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Abstract—The growth of real-time content streaming over the A more popular approach to P2P Streaming is using appli-
Internet has resulted in the use of peer-to-peer (P2P) appaxhes cation layer multicast with a full mesh topology among peers
for scalable content delivery. In such P2P streaming systes The idea is to maintain a playout buffer, andgoll chunks

each peer maintains a playout buffer of content chunks which . to the buffer b icati ith d lecti
it attempts to fill by contacting other peers in the network. The into the butter by communicaling with a random  selection

objective is to ensure that the chunk to be played out is avaable Of peers. This approach bears a strong resemblance to the
with high probability while keeping the buffer size small. Given  BitTorrent technique [9] of selecting peers from a full mésh

that a particular peer has been selected, golicy is a rule that  grder to exchange chunks [9]. However, the sequential playo
suggests which chunks should be requested by the peer from ., iraint requires that the chunk to be played next is aiviail
other peers.. We consider consider a number of recently suggted . . .

policies consistent with buffer minimization for a given target of when required. .Several systems exist that use this apptoach
skip free playout. We first study ararest-first policy that attempts ~ content streaming, and notable examples are CoolStreaming
to obtain chunks farthest from playout, and a greedypolicy that [10] that was one of the first systems to employ this approach,

attempts to obtain chunks nearest to playout. We show that ty ~ and some that are highly popular in East Asia such as PPLive
both have similar buffer scalings (as a function of the numbe [3], QQLive [4] and TVAnts [11].

of peers of target probability of skip-free probability). We then . . .
study a hybrid policy which achieves order sense improvemea In this paper we study optimal algorithms for mesh-based

over both policies and can achieve order optimal performane. P2P multicast. Here, a server generates chunks at constant
We validate our results using simulations. rate, and randomly selects on peer to push it to. Other
peers select some other peer at random, and request some
chunk in the selected peer’'s possession. The objective is to
Peer-to-peer (P2P) networks are rapidly becoming tleasure that the chunk that needs to be played out is available
medium of choice for content distribution over the Internetvith high probability. Under this paradigm, a distribution
Several studies have indicated their widespread adopiweh, algorithm essentially answers the following questi@iven
suggest that anywhere between 35-90% of Internet bandwitltlat a particular peer has been selected, which chunk from
is consumed by P2P applications [1], [2]. The initial applic that peer should be pulled”Phe answer is not obvious, since
tion of the P2P idea was for file sharing, but as P2P file sharing the one hand pulling the chunk with the shortest playout
networks have matured, many ideas have been transplanteddadline might be optimal in the short term, but might yield
media streaming applications with a degree of succegs (poor performance as far as the rest of the peers are concerned
[3], [4]). As entertainment delivery over the Internet bews On the other hand, pulling a chunk that is farthest from playo
increasingly main stream, P2P streaming is likely to assumeuld give maximum amount of time for its dispersal amongst
an even greater significance. peers, but this might be at the expense of the chunk that is mos
Streaming media using P2P has a more exacting seturfently required. It is also clear that the question careot
constraints than file sharing since eatttunkthat constitutes answered independently of the buffer size, since a largebuf
the streamed file must be received within a certain deadlisize gives more time for chunk dispersal than a short one.
in order to allow for smooth sequential playing out of the There has been considerable interest in P2P systems for both
media. A natural approach for designing streaming networkle delivery and streaming. Analytical models and studiés o
that inherently possesses this sequential nature of simganthe achievable limits of P2P file delivery are presented 2}{1
is to create a multicast tree amongst the source and ugdd®]. The primary objective of these studies is to ensuré tha
either at the IP or higher layer [5]-[7], and pushchunks all interested peers obtain the entire file with as short aydel
on the tree. However, this approach often needs significas possible. Our current work uses some of the techniques
infrastructural overheads to perform adequately; for gdem used in these papers, but since we focus live streaming, the
an IP layer multicast requires support by the routers in tlubjective is somewhat different due to the sequential eatur
network. Another issue is that when end-users act as the petiplayout. There have also been analytical and simulation
nodes in the multicast tree, the churn caused by usersragrivstudies of tree and mesh based P2P streaming [8], [17]. In [8]
and departing causes significant inefficiencies [8]. mesh versus tree approaches are considered primarily using
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simulations, whereas in [17] upper bounds on performance to a buffer position where the probability of occupancy
are developed. Tree-based approaches are considered-in [5] is greater thamr, and switches to using the greedy policy
[7], but since we consider end-user P2P, we focus on a full from there on. For this policy, we show that there exist
mesh pull based approach. The study in [18] considers using constantsa. and a..,, independent ofA/ and ¢, such

BitTorrent to directly assist in live streaming. Finallyhet that, if the buffer sizen satisfies

authors of [19], [20] consider a general class of streaming 1

algorithms. Their main contribution is to develop an ariasjt m > alog(M) + ae, log <f) ;

model of P2P real-time streaming algorithms, and numdyical 9

show that based on available server capacity, differentitiyb then the skip-free playout probability, . (m) > q.

