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Abstract—We consider a multi-source status update system
consisting of two independent sources and one server. The packets
of different sources are generated according to a Poisson process
and served according to an exponentially distributed service time.
We assume that the received status update packets need further
processing before being used (hence, computation-intensive). This
is mathematically modeled by introducing an additional server
at the sink node. The sink server serves the packets according to
an exponentially distributed service time. We derive the moment
generating function (MGF) of the AoI of each source under a
source-aware packet management policy. According to this policy,
when a server (either the transmitter or sink server) is busy at
the arrival of a packet, the packet currently under service is
preempted only if the arriving packet is from the same source
(hence, source-aware). Numerical results are provided to assess
the results.

Index Terms– Age of information (AoI), stochastic hybrid
systems (SHS), computation-intensive status updates.

I. INTRODUCTION

Delivery of fresh status information of various physical
processes is a key enabler for time-critical applications in
future networks and cyber-physical systems. The age of in-
formation (AoI) was proposed as a destination-centric metric
to measure the information freshness in status update systems
[1]–[3]. A status update packet contains the measured value
of a monitored process and a time stamp representing the
time when the sample was generated. Due to wireless channel
access, channel errors, and fading etc., communicating a status
update packet through the network experiences a random
delay. If at a time instant t, the most recent status update
available at the sink contains the time stamp U(t), AoI is
defined as the random process ∆(t) = t − U(t). Thus, the
AoI measures for each sensor the time elapsed since the last
available status update packet was generated at the sensor.

The work in [4] introduced a powerful technique, called
stochastic hybrid systems (SHS), to calculate the average AoI.
In [5], the authors extended the SHS analysis to calculate
the moment generating function (MGF) of the AoI. The
SHS technique has been used to analyze the AoI in various
queueing models [6]–[14].

In this paper, we consider a multi-source system with
computation-intensive status updates in which the embed-

ded information in each packet is not available until being
processed by the sink. An autonomous driving system in
which images are status updates could be an example of the
considered system model. In this system, further processing is
needed at the sink to expose the embedded status information
in the images. We introduce a source-aware packet manage-
ment policy and derive the MGF of the AoI of each source.
According to this policy, when a server (either the transmitter
or sink server) is busy at the arrival of a packet, the packet
currently under service is preempted only if the arriving packet
is from the same source.

The most related works to this paper are [14], [15]. In [14],
we considered the same system model and derived the MGF
of the AoI under two packet management policies namely,
i) a (source-agnostic) preemptive policy and ii) a blocking
policy. As shown in [10], source-aware packet management
policies can improve fairness between sources in multi-source
status update systems. Surprisingly, the proposed source-aware
packet management policy for computation-intensive systems
provides worse fairness than that of the source-agnostic poli-
cies studied in [14]. In [15], the authors derived the aver-
age AoI for a single-source system where the computation-
intensive status updates are generated according to the zero-
wait policy. According to the zero-wait policy, a new packet
is generated immediately after the previous one is available at
the sink.

II. SYSTEM MODEL

We consider a status update system consisting of two
independent sources1, one transmitter server, one sink server,
and one sink, as depicted in Fig. 1. Each source observes
a random process at random time instants. The sink is
interested in timely information about the status of these
random processes. Status updates are transmitted as packets,
containing the measured value of the monitored process and
a time stamp representing the time when the sample was
generated. We assume that the packets of sources 1 and 2 are

1Since we have multiple sources of Poisson arrivals, to evaluate the AoI of
one source, we can consider two sources without loss of generality.
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Fig. 1: The considered computation-intensive status update system.

generated according to the Poisson process with rates λ1 and
λ2, respectively, and the packets are served by the transmitter
server according to the exponentially distributed service time
with mean 1/µ. We assume that the embedded information in
each packet is revealed to the sink only after being processed
by the sink server which serves the packets according to the
exponentially distributed service time with mean 1/α.

Let ρ1 = λ1/µ and ρ2 = λ2/µ be the load of source 1 and
2, respectively. The packet generation in the system follows
the Poisson process with rate λ = λ1 + λ2, and the overall
load at the transmitter server is ρ = ρ1 + ρ2 = λ/µ.

