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Abstract—The knowledge of channel statistics, as a result of
random fading, interference, and primary user activities, can be
very helpful for a secondary user in making sound opportunistic
spectrum access decisions in a cognitive radio network. It is there-
fore desirable to be able to efficiently and accurately estimate
channel statistics, even for resource constrained secondary users
like wireless sensors. In this paper we focus on the traditional
ML (maximum likelihood) estimator. However, rather than using
equal or uniform sampling/sensing intervals as is typically done,
we introduce a random sampling/sensing based ML estimation
strategy. The randomization of the sampling intervals allows us
to catch channel variations on a finer (time) granularity; the
associated likelihood function is also more sensitive to channel
variations. Consequently, this scheme significantly reduces the
average sampling rate compared to uniform sampling. Analysis
and simulation both show that random sampling significantly
outperforms uniform sampling at low sampling rate. We further
propose a randomized uniform sampling scheme which achieves
a better tradeoff between good performance of random sampling
and the low complexity of uniform sampling.

I. I NTRODUCTION

Recent advances in software defined radio and cognitive
radio [1] have given wireless devices greater ability and
opportunity to dynamically access spectrum, thereby poten-
tially significantly improving spectrum efficiency and user
performance [2], [3]. To be able to fully utilize spectrum
availability (either as a secondary user seeking opportunities
of idle periods in the presence of primary users, or as one
of many peer users in a multi-user system seeking channels
with the best condition), a key enabling ingredient in dynamic
spectrum access is high quality channel sensing that allowsthe
user to obtain accurate real-time information on the condition
of wireless channels.

Spectrum sensing is often studied in two contexts: at the
physical layer and at the MAC layer. Physical layer spectrum
sensing typically focuses on thedetectionof instantaneous pri-
mary user signals. Several detection methods, such as matched
filter detection, energy detection and feature detection, have
been proposed for cognitive radios [4]. MAC layer spectrum
sensing [5], [6] is more of a resource allocation issue, where
we are concerned with theschedulingproblem of when to
sense the channel and theestimationproblem of extracting
statistical properties of the random variation in the channel,
assuming physical layer spectrum sensing provides sufficiently

accurate results on instantaneous channel availability. Such
channel statistics can be very helpful in making good channel
access decisions, and most studies on opportunistic spectrum
access assume such knowledge.

In this paper we focus on the scheduling of channel sensing
and study the effect different scheduling algorithms have on
the accuracy of the resulting estimate we obtain on channel
parameters. In particular, we are interested in thesparse
sensing/samplingregime where we can use only a limited
number of measurements over a given period of time. The
goal is to decide how these limited number of measurements
should be scheduled so as to minimize the estimation error
within the maximum likelihood (ML) estimator framework.
Throughout the paper the termssensingandsamplingwill be
used interchangeably.

There has been relatively little work on MAC layer channel
estimation within the context of cognitive radios. Below we
briefly review those most relevant to the present paper. Kim
and Shin [5] introduced a ML estimator for renewal channels
using a uniform sampling/sensing scheme where samples
of the channel are taken at regular time intervals. A more
accurate, but also much more computationally costly Bayesian
estimator was introduced in [7], again based on uniform
sensing. [8] analyzed the relationship between estimation
accuracy, number of samples taken and the channel state
transition probabilities by using the sampling and estimation
framework of [5] and focusing on Markovian channels. [9]
proposed a Hidden Markov Model (HMM) based channel
status predictor using reinforcement learning techniques. This
predictor predicts next channel state based on past informa-
tion obtained through uniformly sampling the channel. [10]
presented a channel estimation technique based on wavelet
transform followed by filtering. This method relies on dense
sampling of the channel.

In most of the above cited work, the focus is on estimation
given (sufficiently dense) uniform sampling of the channel,
i.e., with equal time periods between successive samples. This
scheme will be referred to asuniform sensingin the remainder
of this paper. By contrast, sampling schemes where time
intervals between successive samples are drawn from a certain
probability distribution will be referred to asrandom sensing
throughout the paper. We observe that due to constraints on
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time, energy, memory and other resources, a user may wish
to perform channel sensing at much lower frequencies while
still hoping for good estimates. It is this sparse sampling
scenario that we will focus on in this study, and the goal
is to judiciously schedule these limited number of sampling
opportunities. As we shall see the key to achieving this is the
use of random sensing.

