
Low Rate Protograph-Based LDPC Codes for
Continuous Variable Quantum Key Distribution

Kadir Gümüş and Laurent Schmalen
Karlsruhe Institute of Technology (KIT)

Communications Engineering Lab
76187 Karlsruhe, Germany

kadir.guemues@kit.edu

Abstract—Error correction plays a major role in the recon-
ciliation of continuous variable quantum key distribution (CV-
QKD) and greatly affects the performance of the system. CV-
QKD requires error correction codes of extremely low rates and
high reconciliation efficiencies. There are only very few code
designs available in this ultra low rate regime. In this paper, we
introduce a method for designing protograph-based ultra low rate
LDPC codes using differential evolution. By proposing type-based
protographs, a new way of representing low rate protograph-
based LDPC codes, we drastically reduce the complexity of the
protograph optimization, which enables us to quickly design
codes over a wide range of rates. We show that the codes resulting
from our optimization outperform the codes from the literature
both in regards to the threshold and in finite-length performance,
validated by Monte-Carlo simulations, showing gains in the
regime relevant for CV-QKD.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are forward error
correcting codes first introduced in 1962 [1] and then mostly
forgotten. After their rediscovery, (e.g., in [2]), LDPC codes
have seen wide use in many telecommunication applications
because of their performance close to the theoretical limits and
the availability of low-complexity decoding algorithms. Most
of these applications require codes with high rates, and as such,
most research activities have focused on designing high rate
codes. However, in recent years, the need for LDPC codes with
ultra low rates has increased due to emerging applications such
as the reverse reconciliation in continuous variable quantum
key distribution (CV-QKD) [3].

The main performance measure for CV-QKD is the secret
key rate (SKR), representing the rate at which secret keys
can be exchanged. This SKR depends on the performance of
the error correcting code used during reconciliation. In the
reconciliation, there is trade-off between the frame error rate
(FER) and how close the code operates to capacity. Due to this
trade-off, the operating FER of CV-QKD systems is typically
very high [4]. Therefore, when designing a code for CV-QKD,
the error floor behaviour is not the main objective [5]. It is
however important to have codes with low FERs at low SNRs.

Most previous works on the design of low rate LDPC codes
have used multi-edge type (MET) constructions or variants

This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 101001899).

thereof. In [6, Ch. 7], an MET-LDPC code of rate 1
10 has

been designed by appending a large number of parity check
bits to a high rate code akin to a concatenation of an LDPC
code with a low-density generator matrix (LDGM) code [7].
Additionally, codes of rates down to 1

50 were designed based
on the rate 1

10 code of [6, Ch. 7] by further optimizing
the degree distributions using differential evolution [4], [8].
More recently, LDPC codes with a cascade structure have
been designed down to rates of 1

100 with thresholds close to
capacity [9, Ch. 4].

The downside of directly optimizing the degree distributions
of MET-LDPC codes is that the optimization is rather complex
due to the large amount of degrees of freedom. Furthermore,
no simple optimization algorithm exists, as, e.g., for simple
irregular LDPC codes. Although these codes perform close to
capacity, the range of available rates and designs is sparse.
Therefore, with the current methods, designing a specific low
rate LDPC code for a particular application is an arduous task.

One method of reducing the complexity of the code de-
sign is by restricting ourselves to protograph-based LDPC
codes [10], [11]. Prior work has resulted in codes with
good thresholds, while limiting the search space and thus
the complexity. However, most protograph-based LDPC code
designs have targeted the high rate regime, e.g., [12] or [13].
An exception is [14], presenting a few lower rate protograph-
based LDPC codes of rates 1

10 and above.
The problem with designing low rate protograph-based

LDPC codes is that the size of the protograph increases
quadratically with decreasing code rate, leading to an ex-
ponentially increasing search space and rendering traditional
numerical optimization techniques for protographs useless.
In this paper, we introduce a simplified representation for
low rate protograph-based LDPC codes based on partitioning
the rows and columns of the protograph into types, called
type-based protographs (TBPs). We show that by viewing
protographs as TBPs, we can significantly reduce the search
space of the optimization, making it possible to design efficient
LDPC codes of arbitrarily low rates. We obtain codes using
the TBP optimization that outperform codes in the literature,
both in threshold and finite-length performance. We verify
our results with Monte-Carlo simulations and obtain gains
of up to 0.12 dB in the regime relevant for CV-QKD. We
furthermore propose expanded TBPs, which alleviate some

ar
X

iv
:2

10
7.

