation is in the frequency domain and this allows the

estimation of the frame misalignment unlike [11], [12] where

the frame misalignment is assumed to be corrected prior. When

compared to the methods that utilize the cyclic prefix (CP)

portion of the OFDM symbol [9], [14], the proposed method

relies on the use of pilot symbols. Furthermore, the proposed

method does not require the knowledge of the noise statistics

unlike the methods that use the CP [9], [14]. We also derive

the Cramér-Rao lower bound (CRLB) for the joint estimation

of the CFO and frame misalignment. Numerical results show

that for the error range of [10−2, 10−4], the difference between

the proposed 2-D ESPRIT based method and the PSS method

[14] is less than 5dB at its worse.

The contributions of the paper can be summarized as

follows:

• The proposed method represents the estimation of the

CFO and the frame misalignment in an OFDM-based ISL

as a 2-D harmonic retrieval problem. Unlike [11], the

representation is in the frequency domain and this allows

the estimation of the frame misalignment.

• When compared to the methods that utilize the cyclic

prefix symbols [9], [14], the proposed method relies on
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the use of pilot symbols. So the length of the CP symbols

is not a factor that affects the estimation performance of

the proposed method.

• The proposed method does not require knowledge of

noise statistics, unlike the methods that use cyclic prefix

symbols

• A disadvantage of the proposed method is that due to

relying on sending constant pilot symbols, the peak-to-

average ratio is high. [9], [14].

The organization for the rest of this paper is in the fol-

lowing way; Section 2 introduces the signal model for the

OFDM-based ISLs. Section 3 reformulates the signal model

as a 2-D estimation problem. Section 4 shows the CRLB of

the parameters in the reformulated model. We compare the

simulation results of the proposed method against the state-

of-art methods in Section 5. Finally, Section 6 presents the

conclusions and directions for future work.

II. SIGNAL MODEL

In an OFDM system, the symbols are transmitted with

the sampling period Ts in a series of frames denoted by

Xm[k] where m indicates the m-th OFDM frame and k is the

subcarrier index. The time-domain symbols are modulated by

applying the inverse DFT to the frequency-domain symbols for

k = 0, . . . , N − 1 where N is the total number of subcarriers.

Then Ng number of CP samples are appended to the front of

the time-domain frame as in

xm[n] =
1

N

N−1
∑

k=0

Xm[k]ei2πk(n−Ng)/N (1)

where 0 ≤ n ≤ Nt − 1 and Nt = N +Ng . The discrete-time

received frames in baseband can be written as

rm[n] = ei2πǫmNt/Nei2πǫn/N (hm ⊛ τpxm)[n] + zm[n] (2)

where ⊛ denotes the cyclic convolution operation, hm[n] is

the overall channel that is the result of the convolution of the

multipath fading channel and the pulse shaping filters of both

the transmitter and the receiver, the starting position of the

DFT window at the receiver is shown as τpxm[n] = xm[n +
p], and the additive white Gaussian noise (AWGN), zm[n], is

modeled as a circularly symmetric Gaussian random variable,

i.e. zm[n] ∼ CN (0, N0). Due to the clock inaccuracies of the

transmitter and the receiver oscillators, and the Doppler spread

caused by the mobility of the satellites, the conversion from

passband to baseband generates the unwanted multiplicative

terms, ei2πǫmNt/Nei2πǫn/N , in (2) where ǫ is the total CFO

term normalized by the subcarrier spacing, 1/NTs, as

ǫ = NTs(fd −∆fc). (3)

∆fc and fd in (3) shows the clock difference and the Doppler

spread, respectively. Since the free-space loss and thermal

noise of the electronics are enough to characterize the ISLs,

an AWGN channel model, i.e. hm[n] = δ0[n], can be used

in (2) [5]. Thus the received signal for the discrete baseband

equivalent model can be written as

rm[n] = ei2πǫm(1+α)ei2πǫn/Nxm[n+ p] + zm[n] (4)

where α = Ng/N . The normalized CFO, ǫ = ε + ℓ, consists

of a fractional part, i.e. |ε| ≤ 0.5, and an integer part ℓ ∈ Z
+.

