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Abstract—In this work, we use real-world data in order to
evaluate and validate a machine learning (ML)-based algorithm
for physical layer functionalities. Specifically, we apply a recently
introduced Gaussian mixture model (GMM)-based algorithm in
order to estimate uplink channels stemming from a measurement
campaign. For this estimator, there is an initial (offline) training
phase, where a GMM is fitted onto given channel (training)
data. Thereafter, the fitted GMM is used for (online) channel
estimation. Our experiments suggest that the GMM estimator
learns the intrinsic characteristics of a given base station’s whole
radio propagation environment. Essentially, this ambient infor-
mation is captured due to universal approximation properties of
the initially fitted GMM. For a large enough number of GMM
components, the GMM estimator was shown to approximate the
(unknown) mean squared error (MSE)-optimal channel estimator
arbitrarily well. In our experiments, the GMM estimator shows
significant performance gains compared to approaches that are
not able to capture the ambient information. To validate the
claim that ambient information is learnt, we generate synthetic
channel data using a state-of-the-art channel simulator and train
the GMM estimator once on these and once on the real data,
and we apply the estimator once to the synthetic and once to
the real data. We then observe how providing suitable ambient
information in the training phase beneficially impacts the later
channel estimation performance.

Index Terms—Gaussian mixture models, measurement data,
machine learning, channel estimation, ambient information

I. INTRODUCTION

Modern communications systems increasingly utilize ML
algorithms to meet the compound requirements of high-
dimensional channel estimation (CE) in massive multiple-input
multiple-output (MIMO) orthogonal frequency-division multi-
plexing (OFDM) applications [1]. The channel characteristics
of the whole propagation environment of a base station (BS)
cell can be described by means of a probability density function
(PDF) fh. This PDF fh describes the stochastic nature of all
channels in the whole coverage area of a BS and therefore
captures ambient information. Every channel of any mobile
terminal (MT) within the BS cell is a realization of a random
variable with PDF fh. The main problem is that this PDF
is typically not available analytically. For this reason, many
classical channel estimation approaches cannot be applied or
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this ambient information is ignored and replaced with Gaussian
assumptions which may only hold locally around a given user.
In this setting, ML approaches play an increasingly important
role. These aim to (implicitly) learn the underlying PDF from
data samples such that the ambient information is taken into
account in ML channel estimation algorithms [2]–[4].

According to this development, many new channel models
have been designed to capture the complex channel character-
istics of a whole BS environment. Modern channel simulators
based on ray tracing or stochastic-geometric models allow for
the generation of large synthetic datasets that can be used for
training and testing, e.g., [5]–[7]. Even though such increasingly
complex simulators generate ever more realistic BS scenarios,
it is crucial to also evaluate the performance of physical layer
(PHY) algorithms on real-world data, i.e., on data collected
in a measurement campaign. This is especially important and
interesting for ML algorithms which mainly depend on the
underlying data (PDF), e.g., [2], [4], [8].

An evaluation of an ML-based CE algorithm on measurement
data was done in [9], where a neural network-based estimator is
analyzed. However, the estimator in [9] was originally derived
via assumptions on the channel model and on the antenna
configuration which might not hold in practice. In this work, we
evaluate the recently proposed GMM-based channel estimator
from [4] on data originating from the same measurement
campaign. The estimator first approximates the PDF fh of
the whole radio propagation environment with a GMM. This
is done offline and only once. Thereafter, the estimator utilizes
this ambient information for CE in the online phase. The
estimator is proven to asymptotically converge to the optimal
conditional mean estimator (CME) (which would be calculated
using the unknown PDF fh) but so far was only evaluated on
synthetic data.