06
24

2v
1 

 [
cs

.I
T

] 
 1

3 
Ju

l 2
02

1



B =
(
3 2

)

Copy

B̃ =



3 2 0 0 0 0
0 0 3 2 0 0
0 0 0 0 3 2




Permute

H =



1 1 1 1 1 0
1 0 1 1 1 1
1 1 1 0 1 1




Fig. 1. Creating a parity check matrix by lifting a protograph representing a
rate 1

2
LDPC code by a factor 3.

of the drawbacks that this method presents when designing
higher rate codes.

II. LDPC CODES FOR CV-QKD

A. Secret Key Rate

The SKR is the main measure used for evaluating the
performance of a CV-QKD system. For conventional CV-QKD
protocols, the SKR is given by [15]

SKR = (1− FER)(βIAB − χBE). (1)

Here, IAB is the mutual information between Alice (trans-
mitter) and Bob (receiver), χBE is the Holevo information,
a measure for the amount of information a potential eaves-
dropper has on the secret keys, and β is the reconciliation
efficiency. The reconciliation efficiency is defined as β = R

IAB

and represents the multiplicative gap between R, the rate of
the code, and IAB. The mutual information IAB is the upper
bound for the code rate, and β ≤ 1 as R ≤ IAB. Typically,
there is a trade-off between β and the FER, which affects
the SKR in (1): the higher β becomes, the higher the FER.
Because of this trade-off, the operational FER for CV-QKD
systems tends to be quite large, which is why the error floor
behaviour of a code is less important for CV-QKD. In this
paper we assume the use of the one-dimensional reconciliation
protocol as described in [5]. In this protocol, the equivalent
channel relevant for the decoder can be modeled as a binary-
input additive white Gaussian noise (BI-AWGN) channel. We
will focus on this model in the remainder of the paper.

B. Protograph-based LDPC Codes

Protograph-based LDPC codes are a special case of MET-
LDPC codes [10]. Protograph-based codes are constructed
from the q-cover of the relatively small bipartite graph de-
scribed by the protomatrix B which conveys the main prop-
erties of the code. bi,j denotes the entry of B at row i and
column j. In contrast to the Tanner graph representation of
LDPC codes, the protograph may contain multiple edges. The
code itself is constructed by placing q copies of the protograph
next to each other (note that these have no interconnecting
edges) and permuting the edges between the different copies
of the protograph, such that the relation between the group
of edges is respected. This operation is called lifting the
protograph. Figure 1 shows an example of a rate 1

2 protograph
being lifted by a factor q = 3.

2 3 3 3

2 2 2 2

2

4
2

3
3

Fig. 2. Protograph and its simplified representation for the rate 1
8

AR4A
code [14].

The rows of a protomatrix represent the check nodes of a
code, while the columns represent the variable nodes. A non-
zero value bi,j 6= 0 indicates that there are edge connections
between check node i and variable node j. Every non-zero
value in the protograph represents its own edge type.

The rate of protograph-based LDPC codes is determined
by the dimensions of the protomatrix. Let m and n be the
number of rows and columns of the protomatrix, respectively.
Additionally, let np denote the amount of punctured columns
in the protograph. In that case, the design rate of the code is
given by R = n−m

n−np
.

Protographs are often visualised by a bipartite graph, giving
a simple and elegant representation. However, for low rate
protographs this representation becomes very cluttered due to
the large amount of variable and check nodes. We simplify this
representation by grouping together similar nodes that occur
multiple times within the protograph. A dashed box around a
subgraph with a number κ in its lower right corner indicates
that we repeat this subgraph κ times and connect each copy
to its originating node. An exemplary protograph for the rate
1
8 AR4A code from [14] is given in Fig. 2 together with its
simplified representation.

