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Abstract—The growth of real-time content streaming over the
Internet has resulted in the use of peer-to-peer (P2P) approaches
for scalable content delivery. In such P2P streaming systems,
each peer maintains a playout buffer of content chunks which
it attempts to fill by contacting other peers in the network. The
objective is to ensure that the chunk to be played out is available
with high probability while keeping the buffer size small. Given
that a particular peer has been selected, apolicy is a rule that
suggests which chunks should be requested by the peer from
other peers.. We consider consider a number of recently suggested
policies consistent with buffer minimization for a given target of
skip free playout. We first study a rarest-firstpolicy that attempts
to obtain chunks farthest from playout, and a greedypolicy that
attempts to obtain chunks nearest to playout. We show that they
both have similar buffer scalings (as a function of the number
of peers of target probability of skip-free probability). We then
study a hybrid policy which achieves order sense improvements
over both policies and can achieve order optimal performance.
We validate our results using simulations.

I. I NTRODUCTION

Peer-to-peer (P2P) networks are rapidly becoming the
medium of choice for content distribution over the Internet.
Several studies have indicated their widespread adoption,and
suggest that anywhere between 35-90% of Internet bandwidth
is consumed by P2P applications [1], [2]. The initial applica-
tion of the P2P idea was for file sharing, but as P2P file sharing
networks have matured, many ideas have been transplanted to
media streaming applications with a degree of success (eg.
[3], [4]). As entertainment delivery over the Internet becomes
increasingly main stream, P2P streaming is likely to assume
an even greater significance.

Streaming media using P2P has a more exacting set of
constraints than file sharing since eachchunkthat constitutes
the streamed file must be received within a certain deadline
in order to allow for smooth sequential playing out of the
media. A natural approach for designing streaming networks
that inherently possesses this sequential nature of streaming
is to create a multicast tree amongst the source and users
either at the IP or higher layer [5]–[7], and topushchunks
on the tree. However, this approach often needs significant
infrastructural overheads to perform adequately; for example,
an IP layer multicast requires support by the routers in the
network. Another issue is that when end-users act as the peer
nodes in the multicast tree, the churn caused by users arriving
and departing causes significant inefficiencies [8].

A more popular approach to P2P Streaming is using appli-
cation layer multicast with a full mesh topology among peers.
The idea is to maintain a playout buffer, and topull chunks
into the buffer by communicating with a random selection
of peers. This approach bears a strong resemblance to the
BitTorrent technique [9] of selecting peers from a full meshin
order to exchange chunks [9]. However, the sequential playout
constraint requires that the chunk to be played next is available
when required. Several systems exist that use this approachto
content streaming, and notable examples are CoolStreaming
[10] that was one of the first systems to employ this approach,
and some that are highly popular in East Asia such as PPLive
[3], QQLive [4] and TVAnts [11].

In this paper we study optimal algorithms for mesh-based
P2P multicast. Here, a server generates chunks at constant
rate, and randomly selects on peer to push it to. Other
peers select some other peer at random, and request some
chunk in the selected peer’s possession. The objective is to
ensure that the chunk that needs to be played out is available
with high probability. Under this paradigm, a distribution
algorithm essentially answers the following question:Given
that a particular peer has been selected, which chunk from
that peer should be pulled’?The answer is not obvious, since
on the one hand pulling the chunk with the shortest playout
deadline might be optimal in the short term, but might yield
poor performance as far as the rest of the peers are concerned.
On the other hand, pulling a chunk that is farthest from playout
would give maximum amount of time for its dispersal amongst
peers, but this might be at the expense of the chunk that is most
urgently required. It is also clear that the question cannotbe
answered independently of the buffer size, since a large buffer
size gives more time for chunk dispersal than a short one.

There has been considerable interest in P2P systems for both
file delivery and streaming. Analytical models and studies of
the achievable limits of P2P file delivery are presented in [12]–
[16]. The primary objective of these studies is to ensure that
all interested peers obtain the entire file with as short a delay
as possible. Our current work uses some of the techniques
used in these papers, but since we focus live streaming, the
objective is somewhat different due to the sequential nature
of playout. There have also been analytical and simulation
studies of tree and mesh based P2P streaming [8], [17]. In [8],
mesh versus tree approaches are considered primarily using
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simulations, whereas in [17] upper bounds on performance
are developed. Tree-based approaches are considered in [5]–
[7], but since we consider end-user P2P, we focus on a full
mesh pull based approach. The study in [18] considers using
BitTorrent to directly assist in live streaming. Finally, the
authors of [19], [20] consider a general class of streaming
algorithms. Their main contribution is to develop an analytical
model of P2P real-time streaming algorithms, and numerically
show that based on available server capacity, different hybrids
of greedy and rarest-first policies perform better than either
of the constituent policies. Our work develops on the model
introduced in [19], but our goal is to analytically answer the
following question: how much buffer size reduction can be
achieved using a hybrid policy? We are interested in this
question since a large buffer size increases start-up latency
and adversely impacts the “real-time” nature of the system.
The model in [20] is slightly more accurate than the one in
[19], but the model in [19] is more tractable which allows us to
obtain design insights which are confirmed by our simulation
results.

Main results

The system that we consider consists ofM users who are
all simultaneously interested in a real-time content stream
generated by a server. The stream consists of chunks with one
new chunk generated at each discrete time instant, and the
server selects one peer at random for each new chunk. Peers
obtain chunks either if they are selected by the server, or by
full-mesh P2P with random peer selection. Peers maintain a
buffer of sizem, with the chunk in themth location played out
at each time instant if available. We have a target of skip-free
playout probability ofq over all peers.

We present an analytical characterization of the scaling of
required buffer sizem with M andq under different policies.
The main results of of our analysis are summarized below:

• We consider therarest-first policy wherein priority is
given to the chunks farthest from playout. In other words,
a peer picks that chunk in the difference set with his
selected peer that is closest to the first buffer position.
We show that given any target probability0.5 < q ≤ 1,
the buffer size to attain this target probability with the
rarest-first policy scales approximately as

log(M) + log(2q − 1) +
1

2(1− q)
.