Our main contributions are summarized as follows.

• Under the same channel statistics and the same average
sampling interval (or frequency), the selection of random
sampling times affects the estimation accuracy through
the higher-order central moments of the random sampling
intervals.

• In the special case of exponentially distributed on/off
channels, we show that uniform sensing is theworst
one can do under a sparse sampling condition, and any
deviation from it improves the estimation accuracy. In
particular, in this case using exponentially distributed
sampling intervals results in much better estimation per-
formance compared to using sampling intervals drawn
from uniform or normal distributions.

• We propose arandomized uniform sensingscheme that
utilizes the above observation and attains a better tradeoff
between estimation accuracy and its computational cost.

The remainder of this paper is organized as follows: Section
II presents the channel models and Section III gives the detail
of the ML estimator and its functional form under a random
sequence of sampling times. Then in Section IV we present
how the sampling scheme affects the estimation performance,
a detailed comparative analysis between uniform sensing and
random sensing for exponentially distributed channel model
is also given in this section. In Section V we propose a
randomized uniform sensing scheme. Validating numerical
results are shown in these two sections, respectively. Section
VI concludes the paper.

II. T HE CHANNEL MODEL

In this paper we will limit our attention to MAC layer
spectrum sensing as mentioned in the introduction. Within this
context, the channel state as perceived by a secondary user is
represented by a binary sequence. This is a model commonly
used in a large volume of literature, from channel estimation
(e.g., [5], [8]) to opportunistic spectrum access (e.g., [6])
to spectrum measurement (e.g., [11]). Specifically, letZ(t)
denote the state of the channel at timet, such that

{

Z(t) = 1 if the channel is sensed busy at timet ,
Z(t) = 0 otherwise .

The advantage of such a model is its simplicity and tractabil-
ity in many instances. The weakness lies in the fact that the
actual energy present or detected in the channel is hardly
binary. The raw channel measurement data will have to go
through a binary hypothesis test (e.g., via thresholding) to
be reduced to the above form, a process that comes with
probabilities of error. Consequently, the channel is sensed to
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Fig. 1. Channel model: alternating renewal process with on and off states

be in either state with a detection probability and a false alarm
probability.

In this paper our focus is on extracting andestimating
essential statistics given a sequence of measured channel states
(0s and 1s) rather than the (binary)detectionof channel state
(deciding between 0 and 1 given the energy reading). For this
purpose, we will assume that the channel state measurements
are error-free. If we have side information on what the
detection and false alarm probabilities are, then the estimation
results may be adjusted accordingly to utilize such knowledge.

The channel state processZ(t) is assumed to be a
continuous-time alternating renewal process, alternating be-
tween on/busy (state “1”) and off/idle (state “0”), an illustra-
tion is given in Fig. 1. Typically, it is assumed that a secondary
user can utilize the channel only when it is sensed to be in
the off states (i.e., when the channel is idle or the primary
user is absent). When the channel state transitions to the on
state, the secondary user is required to vacate the channel so
as not to interfere with the primary user (also referred to as
the spectrum underlay paradigm, see e.g., [12]).

This random process is completely defined by two probabil-
ity density functionsf1(t) andf0(t), t > 0, i.e., the probability
distribution of the sojourn times of the on periods (denotedby
the random variableT1) and the off periods (denoted by the
random variableT0), respectively. The channel utilizationu is
defined as

u =
E[T1]

E[T1] + E[T0]
, (1)

which is also the average fraction of time the channel is occu-
pied or busy. By the definition of a renewal process,T1 andT0

are independent and all on (off) periods are independently and
identically distributed (i.i.d). It’s worth pointing out that the
widely used Gilbert-Elliot model (a two-state Markov chain) is
a special case of the alternating renewal process where the on
(off) periods are exponentially (in the case of continuous time)
or geometrically (in the case of discrete time) distributed.

III. M AXIMUM L IKELIHOOD (ML) BASED CHANNEL

ESTIMATION

We proceed to describe the maximum likelihood (ML)
estimator [13] we will use to estimate channel parameters from
a sequence of channel state observations.