of greedy and rarest-first policies perform better thanegith ~ Thus, the buffer size required by this policy less than
of the constituent policies. Our work develops on the model that required by either of the two policies it is composed
introduced in [19], but our goal is to analytically answee th of in an order sense.
following question: how much buffer size reduction can babove,log(.) refers to bas€. Consider an example scenario
achieved using a hybrid policy? We are interested in thighere we havel/ = 10,000 and a target probability of skip-
question since a large buffer size increases start-up dateffree playouty = 99.9%, we see that both the rarest-first and
and adversely impacts the “real-time” nature of the systemreedy policies would need a buffer size of the ordetGsfos,
The model in [20] is slightly more accurate than the one Whereas the hybrid policy would need a buffer size only of
[19], but the model in [19] is more tractable which allows as tthe order ofl0s. We contrast the results with a straightforward
obtain design insights which are confirmed by our simulatidower bound. Given a target probabili% < ¢ < 1, the buffer
results. size to attain this target probability under any policy ddou
Main results be at leastog M, which for our example is also of the order

, i of 10s. Further, for a target of > 1 —1/M, the hybrid policy

The system that we consider consistsidfusers who are ju-in< this lower bound in an order sense.

all simultaneously interested in a reaITume content si_rea Finally, we show using simulations that the order sense
generated by a server. The stream con5|st_s of _chunks with ?88uction in buffer size promised by the hybrid-policy do
new chunk generated at each discrete time instant, and fig.oq materialize, particularly when the desired target o
server selects one peer at random for each new chunk. P Ber occupancy is high, so arguing for the adoption of such

obtain chunks either if they are selected by the server, or §/'brid chunk selection policies in P2P streaming systems.
full-mesh P2P with random peer selection. Peers maintain a

buffer of sizem, with the chunk in thenth location played out 1. BACKGROUND AND MODEL

at each time instant if available. We have a target of sk \we first introduce the model of a P2P content streaming
playout probability of over all peers. ~ system developed in [19] under a large-system assumption.
We present an analytical characterization of the scaling ﬂt:cording to the model, time is considered to be slotted
required buffer sizen with M andq under different policies. 54 is synchronized across the whole system. The system is
The main results of of our analysis are summarized below; strated at some time slot in Figufé 1, and consists of a
« We consider therarest-first policy wherein priority is single server and/ peers. The server is a source of real-time
given to the chunks farthest from playout. In other wordgontent such as media coverage of a live event, and generates
a peer picks that chunk in the difference set with higne chunk of new data per time slot. The server has a limited
selected peer that is closest to the first buffer positioBemmunication capacity, and is able to transmit this chank t
We show that given any target probabilitys < ¢ < 1, exactly one peer. It does so by choosing one of Miepeers
the buffer size to attain this target probability with theyt random. Each peer is assumed to have a buffer ofisize

rarest-first policy scales approximately as with the buffer positions indexed bye {1,..,m}. As shown
log(M) + log(20 — 1 1 in Figure[d, in each time slot they attempt to playout the éun
og(M) +log(2g — 1) + 20— q)° at buffer positionm, causing a rightward shift of the buffer

. We then consider thgreedy policywherein priority is contents by one position. Since the data stream is real-time

given to the chunks closest to playout. Thus, a peer picRSerS are synchroqized a_nd they all attemp to ple_lyout the
that chunk in the difference set with his selected peer th me chunlof data; in the figure the chunk Ia_b_ele_d A's to be
is closest to thenth buffer position. We show that givenIO ayeq out by aI_I the peers. [f the buffer. pqsmmns empty,

any target probability > ﬁ’ the buffer size to attain this there is a gap in play out, and the missing chunk is never

target probability with the greedy policy approximatel;?e_C oyered (|(.je., the rlghtw_ard sh|ftt1 ocgurz ev|_e| nif th?hd’hm ¢
scales in a similar fashion as missing, and peers remain synchronized). Hence, the peer a

the bottom of Figur€ll will never obtain chunk A.
—_— Peers are part of a P2P network, and they can potentially
L—q+ g7 obtain any chunk from each other until the point of playout
o We develop dybrid policyh. which combines the greedy of that chunk. Thus, chunks B through O can be obtained
and the rarest-first policies. The policy uses rarest-fipst through P2P chunk sharing. Our P2P network model is a fully

log(M) +log(q) +
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where A is the difference set between the peers as defined
above. In other words;(,, ,,,) (i) is the probability that a peer
m chooses to download churikrom its selected peex, given
thatw does not possess chunkvhile \ does. This selection
probability is a function of the chunk selection poligy.
As mentioned earlier, a number of independence assumptions
have been made in arriving at the above model; see [19] for
an informal justification.

Two policies that are of particular interest are the follogui

1) Rarest-first: Under this policy (denoted by), priority
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Fig. 1. A P2P content streaming system. Content is genere@dime at
server, and each chunk is sent to oneldf interested peers. Peers try to

obtain chunks via P2P among themselves. Chunks are shiftdtetright by
one position at each time step, and the chunk at positiois played out if
available. We would like to ensure that all peers possesshthek at position
m with high probability.

connected graph. Each peer chooses one peer at random, and
may request a chunk from it. There are no restrictions on
upload and download bandwidths, since with random peer,
selection the number of peers selecting any one peer is finite
with high probability (so the results would essentially be t
same even with such bandwidth constraints). Suppose that a
peer has a set of chunkd and its selected peer has a set of
chunksR. Define 4 = R\ Q. Then a chunk selectiopolicy
1 is a rule by which the peer selects one of the chunkgl.in
The model in [19] is an equilibrium model, i.e., it studies
the system assuming that it is in steady-state. We assume

is given to the chunks that have the lowest steady-
state probability. From[{1) for any policy we have
P(um) () < peumy (i) for j < i. Hence, rarest-first is
equivalent to selecting chunks with priorigy> 3... >
m—1. An interesting result of [19] is that for this policy

) Greedy: Under this policy (denoted by), priority is

given to the chunks that are closest to playout. Fidm (1)
this is equivalent to prioritizing those chunks that have
the highest steady state probabilities. Hence, the greedy
policy selects chunks with prioritys—1 > m—2... > 2.