• We then consider thegreedy policywherein priority is
given to the chunks closest to playout. Thus, a peer picks
that chunk in the difference set with his selected peer that
is closest to themth buffer position. We show that given
any target probabilityq ≥ 1

M
, the buffer size to attain this

target probability with the greedy policy approximately
scales in a similar fashion as

log(M) + log(q) +
1

1− q + 2
M

.

• We develop ahybrid policyhǫ which combines the greedy
and the rarest-first policies. The policy uses rarest-first up

to a buffer position where the probability of occupancy
is greater thanǫ, and switches to using the greedy policy
from there on. For this policy, we show that there exist
constantsaǫ and aǫ,ǫ2 , independent ofM and q, such
that, if the buffer sizem satisfies

m ≥ a log(M) + aǫ,ǫ2 log

(

1

1− q

)

,

then the skip-free playout probabilityp(hǫ,m)(m) ≥ q.
Thus, the buffer size required by this policy less than
that required by either of the two policies it is composed
of in an order sense.

Above, log(.) refers to base2. Consider an example scenario
where we haveM = 10, 000 and a target probability of skip-
free playoutq = 99.9%, we see that both the rarest-first and
greedy policies would need a buffer size of the order of1000s,
whereas the hybrid policy would need a buffer size only of
the order of10s. We contrast the results with a straightforward
lower bound. Given a target probability1

M
≤ q ≤ 1, the buffer

size to attain this target probability under any policy should
be at leastlogM , which for our example is also of the order
of 10s. Further, for a target ofq ≥ 1−1/M , the hybrid policy
attains this lower bound in an order sense.

Finally, we show using simulations that the order sense
reduction in buffer size promised by the hybrid-policy do
indeed materialize, particularly when the desired target of
buffer occupancy is high, so arguing for the adoption of such
hybrid chunk selection policies in P2P streaming systems.

II. BACKGROUND AND MODEL

We first introduce the model of a P2P content streaming
system developed in [19] under a large-system assumption.
According to the model, time is considered to be slotted
and is synchronized across the whole system. The system is
illustrated at some time slot in Figure 1, and consists of a
single server andM peers. The server is a source of real-time
content such as media coverage of a live event, and generates
one chunk of new data per time slot. The server has a limited
communication capacity, and is able to transmit this chunk to
exactly one peer. It does so by choosing one of theM peers
at random. Each peer is assumed to have a buffer of sizem,
with the buffer positions indexed byi ∈ {1, ..,m}. As shown
in Figure 1, in each time slot they attempt to playout the chunk
at buffer positionm, causing a rightward shift of the buffer
contents by one position. Since the data stream is real-time,
peers are synchronized and they all attempt to playout the
same chunkof data; in the figure the chunk labeled A is to be
played out by all the peers. If the buffer positionm is empty,
there is a gap in play out, and the missing chunk is never
recovered (i.e., the rightward shift occurs even if the chunk is
missing, and peers remain synchronized). Hence, the peer at
the bottom of Figure 1 will never obtain chunk A.

Peers are part of a P2P network, and they can potentially
obtain any chunk from each other until the point of playout
of that chunk. Thus, chunks B through O can be obtained
through P2P chunk sharing. Our P2P network model is a fully
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Fig. 1. A P2P content streaming system. Content is generatedreal-time at
server, and each chunk is sent to one ofM interested peers. Peers try to
obtain chunks via P2P among themselves. Chunks are shifted to the right by
one position at each time step, and the chunk at positionm is played out if
available. We would like to ensure that all peers possess thechunk at position
m with high probability.

connected graph. Each peer chooses one peer at random, and
may request a chunk from it. There are no restrictions on
upload and download bandwidths, since with random peer
selection the number of peers selecting any one peer is finite
with high probability (so the results would essentially be the
same even with such bandwidth constraints). Suppose that a
peer has a set of chunksQ and its selected peer has a set of
chunksR. DefineA = R\Q. Then a chunk selectionpolicy
µ is a rule by which the peer selects one of the chunks inA.

The model in [19] is an equilibrium model, i.e., it studies
the system assuming that it is in steady-state. We assume
that the buffer occupancy probabilities have a steady-state
distribution where the steady-state probability that buffer space
i is occupied is denotedp(µ,m)(i). We assume that this
distribution is identical and independent across peers. Aswe
will see shortly, under the independence assumption, it is
analytically tractable to characterize the impact of the rest
of the system on a single peer. This is similar to mean-field
approximations in physics where, in a large system, the impact
of the rest of the system on a single particle is captured by a
“mean field.” In our case, the large-system assumption means
thatM is assumed to be large.

Under the above assumption, we can write down a simple
relation between the steady state probabilities (at the beginning
of any time slot) of buffer occupancies as follows:

p(µ,m)(i+ 1) = p(µ,m)(i)

+ s(µ,m)(i)p(µ,m)(i)(1− p(µ,m)(i)) ∀ i > 1, (1)

p(µ,m)(1) =
1

M
. (2)

In the above, since buffer positioni+1 is filled by a rightward
shift from buffer positioni, its steady state probability at the
beginning of the current time slot is the probability thati
was already filled at the beginning of the last time slot, plus
the probability thati was filled by P2P methods during the
last time slot. The latter term is derived by considering that
p(µ,m)(i)(1−p(µ,m)(i)) is the probability that a peer does not
possessi but the selected peer does, and

s(µ,m)(i) =
∑

A:i∈A

P(selecti|A)P(A),

whereA is the difference set between the peers as defined
above. In other words,s(µ,m)(i) is the probability that a peer
π chooses to download chunki from its selected peerλ, given
that π does not possess chunki while λ does. This selection
probability is a function of the chunk selection policyµ.
As mentioned earlier, a number of independence assumptions
have been made in arriving at the above model; see [19] for
an informal justification.