Recall that the channel state is assumed to follow an
alternating renewal process. Such a process is completely
characterized by the set of conditional probabilitiesPij(∆t),
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i, j ∈ {0, 1}, ∆t ≥ 0, defined as the probability that
given i was observed∆t time units ago,j is now observed.
This quantity is also commonly known as the semi-Markov
kernel of an alternating renewal process [17]. Assuming the
process is in equilibrium, standard results from renewal theory
[17] suggest the following Laplace transforms of the above
transition probabilities:

P ∗
00(s) =

1

s
− {1 − f∗

1 (s)} {1 − f∗
0 (s)}

E[T0]s2 {1 − f∗
1 (s)f∗

0 (s)} ,

P ∗
01(s) =

{1 − f∗
1 (s)} {1 − f∗

0 (s)}
E[T0]s2 {1 − f∗

1 (s)f∗
0 (s)} ,

P ∗
10(s) =

{1 − f∗
1 (s)} {1 − f∗

0 (s)}
E[T1]s2 {1 − f∗

1 (s)f∗
0 (s)} ,

P ∗
11(s) =

1

s
− {1 − f∗

1 (s)} {1 − f∗
0 (s)}

E[T1]s2 {1 − f∗
1 (s)f∗

0 (s)} .

(2)

wheref∗
1 (s) and f∗

0 (s) are the Laplace transforms off1(t)
andf0(t), respectively. We see from this set of equations that
the channel statistics is completely defined by the probability
density functionsf1(t) andf0(t).

The above set of equations are very useful in recovering
the time-domain expressions of the semi-Markov kernel (often
times this is the only viable method). For example, in the
special case where the channel has exponentially distributed
on/off periods, we have

{

f1(t) = θ1e
−θ1t

f0(t) = θ0e
−θ0t .

(3)

Their corresponding Laplace transforms and expectations are
{

f∗
1 (s) = θ1/(s + θ1)

f∗
0 (s) = θ0/(s + θ0) ,

{

E[T1] = 1/θ1

E[T0] = 1/θ0 .

Substituting the above expressions into Eqn (2) followed
by an inverse Laplace transform we get the state transition
probability as follows:

Pij(∆t) = uj(1−u)1−j +(−1)j+iu1−i(1−u)ie−(θ0+θ1)∆t ,
(4)

whereu = E[T1]
E[T1]+E[T0] as defined earlier.

In this paper we consider the following estimation problem.
Assume that the on/off periods are given by certain known
distribution functionsf0(t) and f1(t) but with unknown pa-
rameters. Suppose we obtainm samples{z1, z2, · · · , zm},
taken at sampling times{t1, t2, · · · , tm}, respectively. We
wish to use these samples to estimate the unknown parameters.

First note that the channel utilization factoru can be
estimated through the sample mean of them measurements
as follows

û =
1

m

m
∑

i=1

zi , (5)

which is an unbiased estimator for the true quantityu.
Let θ̄ be the unknown parameters of the on/off distributions:

θ̄ = {θ̄1, θ̄0}. Note that in general̄θ1 and θ̄0 are vectors

themselves. Then the likelihood function is given by

L(θ) = Pr{Z; θ}
= Pr{Ztm = zm, Ztm−1

= zm−1,

Ztm−2
= zm−2, . . . , Zt1 = z1; θ} . (6)

The idea of ML estimation is to find the value ofθ that
maximizes the log likelihood functionlnL(θ). That is, the

estimateθ̂ is such that∂ln L(θ)

∂θ
|ˆ
θ

= 0. This method has been
used extensively in the literature [14]–[16]. For a fixed set
of data and underlying probability model, the ML estimator
selects the parameter value that makes the data “most likely”
among all possible choices. Under certain (fairly weak) reg-
ularity conditions the ML estimator is asymptotically optimal
[18].

The question we would like to investigate is what im-
pact does the selection of the sampling time sequence
{t1, t2, · · · , tm} have on the performance of this estimator,
given a limited number of samplesm. Specifically, we ques-
tion whether random sampling is a better way of sensing
the channel than uniform sampling where the measurement
samples are taken at regular time intervals. As we mentioned
in the introduction, most existing literature focuses on the latter
method.

For the remainder of our analysis we will limit our attention
to the case where the channel on/off durations are given
by exponential distributions. This is for both mathematical
tractability and simplicity of presentation. We will explore
more general cases in our numerical experiments.