A. Source-Aware Packet Management Policy

The system size is two packets, one at the transmitter server
and one at the sink server (i.e., there are no waiting queues).

On both transmitter and sink sides, when a packet arrives,
the possible packet of the same source (hence, source-aware)
at a server is replaced by the new packet, otherwise; the
arriving packet is blocked and cleared.

III. THE SHS TECHNIQUE TO CALCULATE MGF

In the following, we briefly present how to use the SHS
technique for our MGF analysis in Section IV. We refer the
readers to [4], [5] for more details.

The SHS technique models a queueing system through
the states (q(t),x(t)), where q(t) ∈ Q = {0, 1, . . . ,m}
is a continuous-time finite-state Markov chain
that describes the occupancy of the system and
x(t) = [x0(t) · · ·xn(t)] ∈ R1×(n+1) is a continuous process
that describes the evolution of age-related processes in the
system. Following the approach in [4], [10], we label the
source of interest as source 1 and employ the continuous
process x(t) to track the age of source 1 updates at the sink.

The Markov chain q(t) can be presented as a graph (Q,L)
where each discrete state q(t) ∈ Q is a node of the chain and
a (directed) link l ∈ L from node ql to node q′l indicates a
transition from state ql ∈ Q to state q′l ∈ Q.

A transition occurs when a packet arrives or departs in
the system. Since the packets are generated according to
the Poisson process and the service time is exponentially
distributed, transition l ∈ L from state ql to state q′l occurs with
the exponential rate λ(l)δql,q(t), where the Kronecker delta
function δql,q(t) ensures that the transition l occurs only when
the discrete state q(t) is equal to ql. When a transition l occurs,
the discrete state ql changes to state q′l, and the continuous
state x is reset to x′ according to a binary reset map matrix
Al ∈ B(n+1)×(n+1) as x′=xAl. In addition, as long as state

q(t) is unchanged we have ẋ(t),
∂x(t)

∂t
=1, where 1 is the

row vector [1 · · · 1]∈R1×(n+1).

Note that unlike in a typical continuous-time Markov chain,
a transition from a state to itself (i.e., a self-transition) is
possible in q(t) ∈ Q. In the case of a self-transition, a
reset of the continuous state x takes place, but the discrete
state remains the same. In addition, for a given pair of states
q̄, q̂ ∈ Q, there may be multiple transitions l and l′ so that the
discrete state changes from q̄ to q̂ but the transition reset maps
Al and Al′ are different (for more details, see [4, Section III]).

To calculate the MGF of the AoI using the SHS technique,
the state probabilities of the Markov chain, the correlation
vector between the discrete state q(t) and the continuous state
x(t), and the correlation vector between the discrete state q(t)
and the exponential function esx(t), s ∈ R, need to be defined.
Let πq(t) denote the probability of being in state q of the
Markov chain. Let vq(t) = [vq0(t) · · · vqn(t)] ∈ R1×(n+1)

denote the correlation vector between the discrete state q(t)
and the continuous state x(t). Let vs

q(t) = [vsq0(t) · · · vsqn(t)] ∈
R1×(n+1) denote the correlation vector between the state q(t)
and the exponential function esx(t). Accordingly, we have

πq(t) = Pr(q(t) = q) = E[δq,q(t)], ∀q ∈ Q, (1)

vq(t) = [vq0(t) · · · vqn(t)] = E[x(t)δq,q(t)], ∀q ∈ Q, (2)

vs
q(t) = [vsq0(t) · · · vsqn(t)] = E[esx(t)δq,q(t)], ∀q ∈ Q. (3)

Let L′q denote the set of incoming transitions and Lq denote
the set of outgoing transitions for state q, defined as

L′q = {l ∈ L : q′l = q}, Lq = {l ∈ L : ql = q}, ∀q ∈ Q.

