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Abstract—The knowledge of channel statistics, as a result of accurate results on instantaneous channel availabililghS
random fading, interference, and primary user activities,can be  channel statistics can be very helpful in making good chianne

very helpful for a secondary user in making sound opportunisic  5.cags decisions, and most studies on opportunistic spectr
spectrum access decisions in a cognitive radio network. Isithere-
access assume such knowledge.

fore desirable to be able to efficiently and accurately estimte i ) .
channel statistics, even for resource constrained secongausers In this paper we focus on the scheduling of channel sensing
like wireless sensors. In this paper we focus on the traditi;al and study the effect different scheduling algorithms hame o
ML (maximum likelihood) estimator. However, rather than using  the accuracy of the resulting estimate we obtain on channel
equal or uniform sampling/sensing intervals as is typicalf done, parameters. In particular, we are interested in #parse

we introduce a random sampling/sensing based ML estimation . . . ’ L
strategy. The randomization of the sampling intervals allevs us sensing/samplingegime where we gan use_only a.l|m|ted
to catch channel variations on a finer (time) granularity; the Nhumber of measurements over a given period of time. The
associated likelihood function is also more sensitive to @mnel goal is to decide how these limited number of measurements
variations. Consequently, this scheme significantly redwes the should be scheduled so as to minimize the estimation error
average sampling rate compared to uniform sampling. Analys \yithin the maximum likelihood (ML) estimator framework.

and simulation both show that random sampling significantly . . .
outperforms uniform sampling at low sampling rate. We further Throughout the paper the terraensingandsamplingwill be

propose a randomized uniform sampling scheme which achiese Used interchangeably.
a better tradeoff between good performance of random samptig There has been relatively little work on MAC layer channel

and the low complexity of uniform sampling. estimation within the context of cognitive radios. Below we
briefly review those most relevant to the present paper. Kim
and Shin [5] introduced a ML estimator for renewal channels
Recent advances in software defined radio and cognitiveing a uniform sampling/sensing scheme where samples
radio [1] have given wireless devices greater ability anof the channel are taken at regular time intervals. A more
opportunity to dynamically access spectrum, thereby potesiccurate, but also much more computationally costly Bayesi
tially significantly improving spectrum efficiency and useestimator was introduced in [7], again based on uniform
performance [2], [3]. To be able to fully utilize spectrunsensing. [8] analyzed the relationship between estimation
availability (either as a secondary user seeking oppdiésni accuracy, number of samples taken and the channel state
of idle periods in the presence of primary users, or as otransition probabilities by using the sampling and estiomt
of many peer users in a multi-user system seeking channieimework of [5] and focusing on Markovian channels. [9]
with the best condition), a key enabling ingredient in dyimmproposed a Hidden Markov Model (HMM) based channel
spectrum access is high quality channel sensing that atloevs status predictor using reinforcement learning techniglibs
user to obtain accurate real-time information on the camdlit predictor predicts next channel state based on past informa
of wireless channels. tion obtained through uniformly sampling the channel. [10]
Spectrum sensing is often studied in two contexts: at tipgesented a channel estimation technique based on wavelet
physical layer and at the MAC layer. Physical layer spectrutransform followed by filtering. This method relies on dense
sensing typically focuses on tlaetectionof instantaneous pri- sampling of the channel.
mary user signals. Several detection methods, such as edgatch In most of the above cited work, the focus is on estimation
filter detection, energy detection and feature detecti@veh given (sufficiently dense) uniform sampling of the channel,
been proposed for cognitive radios [4]. MAC layer spectruire., with equal time periods between successive samplés. T
sensing [5], [6] is more of a resource allocation issue, whescheme will be referred to amiform sensingn the remainder
we are concerned with thechedulingproblem of when to of this paper. By contrast, sampling schemes where time
sense the channel and tlestimationproblem of extracting intervals between successive samples are drawn from arcerta
statistical properties of the random variation in the cl@)nn probability distribution will be referred to amndom sensing
assuming physical layer spectrum sensing provides suffigie throughout the paper. We observe that due to constraints on

I. INTRODUCTION



time, energy, memory and other resources, a user may wish T To
to perform channel sensing at much lower frequencies while )
still hoping for good estimates. It is this sparse sampling / \
scenario that we will focus on in this study, and the goal ON ;
is to judiciously schedule these limited number of sampling | ’ ‘ ’
opportunities. As we shall see the key to achieving this és th
use of random sensing. OFF 0
Our main contributions are summarized as follows.