C. PEXIT Analysis

The protograph extrinsic information transfer (PEXIT) anal-
ysis is a method for easily determining the threshold of
protograph-based LDPC codes [16]. In the PEXIT analysis,
we track the mutual information (MI) evaluation along the
edges of the protograph during decoding. The MI between the
code bits associated to (protograph) variable node j and the
messages computed by variable node j sent towards check
node i is denoted I(`)Ev

(i, j) and computed using

I
(`)
Ev

(i, j) = J

([∑

s

bs,j

(
J−1

(
I
(`−1)
Ec

(s, j)
))2

− (2)

(
J−1

(
I
(`−1)
Ec

(i, j)
))2

+

(
J−1 (Ich,j)

)2
] 1

2
)
,

where ` denotes the current iteration of the PEXIT analysis.
J(σ) is the capacity of a binary input AWGN channel with



noise variance σ2:

J(σ) = 1−
∫ ∞

−∞

1√
2πσ2

e−
(τ−σ2

2
)2

2σ2 log2(1 + e−τ )dτ. (3)

This J-function is often approximated using the approxi-
mations in [17] or [18]. Although these approximations are
sufficiently accurate for high rate codes, these methods are
not accurate enough for the optimization of ultra low rate
protographs. Thus, we propose to use the Gauss-Hermite
approximation [19] and approximate

J(σ) ≈ 1−
µ∑

i=1

αi√
π
log2

(
1 + e−2σxi+

σ2

2

)
, (4)

where µ denotes the number of sample points, and αi and
xi are the weights and roots of the Hermite polynomial,
respectively. We have found that µ = 100 is sufficient for
an accurate estimation of the threshold.

In (2), Ich,j is the mutual information between the channel
input and output for variable node j, which for a given BI-
AWGN channel characterized by Eb/N0 is equal to Ich,j =
J(8REb/N0). For a punctured variable node, Ich,j = 0 as
this node is not transmitted over the channel. I(`)Ec

(i, j) is the
mutual information between the code bits and the messages
computed by check node i sent towards variable node j and
is given by

I
(`)
Ec

(i, j) = 1− J

([∑

s

bi,s

(
J−1

(
1− I`Ev

(i, s)
))2

−

(
J−1

(
1− I`Ev

(i, j)
))2

] 1
2
)
. (5)

We say that a code converges if I`APP(j) → 1 ∀j as ` → ∞,
where

I
(`)
APP(j) = J

([∑

s

bs,j

(
J−1

(
I lEc

(s, j)
))2

+

(
J−1 (Ich,j)

)2
] 1

2
)

(6)

is the MI between the a posteriori probability at the decoder
output and the respective code bit associated to variable
node j.

III. OPTIMIZING LOW RATE PROTOGRAPHS

A. Protograph Optimization

Designing low rate protographs is more difficult compared
to high rate protographs because the number of optimizable
entries of the protomatrix grows quadratically as the rate of the
code decreases. The search space of a protograph is determined
by the size of the protomatrix and the maximum allowed value
ep within the protomatrix, and is equal to (1+ep)

mn. Finding
the optimum protograph using a brute force search quickly
grows infeasible for low code rates.

One method of simplifying the design of a protograph
is by fixing a part of the protograph, while carrying out

B =




3 2 0 0 0 0 0 0
4 1 1 0 0 0 0 0
4 0 0 1 0 0 0 0
2 0 0 0 1 0 0 0
3 0 0 0 0 1 0 0
3 0 0 0 0 0 1 0
3 0 0 0 0 0 0 1




32

4

3
3

2

4

High rate
base protograph

Input bits
LDGM

Parity bits LDGM

Fig. 3. Protograph structure for a rate 1
8

code which consists out of the
concatenation of a high rate protograph and an LDGM code.

the optimization only for the non-fixed parts [13]. This will
decrease the search space of the optimization. One downside,
however, is that the global optimum may be excluded from the
search space by fixing parts of the protograph. It is therefore
imperative that the fixed part is chosen such that a good
performance results.