Following the ergodicity assumption of the Markov chain q(t)
in the AoI analysis [4], [5], the state probability vector π(t) =
[π0(t) · · ·πm(t)] converges uniquely to the stationary vector
π̄ = [π̄0 · · · π̄m] satisfying

π̄q
∑

l∈Lq
λ(l) =

∑
l∈L′

q
λ(l)π̄ql , ∀q ∈ Q, (4)

∑
q∈Q π̄q = 1. (5)

Further, it has been shown in [5, Theorem 1] that under the
ergodicity assumption of the Markov chain q(t), if we can
find a non-negative limit v̄q = [v̄q0 · · · v̄qn],∀q ∈ Q, for the
correlation vector vq(t) satisfying

v̄q

∑
l∈Lq

λ(l) = π̄q1 +
∑

l∈L′
q
λ(l)v̄qlAl, ∀q ∈ Q, (6)

there exists s0 > 0 such that for all s < s0, vs
q(t),∀q ∈ Q,

converges to v̄s
q that satisfies

v̄s
q

∑
l∈Lq

λ(l) =sv̄s
q+
∑

l∈L′
q
λ(l)[v̄s

ql
Al+π̄ql1Âl], ∀q ∈ Q,

(7)

where Âl ∈ B(n+1)×(n+1) is a binary matrix whose k, jth



element, Âl(k, j), is given as

Âl(k, j)=

{
1, k=j, and jth column of Al is a zero vector,
0, otherwise.

(8)

Finally, the MGF of the state x(t), which is calculated by
E[esx(t)], converges to the stationary vector [5, Theorem 1]

E[esx] =
∑

q∈Q v̄s
q. (9)

As (9) implies, if we set the first element of continuous state
x(t) to represent the AoI of source 1 at the sink, the MGF of
the AoI of source 1 at the sink converges to

M∆1
(s) =

∑
q∈Q v̄

s
q0. (10)

Thus, the main challenge in calculating the MGF of the AoI
of source 1 using the SHS technique reduces to deriving the
first elements of correlation vectors v̄s

q, ∀q ∈ Q.

IV. AOI ANALYSIS USING THE SHS TECHNIQUE

In this section, we use the SHS technique to calculate the
MGF in (10) of each source under the considered packet
management policy described in Section II-A.

The discrete states are 0 = 00, 1 = 10, 2 = 20, 3 =
01, 4 = 11, 5 = 21, 6 = 02, 7 = 12, 8 = 22. State q = a1a2

indicates that a packet of source a1 is in the transmitter server
and a packet of source a2 is in the sink server. Note that a1 = 0
(resp. a2 = 0) indicates that the transmitter server (resp. the
sink server) is idle.

The continuous process is x(t) = [x0(t) x1(t) x2(t)],
where x0(t) is the current AoI of source 1 at time instant t,
∆1(t), x1(t) encodes what ∆1(t) would become if the packet
that is in the sink server is delivered to the sink at time instant
t, and x2(t) encodes what ∆1(t) would become if the packet
that is in the transmitter server is delivered to the sink at time
instant t.

Recall that to calculate the MGF of the AoI of source 1 in
(10), we need to find v̄sq0,∀q ∈ Q, which are the solution of the
system of linear equations in (7) with variables v̄s

q,∀q ∈ Q.
To form the system of linear equations (6) and (7), for each
state q ∈ Q, we need to determine π̄q and Al and Âl for each
incoming transition l ∈ L′q , carried out next.

1) Calculation of π̄q ∀q ∈ Q: The Markov chain for the
discrete state q(t) is shown in Fig. 2. Using (4), (5), and the
transition rates among the different states illustrated in Fig. 2,
it can be shown that the stationary probability vector π̄ satisfies
the following equations:

λπ̄0 = απ̄3 + απ̄6, (11)
(λ1 + µ)π̄1 = λ1π̄0 + λ1π̄1 + απ̄4 + απ̄7,

(λ1 + µ)π̄2 = λ2π̄0 + λ1π̄2 + απ̄5 + απ̄8,

(λ+ α)π̄3 = µπ̄1 + µπ̄4 + µπ̄5,

(λ1 + µ+ α)π̄4 = λ1π̄3 + λ1π̄4,

(λ1 + µ+ α)π̄5 = λ2π̄3 + λ1π̄5,
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Fig. 2: The SHS Markov chain for the considered policy.

(λ+ α)π̄6 = µπ̄2 + µπ̄7 + µπ̄8,

(λ1 + µ+ α)π̄7 = λ1π̄6 + λ1π̄7,

(λ1 + µ+ α)π̄8 = λ2π̄6 + λ1π̄8,∑
q∈Q π̄q = 1.