. Under the same channel statistics and the same averg& 1. Channel model: alternating renewal process with ruh Gff states
sampling interval (or frequency), the selection of random
sampling times affects the estimation accuracy throu
the higher-order central moments of the random sampli babilit
intervals. -

« In the special case of exponentially distributed on/off In t?|s| F:afetf our focus is on ext:cactlng ale(tjsttlhmaa;g
channels, we show that uniform sensing is therst essential Salislics given a sequence of measured ¢ S

one can do under a sparse sampling condition, and and 1s) rather than the (binaggtectionof channel state

deviation from it improves the estimation accuracy. | eciding betW(_aen 0 and 1 given the energy reading). For this
particular, in this case using exponentially distributef!'Pos€: We will assume that Fhe c_hannel ;tate measurements
sampling intervals results in much better estimation pe?—re error-free. If we have 5|de__|_nformat|on on Wh_a.‘t the
formance compared to using sampling intervals dravﬂ?tecuon and falsg alarm probgb|l|t|es are, then the eskim
results may be adjusted accordingly to utilize such knogéed

from uniform or normal distributions. Th h | stat E() ] d o b
o We propose aandomized uniform sensimgcheme that '€ chahnel stale proce (t) is assumed to € a
ntinuous-time alternating renewal process, altergakia-

utilizes the above observation and attains a better trade?

between estimation accuracy and its computational coE‘?(ee.“ o_n/ b usy (_state 1) and 9ff/|dle (state *07), an illces
tion is given in Fig. 1. Typically, it is assumed that a secanyd

The remainder of this paper is organized as follows: Secti% er can utilize the channel only when it is sensed to be in

Il presents the channel models and Section Il gives theildetg .« tates (i.e., when the channel is idle or the primary
of the ML estimator and its functional form under a randornser is absent). When the channel state transitions to the on

h h i h p h e ; eﬁglte, the secondary user is required to vacate the chamnel s
ow t € sampling scheme a e_ctst € est|mqt|on PENOrMangg 1ot to interfere with the primary user (also referred to as
a detailed comparative analysis between uniform sensidg Re spectrum underlay paradigm, see e.g., [12])

_random s_ensin_g for_ exponentially distr_ibuted channel rhode This random process is completely defined by two probabil-
is also given n this section. In Section V we propose ; density functionsf; (¢) and fy(¢), t > 0, i.e., the probability
randomized “”'forf" sensing scheme. Valldatlng NUMETICHstribution of the sojourn times of the on periods (dendigd
results are shown in these two sections, respectlveIchfﬁlectthe random variabld}) and the off periods (denoted by the

VI concludes the paper. random variabldy), respectively. The channel utilizatianis
Il. THE CHANNEL MODEL defined as
E[T]

In this paper we will I|m|t our atte_n'uon to.MAC _Iayer u E[T) + E[To]’ 1)
spectrum sensing as mentioned in the introduction. Withimt _ ) )
context, the channel state as perceived by a secondarymséﬂ’_h'Ch is also the average f_racUon of time the channel is occu
represented by a binary sequence. This is a model commoRi§d or busy. By the definition of a renewal processandTy
used in a large volume of literature, from channel estinmatigi® independent and all on (off) periods are independenty a
(e.g., [5], [8]) to opportunistic spectrum access (e.g]) [6identically distributed (i.i.d). It's worth pointing ouhat the

to spectrum measurement (e.g., [11]). Specifically, ¢t) widely used Gilbert-Elliot model (a two-state Markov chkis
denote the state of the channel at timeuch that a special case of the alternating renewal process wherenthe o

(off) periods are exponentially (in the case of continudnne)
or geometrically (in the case of discrete time) distributed

g% in either state with a detection probability and a falseral
pro

Z(t) =1 if the channel is sensed busy at tirhe
Z(t)=0 otherwise . [1l. M AXIMUM LIKELIHOOD (ML) BASED CHANNEL

The advantage of such a model is its simplicity and tractabil ESTIMATION

ity in many instances. The weakness lies in the fact that theWe proceed to describe the maximum likelihood (ML)
actual energy present or detected in the channel is harditimator [13] we will use to estimate channel parameters fr
binary. The raw channel measurement data will have to gosequence of channel state observations.

through a binary hypothesis test (e.g., via thresholdimg) t Recall that the channel state is assumed to follow an
be reduced to the above form, a process that comes wdlternating renewal process. Such a process is completely
probabilities of error. Consequently, the channel is sgriee characterized by the set of conditional probabilitieg(At),



1,7 € {0,1}, At > 0, defined as the probability thatthemselves. Then the likelihood function is given by
given: was observed\t time units ago;j is now observed.