Our experiments indicate that the GMM estimator captures
the ambient information well because it outperforms state-of-
the-art CE algorithms evaluated (and trained) on the same
measurement data. In particular, we achieve lower MSEs and
higher spectral efficiencies. In addition, we generate synthetic
channel data using a state-of-the-art channel simulator and train
the GMM estimator once on these and once on the measurement
data, and we apply the estimator once to the synthetic and
once to the measurement data for evaluation. We observe that
providing suitable ambient information in the training phase
beneficially impacts the CE performance.
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The remainder of this work is organized as follows. In
Section II, the GMM channel estimator is explained and in
Section III, the measurement campaign is described and a
channel simulator is introduced for comparison. Section IV
provides simulation results and Section V concludes this work.

II. GAUSSIAN MIXTURE MODEL CHANNEL ESTIMATOR

We consider CE in the uplink from a single-antenna MT
located within the cell to a BS. The BS is equipped with N
antennas. After correlating with the commonly known pilot
sequence, we obtain the noisy observation

y = h+ n ∈ CN , (1)

where h ∈ CN is the uplink-channel of a certain MT located
within the coverage area of the BS and n ∼ NC(0,Cn = σ2I)
denotes the additive white Gaussian noise (AWGN). The goal
is then to estimate the channel h given y, i.e., to denoise the
observation y. The stochastic nature of all channels in the
whole coverage area of the BS is assumed to be described by
means of a continuous PDF fh. Every channel h of any MT
located within the BS cell is a realization of a random variable
with PDF fh. For such a system model, the MSE-optimal
channel estimator is given by the CME

ĥ = E[h | y] =

∫
hfh|y(h | y)dh, (2)

which can generally not be computed analytically. Further, fh
is typically not available in an analytic form.

However, in [4] a method to approximate (2) with the help
of GMMs was proposed. To this end, assuming to have access
to a set HM = {hm}Mm=1 of training channel samples, which
represent the radio propagation environment (ambient informa-
tion), and motivated by universal approximation properties of
GMMs [10], we fit a GMM f

(K)
h with K components to HM

in order to approximate the unknown channel PDF fh.
A GMM is a PDF of the form [11]

f
(K)
h (h) =

K∑
k=1

p(k)NC(h;µk,Ck), (3)

where every summand is one of its K components. It is
characterized by the means µk ∈ CN , the covariances
Ck ∈ CN×N , and the mixing coefficients p(k). Maximum
likelihood estimates of these parameters can be computed
using an expectation-maximization (EM) algorithm and the
training data set HM , see [11].

The idea in [4] is to compute the MSE-optimal estimator
ĥ
(K)
GMM for channels distributed according to f (K)

h and to use
it to estimate the channels distributed according to fh. This
estimator ĥ(K)

GMM converges pointwise to the optimal estimator
ĥ from (2) as K →∞, cf. [4].

Once the (offline) GMM fitting process is done, the (online)
channel estimates can be computed in closed form:

ĥ
(K)
GMM(y) =

K∑
k=1

p(k | y)ĥLMMSE,k(y), (4)

with the responsibilities

p(k | y) =
p(k)NC(y;µk,Ck +Cn)∑K
i=1 p(i)NC(y;µi,Ci +Cn)

, (5)

and

ĥLMMSE,k(y) = Ck(Ck +Cn)−1(y − µk) + µk. (6)

The weights p(k | y) are the probabilities that component k
generated the current observation y, cf. [4].

A. Complexity Analysis and Low Cost Adaptations

The inverse in (6) can be precomputed offline for various
signal-to-noise ratios (SNRs) because the GMM covariance
matrices Ck do not change once the GMM fitting process
is done. Accordingly, evaluating (6) online is dominated by
matrix-vector multiplications and has a complexity of O(N2).
It remains to calculate the responsibilities (5) by evaluating
Gaussian densities. A Gaussian density with mean µ ∈ CN
and covariance matrix C ∈ CN×N can be written as

NC(h;µ,C) =
exp(−(h− µ)HC−1(h− µ))

πN det(C)
. (7)

Again, since the GMM covariance matrices and mean vectors
do not change between observations, the inverses and the
determinants of the densities can be pre-computed offline.
Therefore, the online evaluation is also in this case dominated
by matrix-vector multiplications and has a complexity of
O(N2). Overall, evaluating (4) has a complexity of O(KN2)

[4]. Since ĥ(K)
GMM converges pointwise to the MSE-optimal

estimator ĥ form (2) as K → ∞, a trade-off between the
performance of the estimator and the complexity can be
achieved by adjusting the number K of GMM components.