The OFDM receiver first removes the cyclic prefix samples

and then applies the DFT to the remaining samples resulting

in

Rm[k] = Cm[k]⊛ ei2π(ℓ−k)p/NXm[k − ℓ] + Zm[k], (5)

where Cm[k] is given as

Cm[k] =
sin(π[ε− k])

N sin(π[ε− k]/N)
eiπ[ε−k](N−1)/N

× ei2πm[ε(1+α)+ℓα]ei2π(ε+ℓ)α (6)

and Zm[k] is also circularly symmetric Gaussian that is

Zm[k] ∼ CN (0, NN0) since the DFT is a linear trans-

formation and the circular symmetry is invariant to linear

transformations.

III. ESTIMATION OF CFO AND FRAME MISALIGNMENT

USING 2-D ESPRIT

The DFT of the received samples, Rm[k], in (5) can be

rewritten as a 2-D signal model by using the OFDM frame

index, m, as a second dimension taking values in the range

0 ≤ m ≤M − 1

R[m, k] = ei2πf1mei2πf2keiψ
N−1
∑

r=0

sin(π(ε− r))

N sin(π[ε− r]/N)

ei2πr(
1−N
2N

+ p

N )X [m, k − ℓ− r] + Z[m, k], (7)

where the frequencies and the phase terms are respectively

f1 = ε(1 + α) + ℓα (8)

f2 = −p/N (9)

ψ = 2π

[

(ε+ ℓ)α+
ℓp

N
+ ε

N − 1

2N

]

. (10)

The transmitted OFDM symbols in (7), X [m, k−ℓ−r], depend

on both the frame index, m, and the subcarrier index, k. This

dependency can be removed by sending the same pilot symbol

on each subcarrier that is X [m, k] = X for all m and k, and

then the DFT of the received samples (7) can be formulated

as a harmonic retrieval problem

R[m, k] = c φmθk + Z[m, k], (11)

where φ = ei2πf1 , θ = ei2πf2 and c is a complex coefficient

c = eiψX

N−1
∑

r=0

sin(π(ε− r))

N sin(π[ε− r]/N)
ei2πr(

1−N
2N

+ p

N ). (12)

The signal in (11) has a single 2-D mode defined by the

frequencies {f1, f2}, and a complex coefficient c = λeiϕ

where λ = |c| and ϕ = ∠c. The ESPRIT-based estimation

methods identify the pairs {f1, f2} from the observed data

R[m, k] by turning the 2-D estimation problem into two

1-D estimation problems and exploiting the shift-invariance

structure of the signal subspace for each 1-D problem [16].

Since the unknown 2-D signal mode is undamped, the forward-

backward prediction [16] can be applied to increase the



estimation accuracy by using an extended data matrix Ree

as

Ree = [Re ΠR
∗
eΠ], (13)

where complex conjugation without transposition is shown by

the (·)∗ symbol, and Π is a permutation matrix with ones on

its antidiagonal and zeroes elsewhere. Re (13) is the enhanced

Hankel block structured matrix that is constructed by applying

an observation window of size P ×Q through the rows of the

noisy received samples of which one of the dimensions is

fixed. Re matrix for the first dimension is given as

Re1 =











R(0) R(1) · · · R(M−P )

R(1) R(2) · · · R(M−P+1)

...
. . .

. . .
...

R(P−1) R(P ) · · · R(M−1)











, (14)

where R(m) is a Hankel matrix of size Q × (N −Q+ 1) as

given below

R(m) =











R[m, 0] · · · R[m,N −Q]
R[m, 1] · · · R[m,N −Q+ 1]

...
. . .

...