One design that has been shown to work well for low
rate LDPC codes is the concatenation of a high rate dense
protograph and an LDGM code [4], [7], [9, Ch. 4]. In LDGM
codes, all check nodes in the code are connected to degree-
one variable nodes, which correspond to the parity bits of the
LDGM code. The remaining variable nodes correspond to the
input bits of the LDGM code. Figure 3 shows an example of
the concatenation of an LDGM code with a high rate base
protograph. Note that the variable nodes corresponding to the
input bits of an LDGM code can also be of degree one.

The particular protograph shown in Fig. 3 (rate 1
8 ) was

obtained using differential evolution [7], [13] by fixing the
orange part (identity matrix) of the protomatrix, therefore
optimizing the remaining green and blue parts. A similar
optimization for different codes with rates ranging from 1

5 to
1
10 leads to very similar matrices with clusters of variable and
check nodes of the same type. Here, we define a node type as a
group of nodes wherein all the members have the same degree
and therefore the same decoding convergence behaviour. A
node type consists either solely of check nodes or variable
nodes. Two variable (check) nodes have the same degree if
they have the same number of connections to check (variable)
nodes of the same type.

We illustrate the concept of nodes types using the example
protograph of Fig. 3. The check nodes corresponding to the
bottom 3 lines in B are grouped together and are of the
same type. All three of these check nodes have three edge
connections to the first variable node and are also connected
to a different degree one variable node. These latter variable
nodes are of the same type as they all have one connection
to the aforementioned check nodes. Instead of optimizing
every single entry in the protomatrix itself, we propose to
specify a set of check node types, and optimize only the
occurrence of each check node type. This reduces the search
space of the protograph optimization significantly and renders
the optimization for ultra low code rates feasible.

We propose the type description T shown in Fig. 4 for



v1 v2 v3 v4 v5 v6 v7 v8
c1 3 2 0 0 0 0 0 0
c2 3 0 1 0 0 0 0 0
c3 3 1 0 1 0 0 0 0
c4 2 0 0 0 1 0 0 0
c5 2 1 0 0 0 1 0 0
c6 4 0 0 0 0 0 1 0
c7 4 1 0 0 0 0 0 1︸ ︷︷ ︸

T

Fig. 4. Type description T for our suggested protomatrix optimization. In
this case K = 7, k = 1, L = 8 and l = 2.

optimizing low rate protographs. This type description corre-
sponds to a concatenation of a high rate base protograph with
an LDGM code. The rows represent the different check node
types and the columns represent the different variable node
types. ti,j is the value in position (i, j) of the type description
and represents the number of edge connections between a
check node of type i and a variable node of type j. In the
example of Fig. 4, there are seven different check nodes types
and eight different variable nodes types.

We further subdivide the types into two classes, fixed
node types and optimizable node types. We represent
the node types as a set of K check node types
{CN1, . . .CNk,CNk+1 . . .CNK} and L variable node types
{VN1, . . .VNl,VNk+1 . . .VNL}. Here, k denotes the amount
of fixed check node types and l the amount of fixed variable
node types. The vectors c = (c1, . . . cK) and v = (v1, . . . vL)
specify how often check node type CNj occurs (cj) and how
often variable node type VNi occurs (vi). The fixed node types
only occur once within the protograph. Therefore ci = 1 for
i < k and vj = 1 for j < l. During the optimization, we do
not change the occurrence of the fixed node types, similar to
how we normally fix parts of the protomatrix.

Optimizable check and variable node types are allowed to
occur more than once in a protograph. In order to preserve
the degrees of the optimizable node types, the occurrences of
the check nodes types are linked to those of the variable node
types. If an optimizable check node type CNi is connected to
an optimizable variable node type VNj , ci = vj must hold.
Therefore, the total number of optimizable check node type
occurrences h =

∑K
i=k+1 cj = m− k equals the total amount

of optimizable variable node type occurrences.
The design rate of the code is determined by the total num-

ber of fixed node types, and the total number of occurrences
of all optimizable check nodes types and is given by R = l−k

l+h .
Note that a type description can be used to design codes of
different rates by varying c and v (and hence h).