This quantity is also commonly known as the semi-Markov L) = Pr{Z;6}
kernel of an alternating renewal process [17]. Assuming the = Pr{Zi, = 2m; Zt,,_, = Zm-1,
process is in equilibrium, standard results from reneweb i Zi = Zm—nys D, = 2130} . (6)
[17] suggest the following Laplace transforms of the above . L . _
transition probabilities: The idea of ML estimation is to find the value éfthat
maximizes the log likelihood functioin L(¢). That is, the
Pi(s) = 1T f1=- i {l - fo(s)} ’ estimated is such that—alnaL_(") |- = 0. This method has been
s E[To)s* {1 — fi(s)f5(s)} used extensively in the literature [14]-[16]. For a fixed set
Pr(s) = {1=fF)}H{1-fi(s)} of data and underlying probability model, the ML estimator
ot E[To)s2 {1 — fi(s)fs(s)}’ ) selects the parameter value that makes the data “most’likely
. {1—fr ()} {1 = fe(s)} @) among all possible choices. Under certain (fairly weak) reg
Plo(s) = EMs2 {1 - () f5(5)] ularity conditions the ML estimator is asymptotically apéil
* * [18].
Pri(s) = 14 le(s)} {1* fo*(s)} . The question we would like to investigate is what im-
s E[N]s? {1 = fi(s)f5(s)} pact does the selection of the sampling time sequence
where f7(s) and fi(s) are the Laplace transforms gt (t) {t1,t2,---,tm} have on the performance of this estimator,

and fy(t), respectively. We see from this set of equations thgfven a limited number of samples. Specifically, we ques-
the channel statistics is completely defined by the prolabiltion whether random sampling is a better way of sensing
density functionsf; (t) and fo(t). the channel than uniform sampling where the measurement
The above set of equations are very useful in recoverifgmples are taken at regular time intervals. As we mentioned
the time-domain expressions of the semi-Markov kernekfoft iN the introduction, most existing literature focuses anlttter
times this is the only viable method). For example, in th@ethod. _ _ . _
special case where the channel has exponentially distdbut For the remainder of our analysis we will limit our attention

on/off periods, we have to the case_whe_re _the_ channe_l qn/off durations are given
by exponential distributions. This is for both mathemdtica
f1(t) = e~ 3) tractability and simplicity of presentation. We will expéo
fo(t) = Gpe=%t . more general cases in our numerical experiments.

_ . . Since the exponential distribution is defined by a single
Their corresponding Laplace transforms and expectations Harameter, we have nofv— {61,600}, whered, andd, are the
Fr(s) = 01/(s +61) E[T)] = 1/6, :jW(i gbnli_nown scalartpa:amuet_ers t(;]f the on anld off exp;nnentlal
Fr(s) = 60/ (s + 6o) . E[To] =1/, . listributions, respectively. Using the memoryless propéne
likelihood function becomes
Substituting the above expressions into Eqn (2) followed .. = 7
by an inverse Laplace transform we get the state transiti(?ﬁe) = Priz;0}

probability as follows: = Pr{Z, =20} [[ Pr{Z, = zlZ:,_, = 21;0}
Py (At) = wd (1 —u)'™ 4 (=171 — u)ie=(Gor0)AL e

(4) = Pr{Z, =z:0}-[[ P.._,., (AL 0) . @)
whereu = % as defined earlier. {20 = 210} };[2 o )

In this paper we consider the following estimation prObIeerhereAt- — {,—1,_,. The first quantity on the right is taken
Assume that the on/off periods are given by certain knowp .o o

distribution functionsfy(¢t) and f1(¢) but with unknown pa-
rameters. Suppose we obtain samples{zi,z2, - ,2zm},
taken at sampling timegt,to, - , ¢}, respectively. We That is, the unconditioned probability of finding the channe
wish to use these samples to estimate the unknown parametersa particular state (LHS) is taken to be the stationary

First note that the channel utilization facter can be distribution given on the RHS. This choice is justified by
estimated through the sample mean of themeasurements assuming that the channel is in equilibrium.

Pri{z, = z1;0} =u™ (1 —u)'7% . (8)

as follows The second quantity?,, ,..(At;; ) is given in (4). Com-
1 & bining these two quantities, we have
=t L(0o,61) =L(0) = v** (1 — u)' H (uzi(l — )
which is an unbiased estimator for the true quantity i=2
Let § be the unknown parameters of the on/off distributions: + (—1)FrEmg TE (] )Tt (Bt AL)

6 = {61,60}. Note that in generab, and f, are vectors 9)



The estimates for the parameters are found by solving One of the first things to note is that since there is no
nL(60.01) _ vafiation_ across sampling intervals under unifprm sending
{ o La(%o 5) (10) umforr_n interval needs to be upper-bounded in order to catch
—56, =0 potential channel state changes that occur over smallaiter
1. By contrast, under random sensing, even if the average sam-
H%g interval is large, there can be significant probapildr
iciently small sampling intervals to exist in any reatinn
of the sampling time sequenée;, to, - ,tm}.