It is shown in [19] that for the greedy policy

. 1 .
S(g,m) (Z) =1- M — P(g,m) (m) +p(q,m) (Z + 1) (4)

that the buffer occupancy probabilities have a steadystathe objective is to find a policy that has the smallest value of
distribution where the steady-state probability that @uéipace 1 for a target value opy,, ,,,)(m). In other words, we would
i is occupied is denoteg, ., (i). We assume that this like to find a policy that requires the smallest buffer size fo
distribution is identical and independent across peerswés a desired probability of skip-free playout.

will see shortly, under the independence assumption, it is
analytically tractable to characterize the impact of thst re

IIl. I NSIGHTS FROM AFLUID APPROXIMATION

of the system on a single peer. This is similar to mean-field Our first objective will be to obtain insight into the perfor-

approximations in physics where, in a large system, the @npanance of the chunk-selection policies by approximating the
of the rest of the system on a single particle is capt_ured by#ference equations in the previous section by diffenti
“mean field.” In our case, the large-system assumption meastifuations. The resulting model is called the fluid model.

that M is assumed to be large.

While the fluid model is not precise, the main purpose of

Under the above assumption, we can write down a simpléis model is to provide key intuition which will serve as

relation between the steady state probabilities (at thanbety
of any time slot) of buffer occupancies as follows:

the basis for our analysis in the next section, where will
rigorously prove all results in the next section by directly
working with the difference equations. Let us first consider
the expression describing the steady state probabilitig®)i

+ 8(u,m) ()P (u,m) () (1 = Pum) (1)) ¥i>1, (1) We can approximate this system of difference equations by
1 using differential equations in the following manner.
p(,u.,m)(l) = M (2) _
. o . . dp(u,m) (Z> - . . .
In the above, since buffer positian-1 is filled by a rightward — g Swm) (D)P(a,m) (D) (1 = P(,m) () (5)
shift from buffer positioni, its steady state probability at the 1
beginning of the current time slot is the probability that P(um) (0) = M (6)

was already filled at the beginning of the last time slot, plLEonsistent with the fluid approximation, when applying the

the probability thati was filled by P2P methods during theabove equation to the areedv policy. we will replace. b
last time slot. The latter term is derived by consideringt tha . q ; g y Polcy, 1 Plagtes by
i in the expression fos, ., (i) given in [4).

P(um) (0)(L = D(um) (7)) IS the probability that a peer does nof’ In this section, we will provide a heuristic explanation of
possess but the selected peer does, and o . . .
the main ideas in the paper by using the above fluid model.

$(um) (i) = Z P(selecti| A)P(A), In t.he later septions, we will use this intuition to deriverou
AieA main results directly from the discrete model.



A. Buffer sizing for the rarest-first policy Using p(g,m)(0) = 1/M, pg.m)(m) = q and settingi = m,
We first use the fluid model to study the minimum buffethe above yields

size required to achieve a given probability of buffer occu- 1 q(1 —1/M)
pancy. We have the following result. mET T (1—q)/M°

Fluid Result 1: The buffer size m required to attain which gives the desired result -
p(a’/l)((l —)q)_)Elq using the rarest-first policy i)(log M) + Fluid Result 3: The buffer size m required to attain

Proof: From [8) and[(B), the dynamics of the rarest- fws?% qm)(m) = q using the greedy policy i (log M)+Q(1/(1—-
li b
policy are given by Proof: Fix a € (0, (q—1/M)/(1—q)). SINCep(y.m) (0) =
dpr,m) (2) - p @)(1—p (i)2. 1/M andp,, ) (m) = q, there must be some € (0, m) for
di (rym)? (ram)\® which p, ) (k) = 1/M +a(1 — q). Then for alli < &, since
Solving the above differential equation using conditib) (6)(i) is an increasing function, we have the following upper

yields bound ons g ) (i) :
di — + ’ : ; =1—q— — <l—q— — =
2oy T T om0 = Do) s()) =1~ q— 37 +p() S1—q— 57 +plk) = g, M),
_— , L —p(r.m) (i) where
i = I (e (M) —In <71 i )" ¢(q, M) == (1+ a)(1 —g).
! _ ! —. Thus, the solution to
1- P(r,m) (Z) 1- i d
) ) . p(g,m) o . 1 .
Thus, for a targep,.,)(m) = ¢, the required buffer size is —di $(1)p(g.m) (D)1 = pg,m) (1))
given by is upper bounded by the solution to
1—g¢q 1 1
=In(¢gM) —In + - . dp(g,m .
(M) (1—1/M> l-q¢ 1-4 SZ L = (g, M)p(g.m) (1) (1 = g,y (0).
The desired result follows. B Solving the second differential equation above yields
B. Buffer sizing for the greedy policy p(i)(1 — p(0)) i 9
We have the following upper and lower bounds on the (1 —p(i))p(0) (g, M) ©

minimum buffer requirements for the greedy algorithm.