Figure 5 shows an example of how to obtain a protomatrix
from a type description. For better visibility, we color the
optimizable check node types CNk+1, . . .CNK using distinct
colors. When constructing the protomatrix, its values have to
be chosen such that the degrees of the optimizable nodes do
not change. The degrees of the fixed nodes change depending
on how often each optimizable nodes occurs. We use differen-

1 1 5 1 1 1 0 0
1 3 2 0 0 0 0 0 0
5 3 0 1 0 0 0 0 0
1 3 1 0 1 0 0 0 0
1 2 0 0 0 1 0 0 0
1 2 1 0 0 0 1 0 0
0 4 0 0 0 0 0 1 0
0 4 1 0 0 0 0 0 1




3 2 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0 0
3 1 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 1 0
2 1 0 0 0 0 0 0 0 1




Fig. 5. Example of transforming the type description into a rate 1
10

type-based
protograph (TBP).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16
c1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
c2 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
c3 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
c4 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
c5 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
c6 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
c7 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
c8 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
c9 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
c10 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
c11 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
c12 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
c13 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1

Fig. 6. Example of an expanded type description with q̃ = 4.

tial evolution similar to [13] to optimize the non-fixed parts of
c and v (marked in red in Figs. 4-6)1. During the optimization,
we need to make sure that h stays consistent in order to fulfill
the rate constraint of the code.

Using this method, the size of the search space reduces
to
(
S+h−1
h−1

)
, where S = K − k is the number of different

optimizable check node types. For S ≥ 2, we can (coarsely)
upper-bound

(
S+h−1
h−1

)
by Sh. If S < (1+ ep)

n, then, because
h ≤ m, the search space for the TBP optimization is smaller
than that of the conventional optimization as Sh < (1+ep)

mn.
If the largest value allowed in the protomatrix is ep, then
there are (1 + ep)

n possible ways to fill in each row, i.e.,
there are (1 + ep)

n different possible check node types. As
we only utilize a select few check node types in the proposed
type description, S < (1 + ep)

n. For example, assuming
that we only optimize the input bits of the LDGM part of
the protomatrix as shown in Fig. 3 (light blue part) when
optimizing a rate 1

10 code with the type description given
in Fig. 4, we have m′ = 8 non-fixed check nodes, n′ = 2
non-fixed variable nodes, S = 6 and h = 8. The amount
of different such protographs equals 1716, while the search
space size equals 1.5 · 1011 for the method in [13]. For the
optimization of lower rate protographs, this gap grows even
larger.

For codes of rates 1
6 and above, the search space using our

proposed type-based approach is too restricted. To increase the
search space, we propose to use an expanded binary (ep = 1)
type description obtained from lifted versions (lifting factor q̃)
of the original type description. We then use the expanded type

1Source code carrying out the optimization can be found online at the
repository https://github.com/kadirgumus/Protograph Optimization



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

R = 1
50

R = 1
10

R β
1
10

0.9814
1
50

0.9957
1

100
0.9968

R

E
b

N
0

(d
B

)
Capacity
TBP
Expanded TBP
MET [6, Ch. 7]
MET [9, Ch. 4]
AR3A [14]
AR4A [14]

32

3

2

5
3

2

32
4
3

6

2

3

4

11
3

16
2

8
4

Fig. 7. The thresholds of codes optimized for a variety of different code rates for both the TBP and the lifted TBP (q̃ = 4). The codes from the literature
are taken from [9], [14].

description to obtain a larger protomatrix of size q̃m × q̃n.
With a large q̃, the protomatrix can be fine-tuned more, but
the complexity of the optimization increases. In this paper we
choose q̃ = 4, such that the optimization is still feasible. An
example of an expanded type description is given in Fig. 6.