To see why this variability is important, consider the
transition probabilitiesP;;(At), ¢,5 € {0,1}. As shown in
the previous section, these probabilities completely éetire
- iz likelihood function. They will approach the stationary pro
L(bo) =u™ (1 —u)™" H ' abilities asAt increases. For instance, we haig (At) —

Conceptually to get the estimates for bdih and 6, one
needs to solve the above two equations simultaneously. T
however proves to be computationally complex and analy
cally intractable. Instead, we adopt the following estiorat
procedure. We first estimate using (5), and taked; =
@. The likelihood function (9) can then be written as

m

i=2 E[T\] _ ; :
F(—1)mtEmgloEo (] )i 790Ati/u) EMLET] — ¢ as At — oo, and SO on. _Thls stat|or_1ary
u u € : guantity represents the average fraction of time the cHasne

(11) busy, which contains little direct information on the awg®a

The estimation ob), is then derived by solving the equatioriength of a busy period, the parameter we are trying to esti-
M —0. mate. Depending on the mixing time of the underlying renewal
Ih'the remainder of this paper, we will use this procedufocess, this convergence can occur rather quickly. Whst th
by treatingu as a known constant and solely focus ofmeans is that if sampling is sparsely done, in which case
the estimation offy, with the understanding that can be At is a relatively large constanki, under uniform sensing,
unbiasedly estimated, and once we have the estimati foe then these transition probabilities will become constaket-
have the estimate fat. It has to be noted that this procedurdi-€., approaching the stationary value), which in turnsesu
is in general not equivalent to solving (10) simultaneousiihe likelihood function to look like a constant. This makes i
i.e., the resulting estimates may have different distiimsgt.  difficult for the ML estimator to produce accurate estimates
However, we have found this to be much more amenable [#3]- . - o .
analysis and more computationally feasible (this is alse th Loosely speaking, the transition probabilities being

method used in [5] but without such an explicit justificadion constant-like means that samples are of a similar quality
in the sense noted above, each providing little additional

IV. RANDOM SENSING VS. UNIFORM SENSING information. In particular, there is zero probability thae

The goal of this study is to judiciously schedule a verwill collect two samples less thart, apart. By contrast,
limited number of sampling opportunities so that the estinder a random sensing schem is a variable, meaning
mation accuracy is least affected. In this section we shomith positive probability there will be sampling intervadisth
that when the number of samples are small (a sparse samaller and larger than A¢,. This variability in the interval
pling scenario), then random sensing significantly outwens realizations results in measurementsiof (At) that contain
uniform sensing. In what follows we first make a qualitativenore information about the parameter to be estimated (we wil
comparison using a few intuitive arguments. We then perforshortly make this notion more precise).
a more precise analysis of the two through the use of FisheNext we show that using random sensing the resulting like-
information, in the case of exponential on/off distributso lihood function is more sensitive to the estimated paramate
In particular, we will show that using this measure, uniforrhelpful feature in its maximization. Recall that the estienaf
sensing is theworst type of scheduling in terms of thethe parametef, is derived by soIvingBl”(;%bO:éO =0.In
estimation accuracy. We further compare the performancefi§. 2 we plot an example of the likelihood functidn(f,)
a few random scheduling schemes. Numerical results are alsaler the uniform sensing (US) and random sensing (RS)
provided. schemes, respectively. In this example the true paramalige v
of 6, and 6, are 0.05 and 0.1, respectively. We usé0s as
the uniform sensing interval over a total sensing period of

Uniform sensing, where samples are taken at consta)os. The random sensing times are generated by randomly
time intervals, is a natural, easy-to-implement, and easy-distributing 100 points over the same period using a uniform
analyze scheme. Specifically, with the on/off durationsgei distribution, resulting in an average sensing interval0s.
exponential the likelihood function has a particularly plen  The measurement sequenge} in both cases are then used
form; there is also a closed-form solution to the maxim@ati in (11) to obtain the respective likelihood function as show
of the log likelihood function, see e.g., [5]. On the othen#ia in Fig. 2. The true parameter value &f is at the center of the
there are a number of drawbacks to uniform sensing compargstizontal axis, this is also the ML estimaf@. We see that

to random sensing, where samples are taken at random tiigile both functions attain their maximum value at the point
intervals (generated according to certain probabilitytritis-

tion), given the same average sampling rate. 10ne such upper bound was proposed in [5].