R[m,Q− 1] · · · R[m,N − 1]











. (15)

The extended data matrix constructed according to (13) for

the first dimension, Ree1, can be decomposed in terms of a

signal and a noise subspace as

Ree1 = c sL1s
T
R1 + Z1, (16)

where Z1 is the Hankel block structured matrix constructed

from the noise samples Z[m, k] in the same way as Re1 from

R[m, k]. sL1 is a vector of size PQ × 1 given as sL1 =
[θ1 θ1φ . . . θ1φ

P−1]T where θ1 is θ1 = [1 θ . . . θQ−1]T . The

construction of the vector sR1 is similar to that of sL1. The

rank of the signal subspace, c sL1s
T
R1, must be equal to the

number of signal components which is equal to one since there

is only one user. In order for the rank of the signal part be

at least equal to one, P and Q must satisfy the following

inequalities [16]

M ≥ P ≥ 1, N ≥ Q ≥ 1. (17)

The singular value decomposition (SVD) of Ree1 yields

Ree1 = US1ΣS1V
H
S1 +UZ1ΣZ1V

H
Z1. (18)

While the singular vectors and the singular value of the signal

mode is contained respectively in US1, VH
S1, and ΣS1, the

singular vectors and the singular values of the remaining noise

components are respectively in UZ1, VH
Z1, and ΣZ1 (18).

The frequencies related to the first dimension, f1, can be

estimated the F1 matrix

F1 = U
†
S1US1 (19)

where US1 (resp. US1) is constructed with the first (resp.

last) (P − 1)Q rows of the matrix US1. U
†
S1 denotes the

pseudo-inverse matrix of US1 and the total least squares can

be applied to calculate F1 in (19). The frequency f1 is the

eigenvalue of the matrix F1 that is

f1 = T1F1T
−1
1 , (20)

where T1 is the eigenvector matrix that diagonalizes F1. For

the frequency related to the second dimension, f2, the F2

matrix can be obtained by using the extended data matrix for

the second dimension, Ree2, and following the same steps.

Finally the pairing method of [16] must also be employed to

calculate the eigenvalue decomposition of a linear combination

of F1 and F2

βF1 + (1− β)F2 = TΣT
−1, (21)

where β is a scalar. The diagonalizing transformation T is

applied to both F1 and F2

f1 = TF1T
−1 (22)

f2 = TF2T
−1 (23)

which yields the ordered frequencies.

IV. CRAMÉR-RAO LOWER BOUND (CRLB) ANALYSIS

The unknown parameters of (11) can be collected in a vector

of size 4× 1 as

ϑ = [ω1 ω2 λ ϕ]
T
. (24)

where ω1 = 2πf1 and ω2 = 2πf2 represent the angular

frequencies. If the DFT of the received signal samples (11)

are written as an MN × 1 column vector

r = [R[0, 0], . . . , R[0, N − 1], . . .

R[M − 1, 0], . . .R[M − 1, N − 1]]T (25)

then the joint probability density function (PDF) of the mul-

tivariate circularly symmetric Gaussian random vector r ∼
CN (µ, NN0I) is given as

f(r) =
1

(NN0π)MN
exp

{

−
1

NN0
(r− µ)H (r− µ)

}

(26)

where I is an identity matrix of size MN ×MN . The j-th
entry of the mean vector µ (26) is

µj = c φm
′

j θk
′

j , j = 1, . . . ,MN, (27)

where

m′
j = ⌊(j − 1)/N⌋ mod M (28)

k′j = ⌊j − 1⌋ mod N. (29)

The (j, j′) entry of the Fisher information matrix for the

multivariate Gaussian PDF (26) is

Wj,j′ =
2

NN0
ℜ

{

[

∂µ

∂ϑj

]H [

∂µ

∂ϑj′

]

}

, (30)

where ℜ{·} takes the real parts of the entries of the matrix

[17]. The diagonal entries of the inverse of the Fisher matrix
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Fig. 1. Comparison of the frame misalignment estimation performance of the
proposed 2-D ESPRIT method with Beek’s, Minn’s, and the PSS methods in
the SNR range from -10 dB to 20 dB.

are the CRLB of the parameters. The CRLB for ω1 and ω2

are written respectively in (31) and (32).

CRLB(ω1) =
6NN0

c2MN(M2 − 1)
(31)

CRLB(ω2) =
6NN0

c2MN(N2 − 1)
(32)

V. NUMERICAL RESULTS

The simulated inter-satellite communication system uses

the OFDM modulation which consists N = 64 subcarriers

and Ng = 16 CP samples. The CFO is generated indepen-

dently for each OFDM frame as a uniform random variable

ǫ ∼ U [0.2, 0.25] and the frame misalignment is fixed at p = 2.