Since the exponential distribution is defined by a single
parameter, we have now̄θ = {θ1, θ0}, whereθ1 andθ0 are the
two unknown scalar parameters of the on and off exponential
distributions, respectively. Using the memoryless property, the
likelihood function becomes

L(θ) = Pr{Z; θ}

= Pr{Zt1 = z1; θ} ·
m
∏

i=2

Pr{Zti = zi|Zti−1
= zi−1; θ}

= Pr{Zt1 = z1; θ} ·
m
∏

i=2

Pzi−1zi(∆ti; θ) . (7)

where∆ti = ti − ti−1. The first quantity on the right is taken
to be

Pr{zt1 = z1; θ} = uz1(1 − u)1−z1 . (8)

That is, the unconditioned probability of finding the channel
in a particular state (LHS) is taken to be the stationary
distribution given on the RHS. This choice is justified by
assuming that the channel is in equilibrium.

The second quantityPzi−1zi(∆ti; θ̄) is given in (4). Com-
bining these two quantities, we have

L(θ0, θ1) =L(θ̄) = uz1(1 − u)1−z1

m
∏

i=2

(

uzi(1 − u)1−zi

+ (−1)zi+zi−1u1−zi−1(1 − u)zi−1e−(θ0+θ1)∆ti
)

.
(9)
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The estimates for the parameters are found by solving
{

∂ln L(θ0,θ1)
∂θ0

= 0
∂ln L(θ0,θ1)

∂θ1
= 0

(10)

Conceptually to get the estimates for bothθ0 and θ1 one
needs to solve the above two equations simultaneously. This
however proves to be computationally complex and analyti-
cally intractable. Instead, we adopt the following estimation
procedure. We first estimateu using (5), and takeθ1 =
(1−u)θ0

u . The likelihood function (9) can then be written as

L(θ0) =uz1(1 − u)1−z1

m
∏

i=2

(

uzi(1 − u)1−zi

+ (−1)zi+zi−1u1−zi−1(1 − u)zi−1e−θ0∆ti/u
)

.
(11)

The estimation ofθ0 is then derived by solving the equation
∂ln L(θ0)

∂θ0
= 0.

In the remainder of this paper, we will use this procedure
by treating u as a known constant and solely focus on
the estimation ofθ0, with the understanding thatu can be
unbiasedly estimated, and once we have the estimate forθ0 we
have the estimate forθ1. It has to be noted that this procedure
is in general not equivalent to solving (10) simultaneously,
i.e., the resulting estimates may have different distributions.
However, we have found this to be much more amenable to
analysis and more computationally feasible (this is also the
method used in [5] but without such an explicit justification).

IV. RANDOM SENSING VS. UNIFORM SENSING

The goal of this study is to judiciously schedule a very
limited number of sampling opportunities so that the esti-
mation accuracy is least affected. In this section we show
that when the number of samples are small (a sparse sam-
pling scenario), then random sensing significantly outperforms
uniform sensing. In what follows we first make a qualitative
comparison using a few intuitive arguments. We then perform
a more precise analysis of the two through the use of Fisher
information, in the case of exponential on/off distributions.
In particular, we will show that using this measure, uniform
sensing is theworst type of scheduling in terms of the
estimation accuracy. We further compare the performance of
a few random scheduling schemes. Numerical results are also
provided.

A. An intuitive comparison

Uniform sensing, where samples are taken at constant
time intervals, is a natural, easy-to-implement, and easy-to-
analyze scheme. Specifically, with the on/off durations being
exponential the likelihood function has a particularly simple
form; there is also a closed-form solution to the maximization
of the log likelihood function, see e.g., [5]. On the other hand,
there are a number of drawbacks to uniform sensing compared
to random sensing, where samples are taken at random time
intervals (generated according to certain probability distribu-
tion), given the same average sampling rate.

One of the first things to note is that since there is no
variation across sampling intervals under uniform sensing, the
uniform interval needs to be upper-bounded in order to catch
potential channel state changes that occur over small intervals
1. By contrast, under random sensing, even if the average sam-
pling interval is large, there can be significant probability for
sufficiently small sampling intervals to exist in any realization
of the sampling time sequence{t1, t2, · · · , tm}.