B. Modified PEXIT Analysis

For our proposed optimization, the PEXIT analysis can be
simplified, as check nodes and variables nodes of the same
type have the exact same convergence behaviour. So instead
of calculating the PEXIT functions for each variable node and
check node, we only have to carry out the calculation for each
check and variable node type. We can replace bi,j in (2)–(6)
by ti,j . We need to adjust the calculation of IEv(i, j) for the
fixed variable node types as

I
(`)
Ev

(i, j) = J

([∑

s

ts,jcs

(
J−1

(
I
(`−1)
Ec

(s, j)
))2

− (7)

(
J−1

(
I
(`−1)
Ec

(i, j)
))2

+

(
J−1 (Ich,j)

)2
] 1

2
)
,

and IAPP for the fixed variable node types as

I
(`)
APP(j) = J

([∑

s

ts,jcs

(
J−1

(
I
(`−1)
Ec

(s, j)
))2

+ (8)

(
J−1 (Ich,j)

)2
] 1

2
)
.

This speeds up the threshold computation, as the complexity
grows only with the size of T instead of the size of B.

IV. RESULTS

In order to verify the effectiveness of our proposed TBP
optimization, we optimized protographs with both the standard
and expanded TBP (q̃ = 4) for a wide variety of code rates.
For the standard TBP optimization, we use the type description
in Fig. 4 for all code rates. For the expanded TBP, we use

an expanded type description2 based on the one from Fig. 4.
Figure 7 shows the thresholds of the codes that we have
obtained and compares it to both the capacity of the BI-
AWGN channel and some codes from the literature. The insets
show the optimized protographs for the rate R = 1

10 and rate
R = 1

50 codes in the simplified representation. Figure 7 also
contains a table with the reconciliation efficiencies for different
codes. The codes created with the TBP optimization method
outperform or are just as good as the codes in the literature
for all code rates. As the rate of the codes decreases, the
gap to capacity decreases as well, which suggests that this
particular design works quite well for ultra low rate codes.
As mentioned before, the TBP optimization method works
less well for higher rate codes due to the restricted search
space. Using expanded TBPs leads, however, to a threshold
improvement for high rate codes. For low rates, the expansion
does not yield substantial threshold gains.

In order to verify the performance of our protographs, we
have carried out finite-length simulations and measured FER
and BER curves for several codes and compare them to the
literature. All of the parity check matrices for these codes were
generated randomly, after which we removed 4-cycles such
that the matrix fulfills the row-column constraint. The length
of the codewords N = nq is approximately equal to N = 105

for the rate 1
5 to 1

10 codes and N = 106 for the rate 1
50 and

1
100 codes. We assume transmission over a BI-AWGN channel
and use sum-product decoding with 500 decoding iterations.

Figure 8 and 9 show the result of these simulations. We can
see that for all code rates, our TBP codes outperform the codes
in the literature by up to 0.12 dB at an FER of 0.1, except for
R = 1

5 , where our code is as good as the reference. Our codes
also show a clear error floor behaviour, where the height of
the error floor decreases as the code rate decreases. Note that
we did not take into account the error floor behaviour during
both the protograph optimization and the construction of the

2The type description for the expanded TBP optimization can be found
online at https://github.com/kadirgumus/Protograph Optimization



−8.4 −8.2 −8 −7.8 −7.6 −7.4 −7.2 −7 −6.8 −6.6 −6.4 −6.2 −6 −5.8 −5.6 −5.4 −5.2 −5 −4.8 −4.6 −4.4 −4.2 −4
10−6

10−5

10−4

10−3

10−2

10−1

100

R = 1
10

R = 1
8

R = 1
6

R = 1
5

Es
N0

(dB)

B
E

R
(—

—
)

/
FE

R
(–

–
–)

TBP
Expanded TBP
MET [6, Ch. 7]
MET [9, Ch. 4]
AR3A [14]
AR4A [14]

Fig. 8. FER (dashed lines, – – –) and BER (solid lines, ——) simulation results of several different protographs of different rates as a function of
Es/N0 = R · Eb/N0. The codes from the literature are taken from [6], [9], [14]. All codes have a blocklength N ≈ 105.