A. An intuitive comparison



Simulated time=5000s Sample number=100

<107 E[T =20 E[T]=10 viewed as a function of. Therefore the term disappears after
6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ — the differentiation.
----- us Similarly, using the likelihood function given in Eqn (11),
5t —_— ] the Fisher information can be written as:
2
4+ Maximum value 1 1(90) = _E[a 139‘[;2)(90)]
> m 2 X ,—0 Atl/u
< 3t E 0% In[a; + Bie~ b ]
Maximum value - _E[Z2 698 } (14)
1=
i ,
i ————— E)mimimimimim i mm _ Xm: Ath[ —OéiﬁieieoAti/u ]
it | 22 oy + fre-moBu/uz )
A I S wherea; = u (1—u)! ™ andfg; = (—1)= -1yl =1 (1
0025 003 0035 004 0045 005 0055 006 0065 007 0.075 u)?-1, Again each term within the summation will be referred
0 to as the Fisher function, and the Fisher information can be

written asl(6p) = >_1", g(At;).

The expectation on the right-hand side of the above ex-
pression can be calculated by considering all four po &l
for the pair ¢;_1, %), i.e., (0,0), (0,1), (1,0), and (1,1). Using
Eqgn (4), we obtain the transition probability of each case to
E}S(l _U)POQ(At), (1 —u)P01(At), uPlo(At) anduPll(At),
r?spectively. We can therefore calculate the Fisher fanctis

Fig. 2. Comparison of sensitivity to channel parameter

6y = 0.05, they behave very differently around this point
The one under random sensing is clearly more sensitive
perturbations in the estimated value, and thus it is easier

obtain the correct value @f given the data using this function. ollows: ) )
g(At) — A_tefegAt/u[ U (1 B 'LL) (15)
B. An analysis using Fisher information u2 u — ue—00At/u
2
We now analyze this notion of information content more + u(l —u)
formally via a measure known as tResher information[21]. (1 —u) = (1 —u)e=foArt/u
It is defined as follows for a given log likelihood function: B u(l —u)? B u?(1 —u) ]
92 1n L(9) (1— ) +ue0od/w gt (1 —u)eodt/ul’
1(0) = _E[W] : (12) Below we show that under a certasparsity condition on

_ _ o _the sampling rate, the Fisher function is convex, and that th
The Fisher information is a measure of the amount of ifsisher information is minimized when uniform sampling is

formation an observable random variable conveys about gged. We begin by introducing this sparsity condition.
unknown parameter. This measure of information is partic- Condition 1: Let & = max{2 + v/2, In(1=%), In($2-)}.

ularly useful when comparing two observation methods qhis condition requires thaht > au/6y.

random processes (see e.g., [22]). For instance, the jmrecis Taking At to be the time between two consecutive sampling

to which we can estimaté is fundamentally limited by the points, the above condition states that these two pointsatan

Fisher information of the likelihood function. be too close together with respect to the average off duratio
Due to the product form of the likelihood function given(1/6,) and the channel utilization.

in Egn (7), the Fisher information can be written as the Lemma 1:The Fisher functiory(At) given in Eqn (15) is

summation of functiong(At;;0), i = 2,3,---,m, I() = convex under Condition 1 (i.e, faht > au/6y).

>, g(Aty; ), where Proof: For simplicity in presentation, we first write

) PP . (Aty:0) g(At) = ho(At)h(At), where

Ati; 9 = —E =, . 13 2
g( ) [ 692 ] ( ) hO(At) — AZ efegAt/u7
U
The functiong() will be referred to as thé&isher functionin h(At) = hy(At) + ha(At) + hs(At) ,

the remainder of our discussion. Note thd) is a function
of both At; andd. However, in the remainder of this sectio
we will suppresd) from the argument in the Fisher function hi(At) 2u(1 — u)

g() and write it simply agy(At). This is because our analysis 1 — e~fot/u’
focuses on how this function behaves as we select diffekent u(l —u)?

Iyvhere

(the sampling interval) while holding constant. Note that the ha(At) = - (1 — u) + ue—foAt/u’
first term in Eqn (7) does not appear in the above expression. u2(1 — u)
This is because this first term is only a function of(see hs(At) = TR o7

Eqgn (8)), which is separately estimated using Egn (5) and not



We proceed to show that each of the above functions is Proof: Setting the first derivative af to zero and solving

convex under Condition 1.

We first show thah,, (At) is convex forAt > (24++v/2)u/6p.
Under this condition and noting < v < 1 andf, > 0 we
have

: At o ntjure B0l
ho(At) = —e u(2 — ——) <0,
” eieoAt/u QoAt
h,(At) = ———— —2)2 -2 .
o (A1) (= ) —=2]>0

Therefore for®eAt > 2 1 /2, h,(At) is convex.

Thathy(At) is convex is straightforward. Sinde< v < 1
andé, > 0, we have:

—2(1 — u)fpe oAt/
(1— e—OoAt/u)Q
2(1 _ u)ogef«%At/u(l + efegAt/u)
u(1l — e—0oAt/u)3

hy(At) = <0,

hy (At) = > 0.