Letting ¢« = k and substitutingy(k) = 1/M 1- ives
Fluid Result 2: The buffer size m required to attain nge ubstituting (k) M +all=q), gv

P.m)(m) = q using the greedy policy igD(log M) + m>k — LI 1/M+ ol —q)

O((1/(1 = q)) log(1/(1 — q))). - c(q, M) (1/M)
Proof: From [3) that, withpy ,,)(m) = ¢, we have N 1 In 1-1/M
Stomy(1) =1 =4 — — + plom(i+1) > 1— ) M) 1-1M=oll =9
(g:m) (* 47 3 T Pem - © It is easy to check from the above expression thatis

where the inequality follows sincgy, ..\ (7) is increasing and €2(log M) whenq is fixed and2(1/(1 — ¢)) when is fixed.
P(g,m)(0) = 1/M. Hence, the solutiop, ,, to [

dp(g,m) C. A hybrid policy
— =3 ,m P(g,m 1-p ,m . . .
_ di (o) (PG, (E)( (g (2) Our conclusions from the previous two subsections are:
is greater than the solutiopy, ,,, to « The buffer size requirement for both the rarest-first and
dp(g,m) _ ) greedy policies have logarithmic scaling in the number
di = (1 - q)p(q,m) (7’)(1 — P(g,m) (Z)) of users@(log M)
The latter equation can be solved as follows: « The buffer size requirement grows at leastld$l — q)
dp (i) for both policies when the desired skip-free playout
% = (1= q)p(gm) (D) (1 = pigm) (i) probability isq.
dp(g.m) (i) This suggests that the buffer size requirement could be high
(1—q)di = (g;m) 1" if very stringent QoS is required, i.e., a skip-free playout
Pgm) (D1 = pig,m) (0)) probability close tol is required. In the next sections, our
1—g)i = I p(i)(1 —p(0)) (8) 9oal is to understand if there is a different policy that can
(1 —p(i))p(0) provide significant reduction in the buffer-size requiremdt

1We use the notatiod (log M) + O(1/(1  )) to denote that, with\! has been observed in [19] that the buffer-size requiremamt c

fixed, the asymptote behaves lik&1/(1 — ¢)) and, withq fixed, it behaves t_)e redu_ced by a using a hybrid_ .pOIiCy which uses the rar?St'
like ©(log M). first policy under certain conditions and the greedy policy



under certain conditions. Since both the rarest-first apedy We first provide a simple lower bound on the buffer size,
policies have similar asymptotic performance, we now use tiwvhich holds for all chunk selection policies.

fluid model to get some insight into when one policy performs Lemma 1:For any% < ¢ < 1, any chunk selection policy
better than the other, which would be helpful in designing an: and any buffer sizen, the following inequality holds

analyzing hybrid policies. Froni}(3) we have that for the sére Npmyrq > log M +logg.

first policy
8(rm) (1) = 1 = p(rm) (9), (10) Proof: First, we know that
whereas for the greedy policy with a target, ,,,)(m) = q, Pum)(J + 1)
f S . . .
rom @) | ' = P(p,m) (]) +p(u,m) (]) (1 — P(u,m) (.])) S(u,m) (Z)
S(g,m) (Z) = P(gm) (Z + 1) +1-q- 1/M (11) = p(,u.,m)(j) (1 + (1 _p(,u.,m)(j))s(,u,m) (2 )
~  P(gm) (Z) +1-q- 1/M’ < 2p(;t m)(j)

where the approximation is motivated by the fluid modeg; . p(0)
Since pirmy(1) = pgm)(1) = 1/M, for M > 2 and
small (1 - q), S(g_’m)(l) < S(Tym)(l). ThUS,p(Tﬁm)(Q) > .
P(g,m)(2). By induction, it follows that, for allj such that Py +1) < 2
Pr,m) () < 0.5, we haves g ,,)(j) < s¢rm)(j), Which im- ' n
pliesS p(,.m)(j +1) > p(g,m) (i +1). This suggests that, for the Thus,

lower buffer positions, larger buffer occupancy probaiei N(p,m);i+q = log M +logg.
can be obtained by using the rarest-first policy.

= 1/M, it follows from a simple induction
argument that

[
Next, let us consider the higher buffer positions, i.e., _ _
the ones numberedh, m — 1,.... Suppose that both theA. Rarest-first policy
rarest-first and greedy policies exactly achigyg,,(m) = In this subsection, we obtain a lower bound on the buffer

P(g,m)(m) = ¢. Then, from [ID) and[{11), it follows that size required by the rarest-first policy.