The complexity of the estimator from (4) can be reduced
by introducing structural constraints to the GMM covariance
matrices Ck. For example, in case of a uniform linear array
(ULA) employed at the BS, it is common to assume Toeplitz
covariance matrices, see, e.g., [12]. Further, for large numbers
of antenna elements, a Toeplitz matrix is well approximated
by a circulant matrix [13]. Motivated by these common
assumptions we enforce structural constraints onto the GMM
covariances. Since we consider exclusively an environment,
where at the BS a uniform rectangular array (URA) with
Nv vertical and Nh horizontal (N = Nv × Nh) elements is
employed, the structural assumptions result in block-Toeplitz
matrices with Toeplitz blocks, or block-circulant matrices with
circulant blocks, respectively [14]. In general the structured
covariances can be expressed as

Ck = QH diag(ck)Q, (8)

where on the one hand, when assuming a Toeplitz structure,
Q = QNv ⊗ QNh

, where QJ contains the first J colums
of a 2J × 2J discrete Fourier transform (DFT) matrix, and
ck ∈ R4NhNv

+ [14], [15]. On the other hand, when assuming
circular structure, we have Q = FNv

⊗ FNh
, where FJ is

the J × J DFT-matrix, and ck ∈ RNhNv
+ . In both cases, the

structural constraints allow to store only the ck’s of a GMM



which drastically reduces the memory overhead and the number
of parameters to be learned, similar as in [4], [16].

Further, in case of circular covariances, the complexity of
evaluating (4) reduces to O(KN log(N)), where 2D-DFT
transforms are exploited when evaluating (5) and (6), cf. [4].

III. MEASUREMENT CAMPAIGN AND SYNTHETIC DATA

The measurement campaign was conducted at the Nokia
campus in Stuttgart, Germany, in October/November 2017. As
can be seen in Fig. 1, the receive antenna with a down-tilt of 10°
was mounted on a rooftop about 20 m above the ground and
comprises a URA with Nv = 4 vertical and Nh = 16 horizontal
single polarized patch antennas. The horizontal spacing is λ
and the vertical spacing equals λ/2, where the geometry of the
BS antenna array was adapted to the urban microcell (UMi)
propagation scenario, which exhibited a larger horizontal than
vertical angular spread. The carrier frequency is 2.18 GHz.
The BS transmitted time-frequency orthogonal pilots using
10 MHz OFDM waveforms. In particular, 600 sub-carriers with
15 kHz spacing were used, which resembles typical Long Term
Evolution (LTE) numerology. The pilots were sent continuously
with a periodicity of 0.5 ms and were arranged in 50 separate
subbands, with 12 consecutive subcarriers each, for channel
sounding purposes. For the duration of one pilot burst the
propagation channel was assumed to remain constant.

The single monopole receive antenna, which mimics the MT,
was mounted on top of a moving vehicle at a height of 1.5 m.
The maximum speed was 25 kmph. Synchronization between
the transmitter and receiver was achieved using GPS. The data
was collected by a TSMW receiver and stored on a Rohde &
Schwarz IQR hard disk recorder.