−19 −18 −17 −16 −15 −14
10−4

10−3

10−2

10−1

100

R = 1
100

R = 1
50

Es
N0

(dB)

B
E

R
(—

—
)

/
FE

R
(–

–
–)

TBP
MET [9, Ch. 4]

Fig. 9. FER (dashed lines, – – –) and BER (solid lines, ——) simulation
results of several different protographs of different rates as a function of
Es/N0 = R · Eb/N0. All codes have a blocklength N ≈ 106.

parity-check matrices. Further note that the FER simulations
in [9, Ch. 4] for the R = 1

50 code show no such error floor.
The parity check matrix for this code used in the simulations
in [9, Ch. 4], however, was designed using progressive edge
growth, which generally lowers the error floor.

V. CONCLUSION

In this paper, we have presented TBPs, a new method for
optimizing and representing protograph-based LDPC codes for
the ultra low rate regime. Using differential evolution, we have
obtained codes that beat the state-of-the-art over a wide range
of code rates. We have verified the performance of our codes
using Monte-Carlo simulations and find that they outperform
the reference codes in the regime that is particularly useful
for CV-QKD. We have furthermore proposed the expanded
TBP method, which remedies some drawbacks when designing
higher rate codes. Possible future work includes the further
extension of this method towards the high-rate code regime
and further optimization of the type description.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” Electron. Lett., vol. 32, no. 18, 1996.

[3] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin,
“Experimental quantum cryptography,” Journal of Cryptology, vol. 5,
no. 1, pp. 3–28, 1992.

[4] P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance
continuous-variable quantum key distribution with a Gaussian modu-
lation,” Phys. Rev. A, vol. 84, p. 062317, Dec. 2011.

[5] M. Milicevic, C. Feng, L. M. Zhang, and P. G. Gulak, “Key reconcil-
iation with low-density parity-check codes for long-distance quantum
cryptography,” 2017, available online: https://arxiv.org/abs/1702.07740.

[6] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[7] J. Garcia-Frias and W. Zhong, “Approaching Shannon performance by
iterative decoding of linear codes with low-density generator matrix,”
IEEE Commun. Lett., vol. 7, no. 6, pp. 266–268, 2003.

[8] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[9] H. Mani, “Error reconciliation protocols for continuous-variable quan-
tum key distribution,” Ph.D. dissertation, Technical University of Den-
mark, 2021.

[10] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” IPN Progress Report 42-154, 2003.

[11] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews, “Capacity-
approaching protograph codes,” IEEE J. Sel. Areas Commun., vol. 27,
no. 6, pp. 876–888, 2009.

[12] D. Divsalar, S. Dolinar, and C. Jones, “Construction of protograph LDPC
codes with linear minimum distance,” in Proc. IEEE ISIT, Aug. 2006.

[13] H. Uchikawa, “Design of non-precoded protograph-based LDPC codes,”
in Proc. IEEE ISIT, Jun. 2014, pp. 2779–2783.

[14] D. Divsalar, S. Dolinar, and C. Jones, “Low-rate LDPC codes with
simple protograph structure,” in Proc. IEEE ISIT, Oct. 2005.

[15] F. Laudenbach, C. Pacher, C.-H. Fung, A. Poppe, M. Peev, B. Schrenk,
M. Hentschel, P. Walther, and H. Hübel, “Continuous-variable quantum
key distribution with Gaussian modulation – the theory of practical
implementations,” Advanced Quantum Technologies, Mar. 2017.

[16] G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT
analysis,” in Proc. IEEE GLOBECOM, Nov. 2007, pp. 3250–3254.

[17] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670–678, 2004.

[18] F. Brännström, “Convergence analysis and design of multiple concate-
nated codes.” Ph.D. dissertation, Chalmers Univ. of Technol., 2004.

[19] Q. Liu and D. A. Pierce, “A note on Gauss-Hermite quadrature,”
Biometrika, vol. 81, no. 3, pp. 624–629, 1994.

https://arxiv.org/abs/1702.07740

	I Introduction
	II LDPC Codes for CV-QKD
	II-A Secret Key Rate
	II-B Protograph-based LDPC Codes
	II-C PEXIT Analysis

	III Optimizing Low Rate Protographs
	III-A Protograph Optimization
	III-B Modified PEXIT Analysis

	IV Results
	V Conclusion
	References