Solving (11), the stationary probabilities are given as

π̄0 =
αµ

Ψ
, π̄1 =

αλ1(α+ µ+ λ)

(µ+ α)Ψ
, π̄2 =

αλ2(α+ µ+ λ)

(µ+ α)Ψ
,

π̄3 =
αµ

Ψ
, π̄4 =

λ2
1µ

(µ+ α)Ψ
, π̄5 =

λ1λ2µ

(µ+ α)Ψ
, (12)

π̄6 =
λ2µ

Ψ
, π̄7 =

λ1λ2µ

(µ+ α)Ψ
, π̄8 =

λ2
2µ)

(µ+ α)Ψ
,

where Ψ = (λ+ α)(λ+ µ).
2) Transition reset map matrices Al and Âl: The tran-

sitions and their effects on the continuous state x(t) are
summarized in Table I. In the following, we explain the
transitions in detail.
• l=1: A source 1 packet arrives at the transmitter server.

With this transition the AoI of source 1 does not change,
i.e., x′0 = x0. This is because the arrival of source 1
packet does not yield an age reduction until it is delivered
to the sink. Since the sink server is empty, x1 becomes
irrelevant to the AoI of source 1 and thus, it does not
matter what is assigned to x′1. In this paper, when the
system moves into a new state where xi is irrelevant, we
set x′i = xi, i ∈ {1, 2}. Thus, for the transition l = 1,
we have x′1 = x1. Since the arriving source 1 packet is
fresh and its age is zero, we have x′2 = 0.

• l=2: A source 2 packet arrives at the transmitter server.
Similarly as for transition l = 1, we have x′0 = x0 and
x′1 = x1. Since the arriving packet is a source 2 packet,
its delivery does not change the AoI of source 1, and thus,
we have x′2 = x1. The reset maps of transition l = 11
can be derived similarly.

• l=3: A source 1 packet is in the transmitter server,
the sink server is idle, and a source 1 packet arrives.
According to the source-aware policy, the source 1 packet
that is under service is preempted by the arriving packet.



TABLE I: Table of transitions for the Markov chain in Fig. 2

l ql → q′l λ(l) xAl Al Âl

1 00→ 10 λ1 [x0 x1 0]

[
1 0 0
0 1 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
2 00→ 20 λ2 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
3 10→ 10 λ1 [x0 x1 0]

[
1 0 0
0 1 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
4 10→ 01 µ [x0 x2 x2]

[
1 0 0
0 0 0
0 1 1

] [
0 0 0
0 0 0
0 0 0

]
5 20→ 20 λ1 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
6 20→ 02 µ [x0 x0 x2]

[
1 1 0
0 0 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
7 01→ 11 λ1 [x0 x1 0]

[
1 0 0
0 1 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
8 01→ 21 λ2 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
9 01→ 00 α [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
10 02→ 12 λ1 [x0 x0 0]

[
1 1 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
11 02→ 22 λ2 [x0 x0 x0]

[
1 1 1
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
12 02→ 00 α [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
13 11→ 11 λ1 [x0 x1 0]

[
1 0 0
0 1 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
14 11→ 01 µ [x0 x2 x2]

[
1 0 0
0 0 0
0 1 1

] [
0 0 0
0 0 0
0 0 0

]
15 11→ 10 α [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
16 22→ 22 λ1 [x0 x0 x0]

[
1 1 1
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
17 22→ 02 µ [x0 x0 x2]

[
1 1 0
0 0 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
18 22→ 20 α [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
19 21→ 21 λ1 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
20 21→ 01 µ [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
21 21→ 20 α [x1 x1 x1]

[
0 0 0
1 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
22 12→ 12 λ1 [x0 x0 0]

[
1 1 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
23 12→ 10 α [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
24 12→ 02 µ [x0 x0 x2]

[
1 1 0
0 0 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]

Similarly as for transition l = 1, we have x′0 = x0 and
x′1 = x1. Since the arriving source 1 packet is fresh
and its age is zero, we have x′2 = 0. The reset maps
of transitions l = 13 and l = 22 can be derived similarly.