In a post-processing step, by the correlation of the received
signal with the pilot sequence a channel realization vector with
N = Nv × Nh coefficients per subband was extracted. The
measurement was conducted at a high SNR, which ranged from
20 dB to 30 dB. Thus, the measured channels are regarded as
ground truth. Further, we assume fully calibrated antennas and
thus channel reciprocity is assumed. In this work, we will
therefore consider a system, where we artificially corrupt the
measured channels with AWGN at specific SNRs and thereby
obtain noisy observations y = h + n. The task is then to
denoise the observations and obtain an estimated channel ĥ.
We want to highlight that we investigate a single-snapshot
scenario, i.e., the coherence interval of the covariance matrix
and of the channel is identical (the channel covariance matrix
changes at the same time scale as the channel).

A. Synthetic Data Generation using QuaDRiGa

Version 2.6.1 of the QuaDRiGa channel simulator [5], [17]
was used to generate channel state information (CSI) in a UMi
scenario. The environment for which synthetic data is generated
was adapted as closely as possible to the circumstances of
the measurement environment. For this reason, the carrier
frequency was set to 2.18 GHz. The base station is placed at
a height of 20 meters. The minimum and maximum distances
between MTs and the BS are 35 m and 315 m, respectively. The

Line of Sight

Non-Line of Sight

Images @ 2018 Google Maps, GeoBasis-DE/BKG

Fig. 1: Measurement setup on the Nokia campus in Stuttgart,
Germany.

MTs are located outdoors at a height of 1.5 m. A QuaDRiGa
channel is given by h =

∑L
`=1 g`e

−2πjfcτ` with ` the path
number, L the number of multi-path components (MPCs), fc
the carrier frequency, and τ` the `th path delay. The number
L depends on whether there is line of sight (LOS) or non-
line of sight (NLOS) propagation, cf. [17]. The coefficients
vector g` consists of one complex entry for each antenna
pair and comprises the attenuation of a path, the antenna
radiation pattern weighting, and the polarization. As described
in the QuaDRiGa manual [17], the generated channels are
post-processed to remove the path gain.

IV. EXPERIMENTS AND RESULTS

Normalizing the data so that E[‖h‖2] = N allows us to
define an SNR in our simulations as 1

σ2 . Given T test sam-
ples {ht}Tt=1 and obtaining corresponding channel estimates
{ĥt}Tt=1, we use the normalized MSE 1

NT

∑T
t=1 ‖ht − ĥt‖2

as performance measure.
The following baseline estimators are considered. In the

system at hand, the least squares estimate is simply given
by the noisy observations ĥLS = y. Another baseline is the
sample covariance matrix based approach, where we construct
a sample covariance matrix Cs = 1

M

∑M
m=1 hmh

H
m given a set

of training samples and calculate linear minimum mean square
error (LMMSE) channel estimates ĥs-cov = Cs(Cs +Cn)−1y.

Compressive sensing approaches commonly assume that the
channel exhibits a certain structure: h ≈ Dt, where D ∈
CN×L is a dictionary. We used an oversampled DFT matrix
as dictionary, with L = 4N (cf., e.g., [18]). A compressive
sensing algorithm like orthogonal matching pursuit (OMP) [19]
can then be used to obtain a sparse vector t, and the estimated
channel is calculated as ĥOMP = Dt. Since the sparsity order
of the channel is not known but the algorithm’s performance
crucially depends on it, we use a genie-aided approach to obtain
a bound on the performance of the algorithm. In particular, we
use the true channel to choose the optimal sparsity order.

We further compare to a convolutional neural network
(CNN)-based channel estimator, which was introduced in [12].
There, the authors exploit assumptions which stem from a
spatial channel model (3GPP, cf. [20]) in order to derive the
CNN architecture. The CNN is then trained on measurement
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Fig. 2: Normalized MSE for various estimators over the SNR
(evaluated on measurement data, with T = 10,000 samples).
Each GMM approach is constructed using K = 64 components.

data to compensate the mismatch of the assumptions and the
real world data. We use the rectified linear unit as activation
function and the input transform is based on the 2N × 2N
DFT matrix, cf. [12, Equation (43)].