5(g,m)(m) > S(m)(m). Due to the monotonicity of both  Theorem 2:Given any target probabilitp.5 < ¢ < 1, the
P(r,m) (1) @and p, (@), it follows that there exists & such buffer size required to achieve this target probabilityhatie
that s(g.m) (i) > S@.m)(i) for all @ > m. When (1 — ¢) rarest-first policy is at least

is small andM is large, such ak would correspond to log ¢ — log(2q — 1)

P(g,m)(k) = 0.5. In the fluid model, since bothy, (i) log M +log(2q — 1) + e (112209 L.

and p(,,,) (i) vary continuously as functions af (which is & q

also a continuous variable in the fluid model), we make the
following observation: to allow for the largest increase in
buffer-occupancy probabilities, use the rarest-first gyolill Prm) (G + 1) = p(rm) (4) + Py (5) (1 — p(T_’m)(j))Q .
the buffer position where the occupancy probability is and . L
the then switch to the greedy policy. While this policy maThe above difference equation is difficult to solve, so we

not be optimal, the fluid model suggests that this may be%zrf't lower-bound the number of buffer spaces to reach an

good heuristic to combine the rarest-first and greedy padici occupancy probability of2¢—1) an(_j then further lower-bound
In the next section, by directly working with the discreime the additional buffer space required to reach an occupancy

model, we show that such a hybrid policy leads to significaR{(l):?rz?']!Irgrﬁffémmﬂ we have
reductions in the buffer size requirements for skip-fresyplit '
and is also optimal in an asymptotic order sense. N(rm)it+(29—1) = log M +1og(2q — 1), (12)

Proof: Recall thats,. ,,,)(7) = 1 — p(,,m)(i) and

IV. DISCRETETIME MODEL: LOWERBOUNDS ON THE  Which is a lower bound on the buffer size required to reach
BUFFERSIZE REQUIREMENT an occupancy probability — 2(1 — ¢q) = 2¢ — 1. Next, we
boundn ;. ;). —(2¢—1) — T(r,m);+q (the additional buffer space

In.thls section, we .obtaln lower bound_s on buffer. SiZfquired to increase the occupancy probability fr2gn- 1 to
requirement. We first introduce two notations that will bg) Under the rarest-first policy, for any > n,.,..
extensively used in our analysis. We denoterby ,,)._, the ' = Mrm)i+(20-1)

largestindex i of the buffer spaces such thag, ,,,)(i) < g, )
and 1, ).+, the smallestindex i such thatp(, ) (i) > ¢, Pem)(U+1) = Pam)(F) + Prm) (3) (1= Dirmy (7))

ie. Py (7) (14 (2 —2¢)%) .

we have

IN

N(p,m);—¢ = 1Max {Z S P(p,m) (i) < q} Thus,
Nmyrqg = min{i:pi. () >q}. Py (Rt 301 + )

It is easy to see that(,,m);—q < N(um)i+q S Mpm);—q + 1. < Pl (Mramysrz-n) (L4 (2= 20)%)7 . (13)



To obtain an upper bound Op;. ) (7 (r.m):+(29—1)); W€ Where the first inequality holds because

know that .
Pgom)(t +1) < Pgm)(N(gmy— 2 +1)
p(r,m)( (rym);+(2¢g— 1)) _ P (n ) ) < i
= Pirm) (N(rm)i—(24-1) + (gom) \Mam)itdz ) = M
2
p(r m) (n(rm );—(2¢g— 1)) 1- p (r,m) (n(r m); (2q71))) . ThUS,
It is easy to verify thatr +z(1 —x)? is an increasing function 71 < Plg.m) (ngmyir2)
> g m); —_1
in z for z > 0, so we have 2 <P () 1+ (1= L) (1—g+ )@ T
Perm) (Nrmyi+(20-1) < (20 = 1)(1+ (2 = 29)°). which yields
Substituting into inequality {43), we obtain N 1 O
J+1 n m);+ -2 -
Plrm) (et 20-1) +5) < 24— 1) (14 (2 - 29)*)" " it log (1+ (1-57) (1—a+ 7))
Now we can conclude that > 1 41

log (2 —q+ %)
Recall p(g.m) (i + 1) < 2p(g,m) (%) holds for alli. It is easy
to verify that

a < Pem)(Nem)itq)
< (2g-1) (14 (2 - 29)7) TG0

which implies that
P N(g,m)s+q ~ N(g,m);— 4 = 10g M +logq — 2.

NOte that n(g,m);_i Z n(q,m) +
) < 47, SO we can conclude that

log g —log(2¢ — 1)
N(rm);+q = N(rym);+(2g—1) = IOg (1 + (2 2q) ) - (14)

Lemmall is obtained by summing inequalitiEs](12) dnd (116(9m (9:m)i+ 37

because

_ o Ngm)tq = Mgm)tq — Ngm)i—2& T N(gm)it 2
Remark: Note that whend is small enough, we have 1
log(1 +6) ~ 6. So > 10gM+10gq—1+m-
logg—log(2¢—1) _-(1-q)+20-q) __ 1 "
log (1 + (2 - 29)?) 4(1 - q)? 2(1-q)’ Remark: When1—g and-% are sufficiently small, we have

which implies that the buffer size required by the rarest firs
policy is Q(log M) + Q(3=).