Two policies that are of particular interest are the following:

1) Rarest-first: Under this policy (denoted byr), priority
is given to the chunks that have the lowest steady-
state probability. From (1) for any policyµ we have
p(µ,m)(j) ≤ p(µ,m)(i) for j < i. Hence, rarest-first is
equivalent to selecting chunks with priority2 > 3... >
m−1. An interesting result of [19] is that for this policy

s(r,m)(i) = 1− p(r,m)(i). (3)

2) Greedy: Under this policy (denoted byg), priority is
given to the chunks that are closest to playout. From (1)
this is equivalent to prioritizing those chunks that have
the highest steady state probabilities. Hence, the greedy
policy selects chunks with prioritym−1 > m−2... > 2.
It is shown in [19] that for the greedy policy

s(g,m)(i) = 1−
1

M
− p(g,m)(m) + p(g,m)(i+ 1). (4)

The objective is to find a policyµ that has the smallest value of
m for a target value ofp(µ,m)(m). In other words, we would
like to find a policy that requires the smallest buffer size for
a desired probability of skip-free playout.

III. I NSIGHTS FROM AFLUID APPROXIMATION

Our first objective will be to obtain insight into the perfor-
mance of the chunk-selection policies by approximating the
difference equations in the previous section by differential
equations. The resulting model is called the fluid model.
While the fluid model is not precise, the main purpose of
this model is to provide key intuition which will serve as
the basis for our analysis in the next section, where will
rigorously prove all results in the next section by directly
working with the difference equations. Let us first consider
the expression describing the steady state probabilities in (1).
We can approximate this system of difference equations by
using differential equations in the following manner.

dp(µ,m)(i)

di
= s(µ,m)(i)p(µ,m)(i)(1− p(µ,m)(i)), (5)

p(µ,m)(0) =
1

M
. (6)

Consistent with the fluid approximation, when applying the
above equation to the greedy policy, we will replacepi+1 by
pi in the expression fors(g,m)(i) given in (4).

In this section, we will provide a heuristic explanation of
the main ideas in the paper by using the above fluid model.
In the later sections, we will use this intuition to derive our
main results directly from the discrete model.
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A. Buffer sizing for the rarest-first policy

We first use the fluid model to study the minimum buffer
size required to achieve a given probability of buffer occu-
pancy. We have the following result.

Fluid Result 1: The buffer size m required to attain
p(r,m)(m) = q using the rarest-first policy isΘ(logM) +
Θ(1/(1− q))1.

Proof: From (5) and (3), the dynamics of the rarest-first
policy are given by

dp(r,m)(i)

di
= p(r,m)(i)(1 − p(r,m)(i))

2.

Solving the above differential equation using condition (6)
yields

di =
dp(r,m)

p(r,m)
+

dp(r,m)

1− p(r,m)
+

dp(r,m)

(1− p(r,m))2
,

i = ln
(

p(r,m)(i)M
)

− ln

(

1− p(r,m)(i)

1− 1/M

)

+

1

1− p(r,m)(i)
−

1

1− 1
M

.

Thus, for a targetp(r,m)(m) = q, the required buffer size is
given by

m = ln(qM)− ln

(

1− q

1− 1/M

)

+
1

1− q
−

1

1− 1
M

.

The desired result follows.

B. Buffer sizing for the greedy policy

We have the following upper and lower bounds on the
minimum buffer requirements for the greedy algorithm.

Fluid Result 2: The buffer size m required to attain
p(g,m)(m) = q using the greedy policy isO(logM) +
O((1/(1− q)) log(1/(1− q))).

Proof: From (4) that, withp(g,m)(m) = q, we have

s(g,m)(i) = 1− q −
1

M
+ p(g,m)(i+ 1) ≥ 1− q, (7)

where the inequality follows sincep(g,m)(i) is increasing and
p(g,m)(0) = 1/M. Hence, the solutionpg,m to

dp(g,m)

di
= s(g,m)(i)p(g,m)(i)(1 − p(g,m)(i))

is greater than the solutionpg,m to

dp(g,m)

di
= (1− q)p(g,m)(i)(1− p(g,m)(i)).

The latter equation can be solved as follows:

dp(g,m)(i)

di
= (1 − q)p(g,m)(i)(1− p(g,m)(i))

(1 − q)di =
dp(g,m)(i)

p(g,m)(i)(1 − p(g,m)(i))

(1− q)i = ln
p(i)(1 − p(0))

(1 − p(i))p(0)
(8)

1We use the notationΘ(logM) + Θ(1/(1 − q)) to denote that, withM
fixed, the asymptote behaves likeΘ(1/(1− q)) and, withq fixed, it behaves
like Θ(logM).

Using p(g,m)(0) = 1/M, p(g,m)(m) = q and settingi = m,
the above yields

m =
1

1− q
ln

q(1− 1/M)

(1− q)/M
,

which gives the desired result.
Fluid Result 3: The buffer size m required to attain

p(g,m)(m) = q using the greedy policy isΩ(logM)+Ω(1/(1−
q)).

Proof: Fix α ∈ (0, (q−1/M)/(1−q)). Sincep(g,m)(0) =
1/M andp(g,m)(m) = q, there must be somek ∈ (0,m) for
which p(g,m)(k) = 1/M +α(1− q). Then for alli ≤ k, since
p(i) is an increasing function, we have the following upper
bound ons(g,m)(i) :

s(i) = 1− q −
1

M
+ p(i) ≤ 1− q −

1

M
+ p(k) = c(q,M),

where
c(q,M) := (1 + α)(1 − q).

Thus, the solution to

dp(g,m)

di
= s(i)p(g,m)(i)(1 − p(g,m)(i))

is upper bounded by the solution to

dp(g,m)

di
= c(q,M)p(g,m)(i)(1 − p(g,m)(i)).