In Fig. 2, we use T = 10,000 channel samples stemming
from the measurement campaign for evaluating the perfor-
mances of the different channel estimators. In particular, we
compare the GMM estimator with full covariances, denoted by
“GMM”, and block Toeplitz (“Toep. GMM”) or block circulant
(“circ. GMM”) covariances, to the state-of-the-art estimators
described above. In total we use M = 300,000 channel samples
stemming from the measurement campaign as training data in
the fitting process of the GMM approaches, each with K = 64
components. Also the learning process of the CNN estimator
(“CNN”) and the construction of a sample covariance matrix for
the sample covariance LMMSE estimation approach (“sample
cov.”) use these M samples.

The GMM estimator with full covariance matrices performs
best over the whole SNR range from −15 dB to 20 dB,
followed by the “Toep. GMM” and the “circ. GMM” ap-
proaches. As expected, the GMM estimator’s performance
suffers from introducing structural covariance constraints but
it still outperforms the other channel estimation approaches.
With “GMM (QuaDRiGa)” we depict the GMM approach
where synthetic training data (M = 300,000 samples) is used
to fit the GMM. Despite using synthetic data of an environment,
which was adapted as closely as possible to the circumstances
of the measurement campaign’s environment, we can observe a
severe performance degradation in the estimation performance
of the GMM estimator.

In Fig. 3, we replace the test data and use T = 10,000
synthetic channel samples for comparing the “GMM” estimator
(fitted with measurement data), the “CNN” approach (trained
on measurement data), the “sample cov.” approach (sample
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Fig. 3: Normalized MSE for various estimators over the SNR
(evaluated on synthetic data, with T = 10,000 samples). Each
GMM approach is constructed using K = 64 components.

covariance obtained using measurement data) with the “GMM
(QuaDRiGa)” (fitted with synthetic data) approach. We can
observe that the “GMM (QuaDRiGa)” approach now performs
best since the learned ambient information now matches the
synthetic test data on which the estimator is evaluated. We
conclude that using synthetic channel data is not suitable to
replicate the ambient information of the campus where the
measurement campaign was conducted, and vice versa. Thus,
this validates the claim that ambient information is learnt by
the GMM when provided suitable training data. We further
want to highlight that the CNN estimator which constitutes a
data based approach as well, should also be able to capture the
underlying ambient information of the considered propagation
environment. Up to some extent this seems to be the case since
the CNN approach exhibits the best performance right after
the GMM approaches. Nevertheless, even the GMM approach
with block circulant covariances, which has the same order
of complexity as the CNN approach, yields a better overall
estimation performance.

In Fig. 4 we consider the same simulation parameters as
in Fig. 2, and analyze a performance upper bound for the
achievable spectral efficiency

r̄ = E

[
log2

(
1 +
|ĥHh|2

σ2||ĥ||2

)]
, (9)

when applying a matched filter ĥH

||ĥ||
in the uplink [12], which

may also be interpreted as a measure of the accuracy of the
estimated channel subspace [12]. Note, that there is no one-by-
one relation between the spectral efficiency and the MSE in
general, cf. [9]. In essence, we can observe that the GMM yields
the best performance while there is only a minor degradation
when using structured covariances.

In Fig. 5, we depict the behavior of the GMM estimator
with full covariances for a varying number of components K
and a varying number of training data used to fit the GMM.
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Fig. 5: Normalized MSE of the GMM estimator with full co-
variance matrices over the number of components K (evaluated
on measurement data, with T = 10,000 samples). The GMM
estimator is fitted using M · 103 samples. The SNR is 10 dB.

The SNR is 10 dB. The number of parameters of a GMM
increases with an increasing K, which requires more training
data to achieve a good fit. As the figure suggests, as long as
there are enough training data, increasing K leads to a better
performance.