Next we show thati;(At) is convex forAt > g In(2;).
This condition is equivalent tae~%4t/* < 1 —4. Under this
condition and again noting < » < 1 andf, > 0, we have

—u(1 — u)2fgeloAt/u

(1 — u) + ue—foArt/u)2

(1 —u)?02e P02 (1 — u) — ue= oAt/ Y]
(1 —u)+ ue—fot/u]3

ho(At) <0,

hy (At) = > 0.

Similar, h3(At) is convex under the conditiof\t >
- In(454), since

/ —u(l— u)QHe_BUAt/“
hs(At) = it (L= u)e WA <0,

. 1 — u)262 —600At/urg,, 1— —0oAt/u
Ay - dowie = (1 —we Lo,

[u+ (1 —u)e—foAt/u)3

Therefore under the conditiot > au/6y, h1, he andhs
are all monotonically decreasing convex functions. ltdat

thath = h; + ho + hs is also monotonically decreasing an

convex. Furthermore, for anjAt > 0, h,(At) > 0, and
h(At) > h(4+00) = 0. We can now show thag is convex
under this condition:

g (At) = (ho(A)h(AL)”
= h, (AL)A(AL) + 2h, (AR (At) + ho(AL)R" (Al)
>0,
(16)

where the inequality holds because every term on the right

hand side is positive under the conditidkt > au/6y as
summarized above. ]

Lemma 2:For anyn € Nyon > 1, T € R/ T > (n+
Dau/0y, and au/by < At < T — nau/6y, the function
G(At) = ng(T=A1)+g(At) has a minimum ofn+1)g(

H _ T
attained atAt = -

n+l)

for At results in solving the equatiop (At) = ¢ (=A%),
Since the arguments on both side satisfy Condition 1 by the
assumption of the lemmag, is convex according to Lemma 1
andg’ is a strictly monotonic function. Therefore there exists
a unique solution within the range @& /0y, T — nau/6p)

to this equation af\t = —.

Next we calculate the second derivative@fat this point.
SinceG”(At) g’ (At)+Lg"(T=AL), we haveG” (-1) =
(1+2)g" (n+1) SinceT > (n+1)au/fo, g is convex at this
stationary point by Lemma 1. Hencgis convex at this point
and it is thus a global minimum within the rang@u/eo, T-—
nau/f0y); the minimum value ign + 1)g (n+1) completing
the proof. ]

Theorem 1:Consider a period of timé, T, in which we
wish to schedulen > 3 sampling points, including one at time
0 and one at timel'. Denote the sequence of time spacings
between these samples As = [Ato, Ats, - -, At,,], where
i, At; = T. For a given sequence dft, define the Fisher
information I(6y) as in Eqn (14) and rewrite it aB0y; At)
to emphasize its dependence dit. Assuming?T > (m —
1)au/6y, then we have

Iniil I(6p; At) = (m T

A Dg(——),
where 4, = {At; : Y1, At = T,AL > aufby,i =
2,---,m}, and with the minimum achieved at¢; =
L i=2,.
mTlhls theorem says that among all sampling strategies with
sampling intervals satisfy the sparsity Condition 1, theswo
strategy as measured by the Fisher information is the unifor
sampling strategy. In other words, any deviation from this
strategy improves the Fisher information.
Proof: We prove this by induction om.
Induction basis:For m = 3,

I(0o; At) = g(Atz2) + g(Ats).

Using Lemmal in the special case of = 1 the result follows.
Induction step:Suppose the result holds f8r4, ... m, we
ant to show it also holds fam + 1 for T > mau/6y. Note

hat in this case\t € A,, 1 implies thatau /0y < Aty41 <
— (m — 1)au/6y. We thus have

Inln {1(90, At)}

AteEA,
= i {Z; g(AL) + g(Atm+1)}

} +9( Am)}

{lm = 0a(T 20t 1 g

= min min E g(At;)
Atm+1€A7n+1 ZAt¢:T—Atm+1

=2

= min
At 1€Am 41 1
T
where the third equality is due to the induction hypothesis
and the first term on the RHS is obtained/s; = %,



i =2,...,m. The last equality invokes Lemma 2 in the speciaequence. Consequently the expected value of the Fisher
case ofn = m — 1, and is obtained af\t,,,+1 = % Com- function is affected by the selection of a sampling schentg on
bining these we conclude that the minimum value of Fishéirough the higher order central moments resulting from the
information ismg(L), whenAt; = £.i = 2,...,m+ 1. distribution f(). Note that the expectation of the Fisher func-
Thus the casen + 1 also holds, completing the proof. m tion under uniform sampling with constant sampling intérva