Solving the second differential equation above yields

ln
p(i)(1 − p(0))

(1 − p(i))p(0)
= c(q,M)i. (9)

Letting i = k and substitutingp(k) = 1/M + α(1− q), gives

m ≥ k =
1

c(q,M)
ln

1/M + α(1− q)

(1/M)

+
1

c(q,M)
ln

1− 1/M

1− 1/M − α(1 − q)
.

It is easy to check from the above expression thatm is
Ω(logM) whenq is fixed andΩ(1/(1−q)) whenM is fixed.

C. A hybrid policy

Our conclusions from the previous two subsections are:
• The buffer size requirement for both the rarest-first and

greedy policies have logarithmic scaling in the number
of usersΘ(logM).

• The buffer size requirement grows at least as1/(1 − q)
for both policies when the desired skip-free playout
probability isq.

This suggests that the buffer size requirement could be high
if very stringent QoS is required, i.e., a skip-free playout
probability close to1 is required. In the next sections, our
goal is to understand if there is a different policy that can
provide significant reduction in the buffer-size requirement. It
has been observed in [19] that the buffer-size requirement can
be reduced by a using a hybrid policy which uses the rarest-
first policy under certain conditions and the greedy policy



5

under certain conditions. Since both the rarest-first and greedy
policies have similar asymptotic performance, we now use the
fluid model to get some insight into when one policy performs
better than the other, which would be helpful in designing and
analyzing hybrid policies. From (3) we have that for the rarest-
first policy

s(r,m)(i) = 1− p(r,m)(i), (10)

whereas for the greedy policy with a targetp(g,m)(m) = q,
from (4)

s(g,m)(i) = p(g,m)(i + 1) + 1− q − 1/M
≈ p(g,m)(i) + 1− q − 1/M,

(11)

where the approximation is motivated by the fluid model.
Since p(r,m)(1) = p(g,m)(1) = 1/M, for M > 2 and
small (1 − q), s(g,m)(1) < s(r,m)(1). Thus, p(r,m)(2) >
p(g,m)(2). By induction, it follows that, for allj such that
p(r,m)(j) < 0.5, we haves(g,m)(j) < s(r,m)(j), which im-
pliesp(r,m)(j+1) > p(g,m)(j+1). This suggests that, for the
lower buffer positions, larger buffer occupancy probabilities
can be obtained by using the rarest-first policy.

Next, let us consider the higher buffer positions, i.e.,
the ones numberedm,m − 1, . . . . Suppose that both the
rarest-first and greedy policies exactly achievep(r,m)(m) =
p(g,m)(m) = q. Then, from (10) and (11), it follows that
s(g,m)(m) > s(r,m)(m). Due to the monotonicity of both
p(r,m)(i) and p(g,m)(i), it follows that there exists ak such
that s(g,m)(i) > s(r,m)(i) for all i ≥ m. When (1 − q)
is small andM is large, such ak would correspond to
p(g,m)(k) = 0.5. In the fluid model, since bothp(g,m)(i)
and p(r,m)(i) vary continuously as functions ofi (which is
also a continuous variable in the fluid model), we make the
following observation: to allow for the largest increase in
buffer-occupancy probabilities, use the rarest-first policy till
the buffer position where the occupancy probability is0.5 and
the then switch to the greedy policy. While this policy may
not be optimal, the fluid model suggests that this may be a
good heuristic to combine the rarest-first and greedy policies.
In the next section, by directly working with the discrete-time
model, we show that such a hybrid policy leads to significant
reductions in the buffer size requirements for skip-free playout
and is also optimal in an asymptotic order sense.

IV. D ISCRETETIME MODEL: LOWER BOUNDS ON THE

BUFFERSIZE REQUIREMENT

In this section, we obtain lower bounds on buffer size
requirement. We first introduce two notations that will be
extensively used in our analysis. We denote byn(µ,m);−q the
largest index i of the buffer spaces such thatp(µ,m)(i) ≤ q,
and n(µ,m);+q the smallestindex i such thatp(µ,m)(i) ≥ q,
i.e.,

n(µ,m);−q = max
{

i : p(µ,m)(i) ≤ q
}

n(µ,m);+q = min
{

i : p(µ,m)(i) > q
}

.

It is easy to see thatn(µ,m);−q ≤ n(µ,m);+q ≤ n(µ,m);−q + 1.

We first provide a simple lower bound on the buffer size,
which holds for all chunk selection policies.

Lemma 1:For any 1
M

≤ q ≤ 1, any chunk selection policy
µ and any buffer sizem, the following inequality holds

n(µ,m);+q ≥ logM + log q.

Proof: First, we know that

p(µ,m)(j + 1)

= p(µ,m)(j) + p(µ,m)(j)
(

1− p(µ,m)(j)
)

s(µ,m)(i)

= p(µ,m)(j)
(

1 + (1− p(µ,m)(j))s(µ,m)(i)
)

≤ 2p(µ,m)(j).

Since p(0) = 1/M, it follows from a simple induction
argument that

p(µ,m)(j + 1) ≤
2j

M
.

Thus,
n(µ,m);+q ≥ logM + log q.

A. Rarest-first policy

In this subsection, we obtain a lower bound on the buffer
size required by the rarest-first policy.

Theorem 2:Given any target probability0.5 < q ≤ 1, the
buffer size required to achieve this target probability with the
rarest-first policy is at least

logM + log(2q − 1) +
log q − log(2q − 1)

log (1 + (2− 2q)2)
− 1.

Proof: Recall thats(r,m)(i) = 1− p(r,m)(i) and

p(r,m)(j + 1) = p(r,m)(j) + p(r,m)(j)
(

1− p(r,m)(j)
)2

.