• l=4: The sink server is idle, and the source 1 packet in the
transmitter server completes service and moves to the sink
server. With this transition, we have x′0 = x0 because this
transition does not change the AoI at the sink. Since the
source 1 packet moves to the sink server and its delivery
would reduce the AoI to x2, we have x′1 = x2. Since the
transmitter server is empty, x2 becomes irrelevant and
thus, we have x′2 = x2.

• l=5: A source 2 packet is in the transmitter server,
the sink server is idle, and a source 1 packet arrives.
According to the source-aware policy, the arriving source
1 packet is blocked and cleared. Same as transition l = 1,
we have x′0 = x0 and x′1 = x1. Since the packet in
the transmitter server is a source 2 packet, its delivery
does not change the AoI of source 1, and thus we have
x′2 = x1. The reset maps of transitions l = 16 and l = 19
can be derived similarly.

• l=6: The sink server is idle and the source 2 packet in
the transmitter server completes service and moves to the
sink server. With this transition, we have x′0 = x0, and
since the source 2 packet delivery does not change the
AoI of source 1, we have x′1 = x0. Since the transmitter
server is empty, x2 becomes irrelevant and thus, we have
x′2 = x2.

• l=7: The transmitter server is idle, a source 1 packet is in
the sink server, and a source 1 packet arrives. With this
transition, we have x′0 = x0. The delivery of the packet
in the sink server would reduce the AoI to x1 thus, we
have x′1 = x1. Since the arriving source 1 packet is fresh
and its age is zero, we have x′2 = 0.

• l=8: The transmitter server is idle, a source 1 packet is in
the sink server, and a source 2 packet arrives. Similarly
as for transition l = 7, we have x′0 = x0 and x′1 = x1.
Since the arriving packet is a source 2 packet, its delivery
does not change the AoI of source 1 and thus, we have
x′2 = x1.

• l=9: The transmitter server is idle and the source 1 packet
in the sink server completes service and is delivered to
the sink. With this transition, we have x′0 = x1. Since the
servers become idle we have x′1 = x1 and x′2 = x2. The
reset maps of transition l = 12 can be derived similarly.

• l=10: The transmitter server is idle, a source 2 packet is
in the sink server, and a source 1 packet arrives. With this
transition, we have x′0 = x0 because this transition does
not change the AoI at the sink. The delivery of the source
2 packet in the sink server does not change the AoI of
source 1 and thus x′1 = x0. Since the arriving source 1
packet is fresh and its age is zero, we have x′2 = 0.

• l=14: A source 1 packet is in the sink server and
the source 1 packet in the transmitter server completes
service and moves to the sink server. According to the
source-aware policy, the source 1 packet that is in the sink



server is preempted by the arriving source 1 packet. With
this transition, we have x′0 = x0 because this transition
does not change the AoI at the sink. Since the source 1
packet moves to the sink server, we have x′1 = x2. Since
the transmitter server is empty we have x′2 = x2. The
reset maps of transition l = 17 can be derived similarly.

• l=15: A source 1 packet is in the transmitter server and
the source 1 packet in the sink server completes service
and is delivered to the sink. With this transition, we have
x′0 = x1. Since the sink server becomes idle we have
x′1 = x1. The delivery of the source 1 packet in the
transmitter server reduces the AoI to x2 and thus, x′2 =
x2. The reset maps of transitions l ∈ {18, 21, 23} can be
derived similarly.

• l=20: A source 1 packet is in the sink server and
the source 2 packet in the transmitter server completes
service and moves to the sink server. According to
the source-aware policy, the arriving source 2 packet
is blocked and cleared. With this transition, we have
x′0 = x0. The delivery of the packet in the sink server
reduces the AoI to x1 and thus, x′1 = x1. Since the
transmitter server is empty we have x′2 = x2. The reset
maps of transition l = 24 can be derived similarly.

3) Calculation of the MGF of the AoI: Recall from
Section III that to calculate MGF of the AoI, we need
to first ensure whether we can find non-negative vectors
v̄q = [v̄q0 · · · v̄qn],∀q ∈ Q, that satisfy (6). Having derived the
matrices Al for all transitions (see Table I), we can form the
system of linear equations in (6). It can be shown that the
system of linear equations in (6) has a non-negative solution.
Consequently, using the derived Al and Âl for the transitions
in Table I, we can form the system of linear equations in (7).
By solving the system of linear equations we can find the
values of v̄sq0, ∀q ∈ Q. Substituting v̄sq0,∀q ∈ Q, into (10)
results the MGF of the AoI of source 1 under the proposed
policy, given by the following theorem.