To see why this variability is important, consider the
transition probabilitiesPij(∆t), i, j ∈ {0, 1}. As shown in
the previous section, these probabilities completely define the
likelihood function. They will approach the stationary prob-
abilities as∆t increases. For instance, we haveP01(∆t) →

E[T1]
E[T1]+E[T0]

= u as ∆t → ∞, and so on. This stationary
quantity represents the average fraction of time the channel is
busy, which contains little direct information on the average
length of a busy period, the parameter we are trying to esti-
mate. Depending on the mixing time of the underlying renewal
process, this convergence can occur rather quickly. What this
means is that if sampling is sparsely done, in which case
∆t is a relatively large constant∆to under uniform sensing,
then these transition probabilities will become constant-like
(i.e., approaching the stationary value), which in turn causes
the likelihood function to look like a constant. This makes it
difficult for the ML estimator to produce accurate estimates
[13].

Loosely speaking, the transition probabilities being
constant-like means that samples are of a similar quality
in the sense noted above, each providing little additional
information. In particular, there is zero probability thatwe
will collect two samples less than∆to apart. By contrast,
under a random sensing scheme∆t is a variable, meaning
with positive probability there will be sampling intervalsboth
smaller and larger than ∆to. This variability in the interval
realizations results in measurements ofP01(∆t) that contain
more information about the parameter to be estimated (we will
shortly make this notion more precise).

Next we show that using random sensing the resulting like-
lihood function is more sensitive to the estimated parameter, a
helpful feature in its maximization. Recall that the estimate of
the parameter̂θ0 is derived by solving∂ln L(θ0)

∂θ0
|θ0=θ̂0

= 0. In
Fig. 2 we plot an example of the likelihood functionL(θ0)
under the uniform sensing (US) and random sensing (RS)
schemes, respectively. In this example the true parameter value
of θ0 and θ1 are 0.05 and 0.1, respectively. We use50s as
the uniform sensing interval over a total sensing period of
5000s. The random sensing times are generated by randomly
distributing 100 points over the same period using a uniform
distribution, resulting in an average sensing interval of50s.
The measurement sequence{zt} in both cases are then used
in (11) to obtain the respective likelihood function as shown
in Fig. 2. The true parameter value ofθ0 is at the center of the
horizontal axis, this is also the ML estimatêθ0. We see that
while both functions attain their maximum value at the point

1One such upper bound was proposed in [5].
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Fig. 2. Comparison of sensitivity to channel parameter

θ0 = 0.05, they behave very differently around this point.
The one under random sensing is clearly more sensitive to
perturbations in the estimated value, and thus it is easier to
obtain the correct value ofθ0 given the data using this function.

B. An analysis using Fisher information

We now analyze this notion of information content more
formally via a measure known as theFisher information[21].
It is defined as follows for a given log likelihood function:

I(θ̄) = −E[
∂2 lnL(θ̄)

∂θ̄2
] . (12)

The Fisher information is a measure of the amount of in-
formation an observable random variable conveys about an
unknown parameter. This measure of information is partic-
ularly useful when comparing two observation methods of
random processes (see e.g., [22]). For instance, the precision
to which we can estimatēθ is fundamentally limited by the
Fisher information of the likelihood function.

Due to the product form of the likelihood function given
in Eqn (7), the Fisher information can be written as the
summation of functionsg(∆ti; θ̄), i = 2, 3, · · · , m, I(θ̄) =
∑m

i=2 g(∆ti; θ̄), where

g(∆ti; θ̄) = −E[
∂2 lnPzi−1zi(∆ti; θ̄)

∂θ̄2
] . (13)

The functiong() will be referred to as theFisher functionin
the remainder of our discussion. Note thatg() is a function
of both ∆ti and θ̄. However, in the remainder of this section
we will suppress̄θ from the argument in the Fisher function
g() and write it simply asg(∆t). This is because our analysis
focuses on how this function behaves as we select different∆t
(the sampling interval) while holdinḡθ constant. Note that the
first term in Eqn (7) does not appear in the above expression.
This is because this first term is only a function ofu (see
Eqn (8)), which is separately estimated using Eqn (5) and not

viewed as a function of̄θ. Therefore the term disappears after
the differentiation.