The above difference equation is difficult to solve, so we
first lower-bound the number of buffer spaces to reach an
occupancy probability of(2q−1) and then further lower-bound
the additional buffer space required to reach an occupancy
probability of q.

First from Lemma 1, we have

n(r,m);+(2q−1) ≥ logM + log(2q − 1), (12)

which is a lower bound on the buffer size required to reach
an occupancy probability1 − 2(1 − q) = 2q − 1. Next, we
boundn(r,m);−(2q−1) − n(r,m);+q (the additional buffer space
required to increase the occupancy probability from2q− 1 to
q). Under the rarest-first policy, for anyj ≥ n(r,m);+(2q−1),
we have

p(r,m)(j + 1) = p(r,m)(j) + p(r,m)(j)
(

1− p(r,m)(j)
)2

≤ p(r,m)(j)
(

1 + (2− 2q)2
)

.

Thus,

p(r,m)(n(r,m);+(2q−1) + j)

≤ p(r,m)(n(r,m);+(2q−1))
(

1 + (2 − 2q)2
)j

. (13)
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To obtain an upper bound onp(r,m)(n(r,m);+(2q−1)), we
know that

p(r,m)(n(r,m);+(2q−1))

= p(r,m)(n(r,m);−(2q−1)) +

p(r,m)(n(r,m);−(2q−1))
(

1− p(r,m)(n(r,m);−(2q−1))
)2

.

It is easy to verify thatx+x(1−x)2 is an increasing function
in x for x ≥ 0, so we have

p(r,m)(n(r,m);+(2q−1)) ≤ (2q − 1)(1 + (2− 2q)2).

Substituting into inequality (13), we obtain

p(r,m)(n(r,m);+(2q−1) + j) ≤ (2q − 1)
(

1 + (2− 2q)2
)j+1

.

Now we can conclude that

q ≤ p(r,m)(n(r,m);+q)

≤ (2q − 1)
(

1 + (2− 2q)2
)n(r,m);+q−n(r,m);+(2q−1)+1

,

which implies that

n(r,m);+q − n(r,m);+(2q−1) ≥
log q − log(2q − 1)

log (1 + (2− 2q)2)
− 1. (14)

Lemma 1 is obtained by summing inequalities (12) and (14).

Remark: Note that whenδ is small enough, we have
log(1 + δ) ≈ δ. So

log q − log(2q − 1)

log (1 + (2 − 2q)2)
≈

−(1− q) + 2(1− q)

4(1− q)2
=

1

2(1− q)
,

which implies that the buffer size required by the rarest first
policy is Ω(logM) + Ω( 1

1−q
).

B. Greedy policy

In this subsection, we characterize the buffer size required
by the greedy policy.

Theorem 3:Given any target probabilityq ≥ 1
M
, the buffer

size to attain this target probability with the greedy policy is
at least

logM + log q − 1 +
1

log
(

2− q + 2
M

) .

Proof: Recall thats(g,m)(i) = 1 − 1
M

− p(g,m)(m) +
p(g,m)(i+ 1). Under the greedy policy,

p(g,m)(i+ 1) = p(g,m)(i) + p(g,m)(i)(1 − p(g,m)(i))×
(

1−
1

M
− p(g,m)(m) + p(g,m)(i+ 1)

)

.

Note that
p(g,m)(n(g,m);+ 2

M
) ≤

4

M

since p(g,m)(i + 1) ≤ 2p(g,m)(i) holds for all i. Now if
p(g,m)(m) ≥ q, then for anyi ≤ n(g,m);− 2

M
, we have

p(g,m)(i + 1)

≤ p(g,m)(i) + p(g,m)(i)

(

1−
1

M

)(

1− q +
3

M

)

= p(g,m)(i)

(

1 +

(

1−
1

M

)(

1− q +
3

M

))

,

where the first inequality holds because

p(g,m)(i + 1) ≤ p(g,m)(n(g,m);− 2
M

+ 1)

= p(g,m)

(

n(g,m);+ 2
M

)

≤ 4
M
.

Thus,

2
M

≤ p(g,m)(n(g,m);+ 2
M
)

≤ p(g,m)(1)
(

1 +
(

1− 1
M

) (

1− q + 3
M

))n
(g,m);+ 2

M
−1

,

which yields

n(g,m);+ 2
M

≥
1

log
(

1 +
(

1− 1
M

) (

1− q + 3
M

)) + 1

≥
1

log
(

2− q + 2
M

) + 1.

Recallp(g,m)(i+ 1) ≤ 2p(g,m)(i) holds for all i. It is easy
to verify that

n(g,m);+q − n(g,m);− 4
M

≥ logM + log q − 2.

Note that n(g,m);− 4
M

≥ n(g,m);+ 2
M

because
p(g,m)(n(g,m);+ 2

M
) ≤ 4

M
, so we can conclude that

n(g,m);+q ≥ n(g,m);+q − n(g,m);− 4
M

+ n(g,m);+ 2
M

≥ logM + log q − 1 +
1

log
(

2− q + 2
M

) .

Remark: When1−q and 2
M

are sufficiently small, we have

1

log
(

2− q + 2
M

) ≈
1

1− q + 2
M

.

According to the theorem above, when1− q ≥ 1
M
, the buffer

size needs to be at leastlogM+ 1
2(1−q) ; and when1−q ≤ 1

M
,

the buffer size needs to be at leastlogM + M
4 .

From Theorem 2 and Theorem 3, we can see that either the
rarest-first policy or the greedy policy, if used along, require a
buffer with sizeΩ(logM)+Ω( 1

1−q
). Thus, if we have a target

probabilityp(n) = 99.9%, the buffer has to have at least1000
chunk spaces. However, from the analysis, it is not difficultto
see that under the rarest-first policy, the occupancy probability
increases slowly whenclose toq; and under the greedy policy,
the occupancy probability increases slowlyat the initial stage.
Similar observations can be found in heuristic argument and
the simulations in [19]. This motivates us to consider hybrid
policies that use the rarest-first policy on the buffer spaces with
small indices and the greedy policy on the buffer spaces with
large indices. We will demonstrate in the next section that a
properly designed hybrid policy only requiresΘ(logM) buffer
size for any target probabilityq such thatq ≥ 1− 1

M
.