In contrast, in Fig. 6, where we consider GMMs with
fewer parameters by assuming either block Toeplitz (top) or
block circulant (bottom) covariances, we can observe that the
estimator already achieves a good performance with a low to
moderate number of available training samples. In particular,
with structured covariances, increasing K leads to a better
performance already with more than 100,000 available training
samples. Overall, in Fig. 5 and Fig. 6, even a small to moderate
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Fig. 6: Normalized MSE of the GMM estimator with block
Toeplitz (top) or block circulant (bottom) covariances over the
number of components K (evaluated on measurement data,
with T = 10,000 samples). The respective GMM estimator is
fitted using M · 103 samples. The SNR is 10 dB.
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Fig. 7: Average responsibilities of the GMM components
(evaluated on measurement data, with T = 10,000 samples).
The SNR is 10 dB.

number of components (K = 16 or K = 32) performs well.
Accordingly, a suitable number of components K should be
determined based on the amount of available training data and
the desired overall estimation complexity.

In Fig. 7 and Fig. 8, we aim to investigate the differences in
the distributions of the synthetic and the measurement data from
a different perspective: We plot the average responsibilities,
cf. (5), of the GMM when fitted on either synthetic (“GMM
(QuaDRiGa)”) or on measurement (“GMM”) data. To this
end, we evaluate p(k | y) for each observation y and
average these responsibilities with respect to the samples in
the evaluation set with T = 10,000 samples and an SNR
of 10 dB. Afterwards, we sort the components from highest
to lowest average responsibility. In Fig. 7, the evaluation set
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Fig. 8: Average responsibilities of the GMM components
(evaluated on synthetic data, with T = 10,000 samples). The
SNR is 10 dB.

contains only measurement data. It can be observed that the
average responsibilities of the GMM fitted on synthetic or
on measurement data are similar up to some extent. That is,
the channel simulator is able to capture general information
about the underlying UMi scenario—but not the details of
the measurement environment in its full extent. In contrast, in
Fig. 8, the same GMMs are evaluated with synthetic data. The
average responsibilities can be clearly distinguished since a
large mismatch can be observed. A possible explanation for this
observation is that the GMM fitted onto the measurement data
is specifically designed for the environment of the measurement
campaign with unique immanent characteristics. In contrast to
the channel simulator with a stochastic nature (hence aiming to
model general UMi scenarios), this GMM does not generalize
to different UMi scenarios. This behavior is desirable since the
distinctive design allows for performance gains as discussed
earlier. Fig. 7 and Fig. 8 show above all that the attempt to
represent channel data with the false GMM only works to a
limited extent, which can be seen, among other performance
metrics, from the fact that fewer components of the false GMM
are identified as representative than would be the case with the
correct GMM. This underlines the importance of an evaluation
with measurement data.

V. CONCLUSION AND OUTLOOK

In this work, we used real-world data stemming from a
measurement campaign in order to evaluate and validate a
recently introduced GMM-based algorithm for uplink channel
estimation. Our experiments suggest that the GMM estimator
learns the intrinsic characteristics of a given base station’s
whole radio propagation environment. To validate the claim
that ambient information is learnt, we conducted experiments,
where we used test data either stemming from the measurement
campaign or synthetic data. We observed that providing suitable
ambient information, which is implicitly contained within the
data, in the training phase (offline), beneficially impacts the
channel estimation performance in the online phase. We further
showed that structurally constrained covariances of the GMM,
which are motivated by model-based insights, also work well
when using real-world data. In particular, one can drastically

reduce the computational complexity and memory overhead
with only small performance losses. An immediate additional
advantage is that less training data is needed due to the lower
number of GMM parameters, which need to be fitted, when
assuming structural constraints. Future work might consider
a more accurate and involved emulation of the propagation
environment using a digital twin. For example, a digital
representative of the propagation environment can be generated
using a ray tracing tool, where the measurement campus with
all of the buildings and streets, which are characteristic for
certain propagation properties, is recreated virtually. Given the
digital twin of the propagation environment, the performance
of the data based channel estimators might be evaluated under
these more accurate digital representatives.
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