B. Greedy policy

1 o
log(2-q+2) 1-q+2

In this subsection, we characterize the buffer size requwéccordmé:; to tge theloafiem]\i\[bove whewé] >h nlthe l<3uffer
by the greedy policy. size needs to be at ledsk M + 575 and whenl —g < 4,

Theorem 3:Given any target probability > -, the buffer the buffer size needs to be at |33@$M + 4 _
size to attain this target probability with the greedy pplis ~ From Theoreri2 and Theordrh 3, we can see that either the
at least rarest-first policy or the greedy policy, if used along, riega
1 buffer with sizeQ(log M) +Q(L-). Thus, if we have a target
m- probabilityp(n) = 99.9%, the bu?fer has to have at leasi00
M chunk spaces. However, from the analysis, it is not diffitilt

Proof: Recall thats (i) = 1 — ﬁ — prgm)(m) + Se€e that under the rarest-first policy, the occupancy piibtyab

log M +logq — 1+

P(gm) (i +1). Under the greedy policy, increases slowly whedlose tog; and under the greedy policy,
, B , . . the occupancy probability increases slowlythe initial stage.
Plm)(E+1) = Digm) (@) + Pig,m) (1) (1 = Pigm) (i) X Similar observations can be found in heuristic argument and

1 . the simulations in [19]. This motivates us to consider hgbri
(1 M P m) (1) + P (0 + 1)> " policies that use the rarest-first policy on the buffer spavi¢h
Note that small indices and the greedy policy on the buffer spaces with
Py m)(n(q m)-+i) < i large indices. We will demonstrate in the next section that a
. R M properly designed hybrid policy only requiréglog M) buffer
since p(g.m)(i + 1) < 2p(g.m)(i) holds for all i. Now if sjze for any target probability such thaty > 1 — L

m > g, then for anyi <n, ., , we have
Plg, )( m)zq y (gm)i= V. DISCRETETIME MODEL: HYBRID PoLICY

Pigm) (i +1) The insight obtained on hybrid policies from the fluid model
< Ploam) (@) + Digm) (4) (1 _ L) (1 g+ 3) of S_ectionl:l]] was “use the rarest-firs_t_po_licy till the buffe
M M position where the occupancy probability is 0.5 and the then

(1 1 1 ] 3 switch to the greedy policy.” In this section we will analyze
Pigam) (1) {1+ (1= 7 —atar) ) this policy using a discrete model and show that this insight



is indeed valid and achieves the minimum buffer size (in amhere we note thab(1) = 1/M is independent of the policy
order sense) required for a given miss probability. We firsised. Thus,
formally define the policy.

Hybrid Policy: Let h. denote a policy, where is the Py (nye) 2 p(1) (14 (1—¢)*)"*
occupancy probability at which we switch from rarest-fist t - log Mp(,,.y(nyc) 16
greedy. In othe.r Wor_olsf priority is _given to buffer positioon = Mpe S log (1+ (1—€)?)’ (16)
1 to n..),4c With priority decreasing froml — n,. ). 4.
(rarest first). If the selected peer has no chunks in this &S0 we have from[(T5) that
then requests are made for chunks in positiQp.), ;. + 1 to (nye) =
m, with priority decreasing fromn — n(,.y.,. + 1 (greedy). P(r)\e) = )
The chunk ;election function that determines the polichént P,y (Mge — 1) (1 + (1= piry(nge — 1)) )
formally d_efmgd as follows: . <e (1 (- 6)2) < 2. (17)
« Considering any: such thati < n, ..., the policy
satisfies where the last line follows from the fact that1 + (1 — x)?)
; is an increasing function. Finally, frorh (16) add{17), wedna
S(he,m)(A;Z) — 1 g y ) IE:K )
o . log2Me
if ic AandAN{1,...,i—1} =0, and . ) 18
' Mtd-i= 1) TS Tog (T+ (1= e)2) (18)
S(hsvm) (A? 7’) - O
otherwise. We next characterize the performance of the greedy part of
. Considering anyi such thati > ny, .., the policy the hybrid policy.
satisfies Step 2. We first determine the buffer space required for the
) hybrid policy to exceed an occupancy probability> €. In
Sthe.my(Asi) =1 other words, we calculate . ..., and similarly charac-

if i e AandAN{L,...,npmysey i+ 1,...,m} =0, terize n,, my,—s = Mn.,my+s — 1. Again, for simplicity of
T notation within the proof, these will be denoted xass and

and
S(heam) (A7) = 0 n_s, respectively. Consider the set of buffer positighthat
_ © ’ satisfyn,. + 1 < j < n_s. From Lemmdb (see Appendix)
otherwise. and usingu £ P(h.,m)(n4e + 1) for convenience, it is easy to

We now analyze this policy and show that the buffer sizgee that
requirement of this policy is optimal in the order sense.
Theorem 4:Under the hybrid policy:, if we have a target  P(h.,m) J+1)=
occupancy of the final buffer spage> 0.8, and the switching Phem)(J) F+ Pehem) ()L = phe,my(4))

parametee = 0.5, if % (1 — @ = Py (M) + Doy (G + 1)) (19)
m > 1 11 log1_5—|—2 2 P(hem)(J) +
S ] G ——") —a €(1=08)(1 — a—ph.m)(m) + ph,m)(J +1)).
1 | é log2Me _
1ogﬁ 08T p + log(1 + (1= €)2)’ Now, choosingps.m)(m) < ¢, we have
then pj, .m(m) > q. Here,d = 0.8; a = e(1 —0);ea = Phem)(J+1) 2
a(l+(1—ea))a=el+(1-¢?). Plhem)(J) +e(1=0) (1 —a—q+pu, m(i+1))