V. D ISCRETETIME MODEL: HYBRID POLICY

The insight obtained on hybrid policies from the fluid model
of Section III was “use the rarest-first policy till the buffer
position where the occupancy probability is 0.5 and the then
switch to the greedy policy.” In this section we will analyze
this policy using a discrete model and show that this insight
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is indeed valid and achieves the minimum buffer size (in an
order sense) required for a given miss probability. We first
formally define the policy.

Hybrid Policy: Let hǫ denote a policy, whereǫ is the
occupancy probability at which we switch from rarest-first to
greedy. In other words, priority is given to buffer positions
1 to n(r,·);+ǫ with priority decreasing from1 → n(r,·);+ǫ

(rarest first). If the selected peer has no chunks in this set,
then requests are made for chunks in positionn(r,·);+ǫ + 1 to
m, with priority decreasing fromm → n(r,·);+ǫ + 1 (greedy).
The chunk selection function that determines the policy is then
formally defined as follows:

• Considering anyi such thati ≤ n(r,·);+ǫ, the policy
satisfies

S(hǫ,m)(A; i) = 1

if i ∈ A andA
⋂

{1, . . . , i− 1} = ∅, and

S(hǫ,m)(A; i) = 0

otherwise.
• Considering anyi such thati > n(r,·);+ǫ, the policy

satisfies

S(hǫ,m)(A; i) = 1

if i ∈ A andA
⋂

{1, . . . , n(r,m);+ǫ), i + 1, . . . ,m} = ∅,
and

S(hǫ,m)(A; i) = 0

otherwise.

We now analyze this policy and show that the buffer size
requirement of this policy is optimal in the order sense.

Theorem 4:Under the hybrid policyhǫ, if we have a target
occupancy of the final buffer spaceq ≥ 0.8, and the switching
parameterǫ = 0.5, if

m ≥
1

log 1
1−δ(1−ǫ2−q−δ)

log
1− δ

1− q
+ 2

+
1

log 1
1−α

log
δ

1− q
+

log 2Mǫ

log(1 + (1− ǫ)2)
,

then phǫ,m(m) ≥ q. Here, δ = 0.8; α = ǫ(1 − δ); ǫ2 =
ǫ1(1 + (1− ǫ1)

2); ǫ1 = ǫ(1 + (1− ǫ)2).
Proof: The proof is in three parts. We make the suppo-

sition thatphǫ,m(m) < q, and prove that it results in a lower
bound on the buffer sizem that violates our assumptions.
Step 1. In the first part, we calculate the buffer size required
for the rarest first policy to reach an occupancy probability
that exceedsǫ > 0. Formally, we will determine the value of
n(r,·);+ǫ, which for simplicity of notation within the proof, we
will denote byn+ǫ. Recall from (1) and (3) that since we use
the rarest first policy for buffer positionsi ≤ n+ǫ − 1, the
occupancy probability of buffer positioni is described by

p(r,·)(i+ 1) = p(r,·)(i)
(

1 + (1− p(r,·)(i))
2
)

(15)

≥ p(r,·)(i)
(

1 + (1− ǫ)2
)

≥ p(1)
(

1 + (1− ǫ)2
)i
,

where we note thatp(1) = 1/M is independent of the policy
used. Thus,

p(r,·)(n+ǫ) ≥ p(1)
(

1 + (1 − ǫ)2
)n+ǫ

⇒ n+ǫ ≤
logMp(r,·)(n+ǫ)

log (1 + (1 − ǫ)2)
. (16)

Also we have from (15) that

p(r,·)(n+ǫ) =

p(r,·)(n+ǫ − 1)
(

1 +
(

1− p(r,·)(n+ǫ − 1)
)2
)

≤ ǫ
(

1 + (1− ǫ)2
)

≤ 2ǫ, (17)

where the last line follows from the fact thatx(1 + (1− x)2)
is an increasing function. Finally, from (16) and (17), we have

n+ǫ ≤
log 2Mǫ

log (1 + (1− ǫ)2)
. (18)

We next characterize the performance of the greedy part of
the hybrid policy.
Step 2. We first determine the buffer space required for the
hybrid policy to exceed an occupancy probabilityδ > ǫ. In
other words, we calculaten(hǫ,m);+δ, and similarly charac-
terizen(hǫ,m);−δ = n(hǫ,m);+δ − 1. Again, for simplicity of
notation within the proof, these will be denoted asn+δ and
n−δ, respectively. Consider the set of buffer positionsj that
satisfyn+ǫ + 1 ≤ j ≤ n−δ. From Lemma 5 (see Appendix)
and usinga , p(hǫ,m)(n+ǫ +1) for convenience, it is easy to
see that

p(hǫ,m)(j + 1) =

p(hǫ,m)(j) + p(hǫ,m)(j)(1 − p(hǫ,m)(j))

×
(

1− a− p(hǫ,m)(m) + p(hǫ,m)(j + 1)
)

(19)

≥ p(hǫ,m)(j) +

ǫ(1− δ)(1 − a− p(hǫ,m)(m) + p(hǫ,m)(j + 1)).

Now, choosingp(hǫ,m)(m) < q, we have

p(hǫ,m)(j + 1) ≥

p(hǫ,m)(j) + ǫ(1− δ)(1− a− q + p(hǫ,m)(j + 1))

⇒ (1 − α)p(hǫ,m)(j + 1) ≥ p(hǫ,m)(j) + α(1 − a− q),

where α , ǫ(1 − δ). The above inequality allows us to
recursively calculatep(hǫ,m)(n+ǫ + k) for k ≥ 1, and we
will use it in order to determinen−δ. We have

(1− α)p(hǫ,m)(n+ǫ + 2) ≥ p(hǫ,m)(n+ǫ + 1) + α(1 − a− q),

(1− α)p(hǫ,m)(n+ǫ + 3) ≥ p(hǫ,m)(n+ǫ + 2) + α(1 − a− q).