Theorem 1 states that given the total sensing pefiahd p, is simply g(u,) (i.€., only the first term on the right hand
the total number of samples, provided that the sampling side remains). Therefore any random scheme would improve
is done sparsely (with sufficiently large sampling intesyal upon this if it results in a positive sum over the higher order
the Fisher information attains its minimum when all samplinterms. While the above equation does not immediately lead
intervals have the same value, i.e when using a unifotm an optimal selection of a random scheme, it is possible
sensing schedule. In this sense uniform sensing ismbist to seek one from a family of distribution functions through
possible sensing scheme in that any deviation from it, whigtimization over common parameters.
keeping the same average sampling intetVa(m — 1), can In Table | we have listed the higher order central moments
only increase the Fisher information. This increase in €ishof normal, uniform and exponential distributiofslt can be
information become more significant when sampling geessily concluded that among these three choices the Fisher
sparser, whefl’/(m — 1) increases. function has the largest expectation under the exponential

Note that for the above result to hold we need the conditiatistribution. Recall that all quantitative analysis instlsection
At; > au/6y. This is because the analysis involves comparing based on the assumption that the channel has expongntiall
specific sampling sequences, i.e., the average performadistributed on/off durations. Since the expectation offtleher
(over channel on/off realizations) of an exact sampling s&inction is a quadrature of and pdf f as show in (17), a
guence. When a random algorithm is used, the samplirndom sampling scheme with a pdf matching the shapg of
sequences are generated randomly, with some sequenceswifirachieve a larger value. This may explain why in this case
forming better than others. The average performance is newponentially distributed sampling intervals perform test.
also averaged over all possible sampling sequences. OuAs an example, the Fisher function of exponentially dis-
numerical results indicate that in this average sense arandtributed on/off channel model witl[77] = 1 and [Tp] = 2
sensing algorithm performs better than uniform sensingrg | is shown in Fig. 3, and the Fisher information under différen
as theaveragesampling interval satisfies the sparsity conditiosampling distributions are given in Fig. 4. The samplingeim
(i.e.,T/(m—1) is sufficiently large), rather than requiring theunder different distributions are generated as follows. fie
same for every sampling interval for every sampling seqeena sensing windowl” and an average number of sampies’.

. . . We place the first and the last sampling times at tiimand
C. A comparison between different random sampling schen&esreS tively. We th tiall Al
. respectively. We then sequentially generatg, Ato,

Having established that random sampling schemes resuligif:ording to a given pdf() with parameters normalized such
higher value of the Fisher information than uniform senshat it has a mean (sampling interval) Bf (m — 1). For each
ing, we next compare different random sampling schemeg;, e generate we place a sampling point at t@§_2 Aty
Assuming that the sampling intervalst;’s are generated This process stops when this quantity exce@dsNote that
independently according to some ptfAt) we now examine ynder this procedure the last sampling interval will not be
the expectation of the Fisher function, averaged over narylo exactly according tof() since we have placed a sampling

generated sampling sequences, calculated as follows. point at timeT. However, this approximate seems unavoidable.
o0 Alternatively we can allowl” to be different from one trial to
Elg(At)] = /0 g(At) f(At)dAt (17) another while maintaining the same average. As long' as
o0 sufficiently large this procedure does not affect the essenc
= / [9(10) + 9" (10) (At — p1o) the fairness of the comparison. (Note that Fig. 4 could atso b
0 obtained using numerical integration rather than simaoitaji
oy S0 ) (A o) + -1 f(At)dAL
n! D. Simulation results
9" (o) pim o In this subsection we numerically compare the performance

= +9g ot _ , . : o
9(1o) + 9 (o) n! of uniform sensing and random sensing. Our simulation is
where the Taylor expansion is around the expected samplithgne in Matlab and uses a discrete time model. We assume a
interval u, = E[At], or T/(m—1) for given windowT andm time unit of 1s; the on/off periods are rounded to the closest
number of samples taken, apg = [ (At — o)™ f(At)dAt
is the nth order central moment aht. 2Here uniform distribution refers to the sampling intervairy randomly

. . selected according to a uniform distribution, not to be asefl with uniform
In order to have a fair comparison (and to ensure thgnsing where sampling intervals are a constant. For nodfsailbution the

same sparsity condition), we will fif" andm, and thus fix probability distribution function is cut off at zero and theenormalized.

the average sampling interva,lo under different sampling 3The reasonn is only an average and not an exact requirement _is because
we cannot guarantee to have exaetlysamples within a window of” if we

SChem?S- Also note that the vgllgé”) (MO) is completely generate sampling intervals randomly according to a givé¥nBy allowingm
determined by the channel statistics and not the samplitage an average we can simply require the pdf to have a med@vi(ef—1).
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Fig. 3. Fisher function of exponentially distributed chahmodel

integers®. The sampling intervals under uniform sensing at

|T/(m — 1)] whereT is the total length of the sensing
period andm the number of samples allowed. Under th

random sensing scheme, we fix the average sampling inter

4We note that the choice of the time unit is rather arbitrarg @conse-
quential for our purpose.
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Fig. 4. Comparison of Fisher information: Normal vs. Unifovs. Expo-
nential

to be|T/(m—1)] and sequentially generate random sampling
intervals as described in the previous subsection.