Similarly, using the likelihood function given in Eqn (11),
the Fisher information can be written as:

I(θ0) = −E[
∂2 lnL(θ0)

∂θ2
0

]

= −E
[

m
∑

i=2

∂2 ln[αi + βie
−θ0∆ti/u]

∂θ2
0

]

=

m
∑

i=2

∆t2i
u2

E
[ −αiβie

−θ0∆ti/u

(αi + βie−θ0∆ti/u)2
]

,

(14)

whereαi = uzi(1−u)1−zi andβi = (−1)zi+zi−1u1−zi−1(1−
u)zi−1 . Again each term within the summation will be referred
to as the Fisher function, and the Fisher information can be
written asI(θ0) =

∑m
i=2 g(∆ti).

The expectation on the right-hand side of the above ex-
pression can be calculated by considering all four possibilities
for the pair (zi−1, zi), i.e., (0,0), (0,1), (1,0), and (1,1). Using
Eqn (4), we obtain the transition probability of each case to
be(1−u)P00(∆t), (1−u)P01(∆t), uP10(∆t) anduP11(∆t),
respectively. We can therefore calculate the Fisher function as
follows:

g(∆t) =
∆t2

u2
e−θ0∆t/u

[ u2(1 − u)

u − ue−θ0∆t/u
(15)

+
u(1 − u)2

(1 − u) − (1 − u)e−θ0∆t/u

− u(1 − u)2

(1 − u) + ue−θ0∆t/u
− u2(1 − u)

u + (1 − u)e−θ0∆t/u

]

.

Below we show that under a certainsparsitycondition on
the sampling rate, the Fisher function is convex, and that the
Fisher information is minimized when uniform sampling is
used. We begin by introducing this sparsity condition.

Condition 1: Let α = max{2 +
√

2, ln(1−u
u ), ln( u

1−u )}.
This condition requires that∆t > αu/θ0.

Taking∆t to be the time between two consecutive sampling
points, the above condition states that these two points cannot
be too close together with respect to the average off duration
(1/θ0) and the channel utilizationu.

Lemma 1:The Fisher functiong(∆t) given in Eqn (15) is
convex under Condition 1 (i.e, for∆t > αu/θ0).

Proof: For simplicity in presentation, we first write
g(∆t) = ho(∆t)h(∆t), where

ho(∆t) =
∆t2

u2
e−θ0∆t/u,

h(∆t) = h1(∆t) + h2(∆t) + h3(∆t) ,

where

h1(∆t) =
2u(1 − u)

1 − e−θ0∆t/u
,

h2(∆t) = − u(1 − u)2

(1 − u) + ue−θ0∆t/u
,

h3(∆t) = − u2(1 − u)

u + (1 − u)e−θ0∆t/u
.
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We proceed to show that each of the above functions is
convex under Condition 1.

We first show thatho(∆t) is convex for∆t > (2+
√

2)u/θ0.
Under this condition and noting0 < u < 1 and θ0 > 0 we
have

h
′

o(∆t) =
∆t

u2
e−θ0∆t/u(2 − θ0∆t

u
) < 0,

h
′′

o (∆t) =
e−θ0∆t/u

u2
[(

θ0∆t

u
− 2)2 − 2] > 0.

Therefore forθ0∆t
u > 2 +

√
2, ho(∆t) is convex.

That h1(∆t) is convex is straightforward. Since0 < u < 1
andθ0 > 0, we have:

h
′

1(∆t) =
−2(1 − u)θ0e

−θ0∆t/u

(1 − e−θ0∆t/u)2
< 0,

h
′′

1 (∆t) =
2(1 − u)θ2

0e
−θ0∆t/u(1 + e−θ0∆t/u)

u(1 − e−θ0∆t/u)3
> 0.

Next we show thath2(∆t) is convex for∆t > u
θ0

ln( u
1−u ).

This condition is equivalent toue−θ0∆t/u < 1−u. Under this
condition and again noting0 < u < 1 andθ0 > 0, we have

h
′

2(∆t) =
−u(1 − u)2θ0e

−θ0∆t/u

[(1 − u) + ue−θ0∆t/u]2
< 0,

h
′′

2 (∆t) =
(1 − u)2θ2

0e
−θ0∆t/u[(1 − u) − ue−θ0∆t/u]

[(1 − u) + ue−θ0∆t/u]3
> 0.