Hence we have

(1− α)2p(hǫ,m)(n+ǫ + 3) ≥

(1 − α)p(hǫ,m)(n+ǫ + 2) + α(1 − α)(1 − a− q),

≥ p(hǫ,m)(n+ǫ + 1) + α(1 − a− q) + α(1− α)(1− a− q). (20)
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We can generalize the above as

(1− α)k−1p(hǫ,m)(n+ǫ + k)

≥ p(hǫ,m)(n+ǫ + 1) + α(1 − a− q)

k−2
∑

i=1

α(1 − α)i

= a+ (1− a− q)(1 − α)
(

1− (1 − α)k−2
)

,

where we have used our definitiona , p(hǫ,m)(n+ǫ + 1).
Choosingq > ǫ = 0.5 implies thata + q > 1, which in turn
means that1−a−q < 0. Then since(1−α)(1−(1−α)k−2) <
1, we have the relation

(1− α)(1 − a− q)(1 − (1− α)k−2) ≥ 1− a− q. (21)

From (20) and (21) we then have

(1− α)k−1p(hǫ,m)(n+ǫ + k) ≥ a+ (1 − a− q) = 1− q. (22)

We are now in a position to obtain a bound onn−δ. Let k be
such thatn+ǫ+k = n−δ. Also, by definition,p(hǫ,m)(n−δ) ≤
δ. Using this fact, we see from (22) that

δ(1− α)k−1 ≥ 1− q

⇒ k ≤ 1 +
1

log(1− α)
log

1− q

δ
.

In summary, we have now established that

n−δ − n+ǫ ≤ 1 +
1

log 1
(1−α)

log
δ

1− q
, (23)

whereα = ǫ(1− δ) and we choseǫ = 0.5.
Step 3. Our final step is to characterize the buffer size
required to take the probability of occupancy fromδ to our
target phǫ,m(m) ≥ q. We first obtain an upper bound on
phǫ,m(n+ǫ+1) that will be used in our analysis. Recall that the
rarest-first policy is used up to and including buffer position
n+ǫ. This means that from (15) we have

p(hǫ,m)(n+ǫ + 1) = p(r,·)(n+ǫ)
(

1 + (1− p(r,·)(n+ǫ))
2
)

Then sincep(r,·)(n−ǫ) ≤ ǫ andx(1+(1−x)2) is an increasing
function

p(r,·)(n+ǫ) ≤ ǫ(1 + (1 − ǫ)2) , ǫ1 (24)

p(hǫ,m)(n+ǫ + 1) ≤ ǫ1(1 + (1− ǫ1)
2) , ǫ2, (25)

and we have choseǫ = 0.5. We now consider the evolution
of occupancy probability fromδ → q. From (19) we have

1− p(hǫ,m)(j + 1) =

1− p(hǫ,m)(j) − p(hǫ,m)(j)(1− p(hǫ,m)(j))

×
(

1− a− p(hǫ,m)(m) + p(hǫ,m)(j + 1)
)

≤ (1− p(hǫ,m)(j))
(

1− δ
(

1− ǫ2 − p(hǫ,m)(m) + δ
))

, (26)

where we have useda , p(hǫ,m)(n+ǫ+1) ≤ ǫ2. Now, suppose
that p(hǫ,m)(m) < q. Then from (26) we have

1− p(hǫ,m)(j + 1) < (1− p(hǫ,m)(j)) (1− δ (1− ǫ2 − q + δ)) .

In particular, by recursion on the above starting atn+δ

1− q < 1− p(hǫ,m)(m)

< (1− p(hǫ,m)(n+δ)) (1− δ (1− ǫ2 − q + δ))
m−n+δ

< (1− δ) (1− δ (1− ǫ2 − q + δ))
m−n+δ

We can rewrite the above in the following manner

(m− n+δ) log (1− δ (1− ǫ2 − q + δ)) > log
1− q

1− δ
.

Now, by assumptionδ < q so the right side of the above is
negative. If we can find0 < δ < q for which the left side is
negative, we can obtain an upper bound onm. In other words,
we search forδ that satisfies

0 < (1 − ǫ2 − q + δ) < 1

⇒ q + ǫ2 − 1 < δ < q + ǫ2, (27)

where from (25) we haveǫ2 < 0.72. Also, sinceǫ = 0.5, we
haveǫ+ q > 1. Thus, sufficient conditions onδ are

δ ≥ q − 0.28 > q + ǫ2 − 1 and

δ < 1 < q + ǫ2.

For example, we could chooseδ = 0.8, with q ≥ 0.8. Thus,

m ≤ n+δ +
1

log 1
1−δ(1−ǫ2−q+δ)

log
1− δ

1− q
. (28)

Finally, from the three bounds (18), (23) and (28) we have a
contradiction of the assumption on the size of buffer. Hence,
we must havep(hǫ,m)(m) ≥ q, which yields the proof.

VI. SIMULATIONS

In this section, we use simulations to further evaluate the
performance of different chunk-selection policies. We first
consider a network with a fixed number of active peers.
Specifically, the network consists of one server and 10,000
peers. Each peer has a buffer of sizem. The network is a
slotted time system. During each time slot, the server randomly
selects a peer and uploads a new chunk to it, and each peer
(expect the one who obtains the new chunk from the server)
randomly selects another peer and downloads a chunk selected
according to the chunk-selection policy. Figure 2 shows the
minimum buffer sizes for attaining target skip-free playout
probabilities under the greedy, rarest-first and hybrid polices.
We see that the buffer size required under the hybrid policy is
substantially smaller than the rarest-first and greedy policies.
According to our simulation, the greedy policy requires the
buffer size to be183 to attain skip-free playout probability
0.976, the rarest-first requires the buffer-size to be166 to attain
skip-free playout probability0.996, and the hybrid policy
only requires a buffer size of40 to attain skip-free playout
probability 0.999!