Fig. 5 compares the performance for an exponentially
distributed channel model under different valuesrover a
duration ofT" = 4096s. The maximum sample numberig96;
this is because the on/off periods are rounded to integers, s
there is no point in sampling faster than once peunit of
time. Sampling points are randomly placed using a uniform
distribution. For both parameters we see that random sgnsin
outperforms uniform sensing, and significantly so wheris
small. This validates our earlier analysis.
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Fig. 5. Performance comparison: random sensing vs. unif@nsing

Fig. 6 shows the performance comparison between random
sensing and uniform sensing for a channel with Gamma
distributed on/off periods. The probability density fupais
of such a channel model can be expressed as

_ k-1 _e"MM
A0 =1 S (18)
folt) = tho—1 e 20
0 AT (ko)

They are each parameterized by a shape parameterd a
scale parametek, both of which are positive. In this case,
the Laplace transforms ofy(¢) and f;(t) are (1 + \gs) o
and (1 + \;s)~*1, respectively, and the expectation of the
on/off periods areE[T}] = k1A and E[Tp] = koXo. In the
simulation bothk; and k; are set to2, with a simulated



time of 5000s. For random sensing the sampling intervals are This motivates us to propose a simple variation to uniform
randomly generated following an exponential distributidfe sensing, a hybrid between uniform sensing and random sens-
see that random sensing again outperforms uniform sensing. This is referred to as thrandomized uniform sensings

using such a channel model. we have pointed out, the main reason why uniform sensing
does not perform well is its lack of variability in the sanmgi

ElTyl=2 E[T,,J=1 ydistribution k =2 intervals. Thus the main idea behind the randomized uniform

Ssﬁ\ ‘ ‘ ‘ ‘ T T Actual value sensing scheme is to adopt two different sampling interval
w0l “wu o | values, a long one and a short one, denotedMsyand Az,

respectively. Assume we sample with the short interval
times. Then given the sensing periddand a required number
of samplesm, we can sense the channe} times with long
interval At;, wherem; = m — ms andAt; = %
assuming we place a sample point at tinleand 7', réspec—
tively.

To further simplify the scheme, we can group together long
and short intervals. In our numerical experiments presente
next we simulated the following specific instance. The algo-
rithm starts by sensing the channel with long intervAls.

00 200 300 00 50 om0 oo a0 o0 1ooo Then at a randomly selected time (which could be tie
Average sample number or upon completing alln; samples, whichever occurs first,
it switches to sensing with short intervals and collepts

Fig. 6. Performance comparison of gamma distributed cHanodel samples. At this point the algorithm switches back to sensin

with long intervals and completes the collection of whateve

In Fig. 7, we compare the performance between differerdmains of then, samples. Essentially the algorithm seeks to
random sampling schemes. Keeping the same average, gleze a group ofn, sampling times, each spacéd, apart,
sampling intervals are generated following normal, umifor at a random location within the sensing period.
and exponential distributions, respectively. We see tkpbe  Fig. 8 shows the comparison among random sensing, uni-
nential random sampling outperforms the other two. This ferm sensing and randomized uniform sensing. The simulated

consistent with our earlier analysis. time is T = 5000s, the short interval is set to be one third of
the average sampling interval, the number of short interval
ElToql=2 BT, l=1 samples is set to bém/2|, while maintaining the same

35

interval average ofT'/m| by adjusting the long intervals. We
ot I see clearly that this randomization scheme is very effectiv
—©— Uniform yet simple. Since the channel is sampled at alternate but de-
—5— Exponental| terministic intervals, the estimation computation is fiangler
than for purely random sensing.
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VI. CONCLUSION

In this paper, we studied three sensing schemes for the
channel estimation problem in cognitive radio networksalAn
ysis and simulations shows that random sensing with ran-
domized sampling intervals outperforms uniform sensing fo
‘ ‘ ‘ ‘ ) exponentially distributed on/off channel model at low séimgp
0 50 100 150 200 250 300 rate. A randomized uniform sensing scheme was proposed

wverage sample number
to obtain better tradeoff between estimation accuracy &d i
computational cost.

15

101

Fig. 7. Performance comparison of random sampling: Norrsaluniform
vs. Exponential
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