Proof: The proof is in three parts. We make the suppo
sition thatp,_ »(m) < ¢, and prove that it results in a lower
bound on the buffer size: that violates our assumptions. where « £ ¢(1 — §). The above inequality allows us to
Step 1.In the first part, we calculate the buffer size requiregbcursively calculate (s, ) (nse + k) for k& > 1, and we

for the rarest first policy to reach an occupancy probabilityjl| use it in order to determine._s. We have
that exceeds > 0. Formally, we will determine the value of

n(r,):+¢» Which for simplicity of notation within the proof, we (1 — a)p( s, m)(4e +2) > p(h,m)(n4e +1) + (1l —a —q),
will denote byn... Recall from [1) and[{3) that since we use(; Q)P (he ) (e +3) > Doy (e +2) + (1 —a — q).
the rarest first policy for buffer positions < n,. — 1, the ’ -

occupancy probability of buffer positionis described by Hence we have

= (1= a)pth.m)(J +1) = Py (J) + (1 —a — q),

p(r,-)(i + 1) = p(r,~)(i) (1 + (1 _p(r,~)(i))2) (15) (1 — Oz)2p(h6,m)(n+5 + 3) >
> per(@) (14 (1 - 5_)2) (1 = a)ph.m)(nye +2) + (1l —a)(l —a—q),
> p(1) (1+(1-e?)", > P(hem)(ne +1) +a(l —a—q) +a(l - a)(1 —a—q). (20)



We can generalize the above as

(1= ) ' m) (Nge + k)
k—
> Phem)(Nye +1) Fa(l —a—q)
i=1
=a+(1—-a—q)(1—a) (1—(1—04)]“72),

no

a(l —a)t

where we have used our definitian £ p;,_ ) (nye + 1).
Choosingg > ¢ = 0.5 implies thata + ¢ > 1, which in turn
means that —a—q < 0. Then sincg1—a)(1—(1—a)k~2) <
1, we have the relation

l-a)l-a-q(l-(1-a) ) >1-a—q (21)

From [20) and[{21) we then have
(1= )" 'pihem)(nye + k) > a+(1—a—q) =1-q. (22)

We are now in a position to obtain a bound @n;. Let k& be
such thath . +k = n_s. Also, by definition,p_,,)(n—s) <
d. Using this fact, we see froni (22) that

S(l—a)f1>1-¢

1—gq

=k<1+ log 5

log(1 — )
In summary, we have now established that

1 log 5
logrla) 1—q’

Nesg —Nge < 1+

(23)

wherea = ¢(1 — 6) and we chose = 0.5.

Step 3. Our final step is to characterize the buffer size

required to take the probability of occupancy franto our

In particular, by recursion on the above startingraf

1—q<1=pp,m(m)
< (1 =Phemy(ngs)) (1 =01 —ex —q+6))" "
<=8 (1—6(1—e—q+0a)m

We can rewrite the above in the following manner

1—
(m—n+5)log(1—5(1—62—q—|—5))>10g1_q.

]

Now, by assumptiod < ¢ so the right side of the above is
negative. If we can find < § < ¢ for which the left side is
negative, we can obtain an upper boundmenin other words,
we search fo that satisfies

0<(l—e—q+d)<1
=q+e—1<d<q+ e, (27)

where from [[(Zb) we have, < 0.72. Also, sincee = 0.5, we
havee 4+ ¢ > 1. Thus, sufficient conditions ofi are

6 > ¢q—028 > g+ey—1and

0 < 1 < qg+eo.
For example, we could chooge= 0.8, with ¢ > 0.8. Thus,
1 1-96
m<nys+ T log . (28)
log 5 174

Finally, from the three bound§_(IL8], (23) and](28) we have a
contradiction of the assumption on the size of buffer. Hence
we must havey;,, ,,)(m) > ¢, which yields the proof. =

VI. SIMULATIONS
In this section, we use simulations to further evaluate the

target p,..m(m) > ¢. We first obtain an upper bound onperformance of different chunk-selection policies. Wetfirs
Ph.,m(n4e+1) that will be used in our analysis. Recall that theonsider a network with a fixed number of active peers.

rarest-first policy is used up to and including buffer pasiti
n4.. This means that froni.{15) we have

Pthemy(Mae +1) = Dy (ngee) (1+ (1= piry (n4e))?)

Then sincep(,..)(n_.) < e andz(1+(1—=x)?) is an increasing
function

e(1+(1—-e?) 2e
61(1 —+ (1 — 61)2) é €2,

(24)
(25)

Per,) (Nte)

<
P(hem)(Ne +1) <

Specifically, the network consists of one server and 10,000
peers. Each peer has a buffer of size The network is a
slotted time system. During each time slot, the server rartglo
selects a peer and uploads a new chunk to it, and each peer
(expect the one who obtains the new chunk from the server)
randomly selects another peer and downloads a chunk sgtlecte
according to the chunk-selection policy. Figlile 2 shows the
minimum buffer sizes for attaining target skip-free platou
probabilities under the greedy, rarest-first and hybridgesl

We see that the buffer size required under the hybrid posicy i

and we have chose = 0.5. We now consider the evolution substantially smaller than the rarest-first and greedycjedi

of occupancy probability frond — ¢. From [19) we have

L =ph.m(+1)=
L=pthem)() = Plhem)(G) (L = P(hem)())
X (1= a = p(n,m)(m) + p(n..m)( + 1))
< (L =phemy (7)) (1 =0 (1 = €2 = Py (m) +6)) ,  (26)

where we have used£ P(h.,m)(Nyet1) < €a. Now, suppose
that p(s,, .m)(m) < ¢. Then from [26) we have

L=pthemy(G+1) < (1 =p,m(d) (L —0(1—€—q+9)).