Theorem 1. The MGF of the AoI of source 1 under the
proposed source-aware packet management policy is given by
(13), as shown on the top of the next page, where s̄ = s/µ,

ᾱ = α/µ, N̄ =
ρ1(π̄3 + π̄4)

1 + ρ1 + ᾱ− s̄
,

M̄ =
ρ1(π̄0 + π̄1)(1 + ρ1 + ᾱ− s̄) + ᾱ(π̄3 + π̄4 + π̄6 + π̄7)

(1 + ρ1 + ᾱ− s̄)(1 + ρ1 − s̄)
,

ξ1 = ρ3
1(3s̄− 2s̄2 − 1) + ρ2

1ρ2(7s̄− 6s̄2 − 1)+

ρ2
1(8s̄− 15s̄2 + 8s̄3 − 1) + ρ1ρ

2
2s̄(5− 6s̄)+

ρ1ρ2s̄(8− 24s̄+ 16s̄2) + ρ1s̄(3− 15s̄+ 22s̄2 − 10s̄3)+

ρ3
2s̄(1− 2s̄) + ρ2

2s̄(2− 9s̄+ 8s̄2)+

ρ2s̄(1− 9s̄+ 18s̄2 − 10s̄3)− s̄2(1− 8s̄+ 10s̄2 − s̄3),

ξ2 = ρ3
1(s̄− 1) + ρ2

1ρ2(3s̄− 2) + ρ2
1(10s̄− 7s̄2 − 3)+

ρ1ρ
2
2(1− 3s̄) + ρ1ρ2(14s̄− 14s̄2 − 2) +ρ3

2s̄+ρ2
2(4s̄−7s̄2)

+ ρ1(10s̄− 21s̄2+12s̄3−1)+ρ2(4s̄−14s̄2+12s̄3)+

s̄(1− 7s̄+ 12s̄2 − 6s̄3),

ξ3 = 2ρρ1(s̄− 1) + 2ρs̄(ρ2 + 2) + 2ρ1(2s̄− 1)− 6ρs̄2+

2s̄(1− 3s̄+ 2s̄2), and

ξ4 = s̄2 − s̄(1 + ρ)− ρ1.

V. VALIDATIONS AND NUMERICAL RESULTS

By using the derived MGF, the mth moment of the AoI of

source 1, ∆
(m)
1 , is given by ∆

(m)
1 =

dm(M∆1
(s))

dsm

∣∣∣
s=0

.

Fig. 3 illustrates the average AoI of source 1 and its
standard deviation (σ) as a function of λ1 for the proposed
source-aware policy in comparison with the (source-agnostic)
preemptive policy and the blocking policy studied in [14]
for µ = 1, α = 1, and λ = 5. As it can be seen, the
preemptive policy outperforms the source-aware and blocking
policies. The gap between the preemptive and the source-aware
policies is (surprisingly) small, whereas the blocking policy
underperforms by a large margin. In addition, when λ1 → λ
(i.e., λ2 → 0, and the system becomes single-source), the
average AoI of the preemptive policy and the source-aware
policy converge together, as expected.

Fig. 4 illustrates the Jain’s fairness index [10] for the
average AoI of sources 1 and 2 as a function of λ1 under the
different packet management policies. As it can be seen, the
blocking policy provides the fairest situation and the source-
aware provides the lowest fairness in the system.

We would like to point out that based on our experiments
(not included herein due to space limitation), the same trend
for the curves of the average AoI and fairness among the three
considered policies appears to hold true for any choice of the
parameters.

VI. CONCLUSIONS

We considered a multi-source system with computation-
intensive status updates and derived the MGF of the AoI
under a source-aware packet management policy using the
SHS technique. Using the derived MGF, we evaluated the
average AoI, its standard deviation, and fairness. The results
showed that the two source-agnostic policies introduced in
[14] provide better fairness than that of the policy introduced
herein. Moreover, the preemptive policy in [14] provides the
lowest average AoI amongst the three policies.
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