The signal-to-noise (SNR) ratio is defined as SNR = Es/N0

where the symbol energy is normalized to unity, Es = 1.

The performance of the proposed method is measured by

calculating the mean squared error (MSE) for both the CFO

and frame misalignment estimations and a total of 2000 Monte

Carlo simulations are run for each SNR value.

The selected methods are the maximum likelihood esti-

mator, also known as Beek’s method [9] that allows the

transmission of data symbols by using the CP samples for

estimation, Minn’s improved Schmidl & Cox estimator [10],

and the cross-correlation based method that utilizes primary

synchronization symbols (PSS method) [14]. The parameters

for the proposed method are as follows; the number of the

pilot symbols is M = 2, the size of the observation window

applied to the received samples is chosen according to (17)

as P = Q = 2 and the pairing coefficient is β = 8. The

results of the frame misalignment estimation (Figure 1) show

that while Beek’s method and Minn’s method perform worse

than the proposed method at each SNR value, the performance

of the PSS method surpasses the performance of the proposed

method.
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Fig. 2. Comparison of the CFO estimation performance of the proposed 2-D
ESPRIT method with Beek’s, Minn’s, and the PSS methods in the SNR range
from -10 dB to 20 dB.

TABLE I
COMPLEXITY COMPARISON OF THE METHODS

Method Complexity Number

Proposed Harmonic Retrieval 2LK2 +K3 +K + LK 2127384

PSS [14] (NK +G)(15N + 5) 729540

Beek [9] 24NtNg + 10Nt 31520

Minn’s [10] 36(N2/D) + 6N 36480

The MSE regarding the CFO estimation results is shown

in Figure 2. The MSE of the proposed 2-D ESPRIT method

is closest to the CRLB bound at 0 dB SNR and for the SNR

values less than 10 dB, the proposed method performs superior

compared to the rest of the methods. The PSS method is the

second-best performer for SNR values less than 5 dB.

The computational complexities of all the methods and their

numerical evaluations for the parameter values used in the

simulations are in Table I. The complexities are in terms of

real floating-point operations (flops). One complex multiplica-

tion is counted as 6 real flops while one complex addition

is counted as 2 real flops. The SVD step determines the

complexity of the proposed 2-D ESPRIT estimation method

and the complexity is written in terms of the size of the

extended data matrix, Ree ∈ CL×K , where L = PQ = 4
and K = 2(N − Q + 1)(M − P + 1) = 126. The symbol

G used in the complexity of the PSS method shows the size

of the search grid that is used in the CFO estimation step.

D, the number of repetition of the training symbol used in

Minn’s method, is D = 4. In the numerical results, M and

G are chosen as M = 2 and G = 500 respectively. While

the complexity of the proposed method is less than the PSS’s

method, the complexities of both Beek’s and Minn’s methods

are lower.



VI. CONCLUSION

Synchronization in the ISLs of the LEO systems is a critical

issue due to the Doppler spread caused by the high mobility of

the satellites. We presented a novel method for the estimation

of the CFO and frame misalignment in OFDM-based ISLs. We

reformulate the synchronization problem as a 2-D harmonic

retrieval problem in the frequency domain and apply the 2-

D ESPRIT method to estimate the parameters. Since this

new approach is in the frequency domain unlike the previous

harmonic retrieval approach, this allows the joint estimation

of the CFO and the frame misalignment.

When compared to other synchronization methods that also

rely on the pilot symbols like the well-known Schmidl & Cox

method and the PSS method, the proposed method requires

transmitting frames of pilot symbols for the reformulation to

work. The CRLB for the joint estimation of the CFO and

the frame misalignment is derived and the performance of

the proposed method is compared against the Beek’s, Schmidl

& Cox, and the PSS methods. Numerical results show that

respectable estimation performance can be achieved by using

the proposed method with only two consecutive pilot frames.
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