According to our simulation, the greedy policy requires the
buffer size to bel83 to attain skip-free playout probability
0.976, the rarest-first requires the buffer-size toll6é to attain
skip-free playout probability).996, and the hybrid policy
only requires a buffer size of0 to attain skip-free playout
probability 0.999!

In reality, the number of active peers in a P2P network
changes over time because peers can dynamically join and
leave. To study the performance of different polices witkrpe
arrivals/departures, we consider a network vii¢h 000 peers.
Initially, 10,000 peers are active. At each iteration, an active
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Fig. 2. The minimum buffer size versus target skip-free pleyprobability
with a fixed number of peers in the system. The hybrid policsfqgenance
is an order better than either greedy or rarest first.

(3]
(4]
(5]
peer becomes inactive with probabilityd01, and an inactive
peer becomes active with probabiliy001.

In our simulation, a peer empties its buffer when it is
inactive, and begins to play the videa time slots (start-
up latency) after it becomes active, where is the buffer
size. Figurd B shows the minimum buffer sizes for attainingl
target skip-free playout probabilities under the rareast-tand
hybrid polices. The skip-free probability is computed lzhse [g]
on peers who are playing the video (not including peers who
are in their start-up phase). The greedy policy is not inetld [9]
because its performance is really poor; for example, thg-ski
free playout probability of the greedy policy with buffezei [10]
200 is still less than0.90. From Figure[B, we see that the
buffer size required under the hybrid policy is much smallefy)
than the rarest-first policy. In fact, the rarest-first regsithe [12]
buffer-size to bel25 to attain skip-free playout probability
0.99, whereasthe hybrid policy only requires the buffer sizgi3
to be39! This simulation indicates that the hybrid policy works
well even in P2P networks with peer arrivals/departures.

120 / [15]

100 [16]

80
[17]
60

Buffer Size

[18]
a0t

20

8o

[19]

091 0.92 093 094 095 096 0.97 0.98 0.99

Probability of Skip-free Playout [20]

Fig. 3.  The minimum buffer size versus skip-free playoutbatality with
peer arrivals and departures. Greedy is not shown due itenegly poor
performance. The hybrid policy easily does an order beltan trarest-first.

policy have similar buffer scalings, and that their comkimma
into a hybrid policy yielded order sense improvements in the
required buffer size. Further, the buffer size required gy t
g hybrid policy is close to the minimum over all policies. Frgu
work includes the design of policies which are designed for
ensuring good QoS for specific video codec formats.
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APPENDIX

Lemma 5: Consider the hybrid policy... For buffer space

VII. CONCLUSION

i such thati > n(,. . 4., the steady state probabilities of

In this paper we considered the problem of designirgccupancies satisfy

efficient policies for real-time streaming applicationsngs

P2P approaches. Our objective was to ensure that the playOGf"f’m)

buffer for a given target of skip free playout remains as $mal

as possible. We showed that both the rarest-first and greedy

(J+1)=
P(he,m) () + Pihem)(G) (L = Dihem) ()
X (1=a—pmemy(m) +pe.m(+1)),



wherea £ p(,. .y (ng. e + 1). Note thats(m — 1) = 1, so
Proof: Recall that the hybrid policy first selects a thresh-

old buffer position where the steady state occupancy plibbab (1 —a)s(i) =1 = a—pu.,m)(m) + per,mi+1),

ity using the rarest-first policy is greater tharfthis position and the lemma holds.
is calledn, . 1), gives priority to the rarest-first algorithm,

and uses the greedy algorithm if the difference set with the

selected peer contains none of the chunks indexed fram

N(r,.),+e- We first find the probability that the greedy algorithm

is used. Lety = 1 — 5;. According to the definition of the

hybrid policy, we have fOIn (r) e = L

Wﬁ(he.,m) (A : Aﬂ{l, Ceey n(r,~),+e} = (Z))
T(r,),+e

= v H (1 =Pty (7) (1 = Py (9)))

H p(rm) )( _p(r,m)(j)))

S(r ( (ry),+e + 1)
(1 (Tvm)(n(Ta')a+5 + 1))
1—a.

> 1]

So1l—a is the probability that none of the chunks indexed from
1ton(,.y 4. is in the difference set. When this event happens,
the hybrid policy uses the greedy policy, and the proof next
is similar to the proof of Proposition 1 of [19]. Following)(1
and [3), the steady-state probabilities of occupancieshbean
written as

p(hevm) (7’ + ]‘)
= Plhe,m) (@) + P(he,m) () (1 = P(ne,m) (1)) X

m—1

1=a) TT O =paemG) (L= p.m(i))) -

j=i+1

Defining s(i) = 1750y (1= p(hemy (3) (1= Py ()
fori < m —1ands(m — 1) = 1, the equation above can
be written as

Phesm) (1) + (1= a)s(@)phm) (D)1 = p(n.,m)(8) (29)

and
s(i)

s(i+1)
which implies that
s(i +1) = s(t) = s(i + D)p(nem) (0 + D1 = P(ne,m) (i + 1))
Substituting the equality above into equality](29), we abta
Phesm) (0 +2) = pirmy (i +1) = (1 —a)(s(i + 1) — 5(i)).

Summing up the inequalities above froito m — 2, we
have

P(hem)(M) = P(homy(i +1) = (1 —a)(s(m — 1) — s(i)).

L= Dhem) (@ + D)1 = pa, my (i + 1)),
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