In reality, the number of active peers in a P2P network
changes over time because peers can dynamically join and
leave. To study the performance of different polices with peer
arrivals/departures, we consider a network with20, 000 peers.
Initially, 10, 000 peers are active. At each iteration, an active
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Fig. 2. The minimum buffer size versus target skip-free playout probability
with a fixed number of peers in the system. The hybrid policy performance
is an order better than either greedy or rarest first.

peer becomes inactive with probability0.001, and an inactive
peer becomes active with probability0.001.

In our simulation, a peer empties its buffer when it is
inactive, and begins to play the videom time slots (start-
up latency) after it becomes active, wherem is the buffer
size. Figure 3 shows the minimum buffer sizes for attaining
target skip-free playout probabilities under the rarest-first and
hybrid polices. The skip-free probability is computed based
on peers who are playing the video (not including peers who
are in their start-up phase). The greedy policy is not included
because its performance is really poor; for example, the skip-
free playout probability of the greedy policy with buffer size
200 is still less than0.90. From Figure 3, we see that the
buffer size required under the hybrid policy is much smaller
than the rarest-first policy. In fact, the rarest-first requires the
buffer-size to be125 to attain skip-free playout probability
0.99, whereasthe hybrid policy only requires the buffer size
to be39! This simulation indicates that the hybrid policy works
well even in P2P networks with peer arrivals/departures.
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Fig. 3. The minimum buffer size versus skip-free playout probability with
peer arrivals and departures. Greedy is not shown due its extremely poor
performance. The hybrid policy easily does an order better than rarest-first.

VII. C ONCLUSION

In this paper we considered the problem of designing
efficient policies for real-time streaming applications using
P2P approaches. Our objective was to ensure that the playout
buffer for a given target of skip free playout remains as small
as possible. We showed that both the rarest-first and greedy

policy have similar buffer scalings, and that their combination
into a hybrid policy yielded order sense improvements in the
required buffer size. Further, the buffer size required by the
hybrid policy is close to the minimum over all policies. Future
work includes the design of policies which are designed for
ensuring good QoS for specific video codec formats.
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APPENDIX

Lemma 5:Consider the hybrid policyhǫ. For buffer space
i such thati ≥ n(r,·),+ǫ1, the steady state probabilities of
occupancies satisfy

p(hǫ,m)(j + 1) =

p(hǫ,m)(j) + p(hǫ,m)(j)(1 − p(hǫ,m)(j))

×
(

1− a− p(hǫ,m)(m) + p(hǫ,m)(j + 1)
)

,
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wherea , p(r,·)(n(r,·),+ǫ + 1).
Proof: Recall that the hybrid policy first selects a thresh-

old buffer position where the steady state occupancy probabil-
ity using the rarest-first policy is greater thanǫ (this position
is calledn(r,·),+ǫ), gives priority to the rarest-first algorithm,
and uses the greedy algorithm if the difference set with the
selected peer contains none of the chunks indexed from1 to
n(r,·),+ǫ. We first find the probability that the greedy algorithm
is used. Letγ = 1 − 1

M
. According to the definition of the

hybrid policy, we have forn(r,·),+ǫ ≥ 1,

γp̃(hǫ,m)

(

A : A
⋂

{1, . . . , n(r,·),+ǫ} = ∅
)

= γ

n(r,·),+ǫ
∏

j=1

(

1− p(hǫ,m)(j)
(

1− p(hǫ,m)(j)
))

= γ

n(r,·),+ǫ
∏

j=1

(

1− p(r,m)(j)
(

1− p(r,m)(j)
))

= s(r,·)(n(r,·),+ǫ + 1)

=
(

1− p(r,m)(n(r,·),+ǫ + 1)
)

, 1− a.

So1−a is the probability that none of the chunks indexed from
1 to n(r,·),+ǫ is in the difference set. When this event happens,
the hybrid policy uses the greedy policy, and the proof next
is similar to the proof of Proposition 1 of [19]. Following (1)
and (4), the steady-state probabilities of occupancies canbe
written as

p(hǫ,m)(i + 1)

= p(hǫ,m)(i) + p(hǫ,m)(i)(1− p(hǫ,m)(i))×

(1 − a)

m−1
∏

j=i+1

(

1− p(hǫ,m)(j)
(

1− p(hǫ,m)(j)
))

.

Defining s(i) =
∏m−1

j=i+1

(

1− p(hǫ,m)(j)
(

1− p(hǫ,m)(j)
))

for i < m − 1 and s(m − 1) = 1, the equation above can
be written as

p(hǫ,m)(i+ 1) =

p(hǫ,m)(i) + (1− a)s(i)p(hǫ,m)(i)(1− p(hǫ,m)(i)) (29)

and

s(i)

s(i + 1)
= 1− p(hǫ,m)(i+ 1)(1− p(hǫ,m)(i + 1)),

which implies that

s(i + 1)− s(i) = s(i+ 1)p(hǫ,m)(i+ 1)(1− p(hǫ,m)(i + 1)).

Substituting the equality above into equality (29), we obtain

p(hǫ,m)(i+ 2)− p(hǫ,m)(i + 1) = (1 − a)(s(i+ 1)− s(i)).

Summing up the inequalities above fromi to m − 2, we
have

p(hǫ,m)(m)− p(hǫ,m)(i+ 1) = (1− a)(s(m− 1)− s(i)).

Note thats(m− 1) = 1, so

(1− a)s(i) = 1− a− p(hǫ,m)(m) + p(hǫ,m)(i+ 1),

and the lemma holds.
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