Similar, h3(∆t) is convex under the condition∆t >
u
θ0

ln(1−u
u ), since

h
′

3(∆t) =
−u(1 − u)2θe−θ0∆t/u

[u + (1 − u)e−θ0∆t/u]2
< 0,

h
′′

3 (∆t) =
(1 − u)2θ2e−θ0∆t/u[u − (1 − u)e−θ0∆t/u]

[u + (1 − u)e−θ0∆t/u]3
> 0.

Therefore under the condition∆t > αu/θ0, h1, h2 andh3

are all monotonically decreasing convex functions. It follows
that h = h1 + h2 + h3 is also monotonically decreasing and
convex. Furthermore, for any∆t > 0, ho(∆t) > 0, and
h(∆t) > h(+∞) = 0. We can now show thatg is convex
under this condition:

g
′′

(∆t) = (ho(∆t)h(∆t))
′′

= h
′′

o (∆t)h(∆t) + 2h
′

o(∆t)h
′

(∆t) + ho(∆t)h
′′

(∆t)

> 0 ,
(16)

where the inequality holds because every term on the right
hand side is positive under the condition∆t > αu/θ0 as
summarized above.

Lemma 2:For any n ∈ N, n ≥ 1, T ∈ R, T > (n +
1)αu/θ0, and αu/θ0 < ∆t < T − nαu/θ0, the function
G(∆t) = ng(T−∆t

n )+g(∆t) has a minimum of(n+1)g( T
n+1 )

attained at∆t = T
n+1 .

Proof: Setting the first derivative ofG to zero and solving
for ∆t results in solving the equationg

′

(∆t) = g
′

(T−∆t
n ).

Since the arguments on both side satisfy Condition 1 by the
assumption of the lemma,g is convex according to Lemma 1
andg

′

is a strictly monotonic function. Therefore there exists
a unique solution within the range of(αu/θ0, T − nαu/θ0)
to this equation at∆t = T

n+1 .
Next we calculate the second derivative ofG at this point.

SinceG
′′

(∆t) = g
′′

(∆t)+ 1
ng

′′

(T−∆t
n ), we haveG

′′

( T
n+1 ) =

(1+ 1
n )g

′′

( T
n+1 ). SinceT > (n+1)αu/θ0, g is convex at this

stationary point by Lemma 1. HenceG is convex at this point
and it is thus a global minimum within the range(αu/θ0, T −
nαu/θ0); the minimum value is(n + 1)g( T

n+1 ), completing
the proof.

Theorem 1:Consider a period of time[0, T ], in which we
wish to schedulem > 3 sampling points, including one at time
0 and one at timeT . Denote the sequence of time spacings
between these samples as∆t = [∆t2, ∆t3, · · · , ∆tm], where
∑m

i=2 ∆ti = T . For a given sequence of∆t, define the Fisher
informationI(θ0) as in Eqn (14) and rewrite it asI(θ0; ∆t)
to emphasize its dependence on∆t. AssumingT > (m −
1)αu/θ0, then we have

min
∆t∈Am

I(θ0; ∆t) = (m − 1)g(
T

m − 1
),

where Am = {∆ti :
∑m

i=2 ∆ti = T, ∆ti > αu/θ0, i =
2, · · · , m}, and with the minimum achieved at∆ti =

T
m−1 , i = 2, · · · , m.

This theorem says that among all sampling strategies with
sampling intervals satisfy the sparsity Condition 1, the worst
strategy as measured by the Fisher information is the uniform
sampling strategy. In other words, any deviation from this
strategy improves the Fisher information.

Proof: We prove this by induction onm.
Induction basis:For m = 3,

I(θ0; ∆t) = g(∆t2) + g(∆t3).

Using Lemma1 in the special case ofn = 1 the result follows.
Induction step:Suppose the result holds for3, 4, . . .m, we

want to show it also holds form + 1 for T > mαu/θ0. Note
that in this case∆t ∈ Am+1 implies thatαu/θ0 < ∆tm+1 <
T − (m − 1)αu/θ0. We thus have

min
∆t∈Am+1

{I(θ0; ∆t)}

= min
∆t∈Am+1

{

m
∑

i=2

g(∆ti) + g(∆tm+1)

}

= min
∆tm+1∈Am+1

{

min
∑

∆ti=T−∆tm+1

{

m
∑

i=2

g(∆ti)

}

+ g(∆tl+1)

}

= min
∆tm+1∈Am+1

{

(m − 1)g(
T − ∆tm+1

m − 1
) + g(∆tm+1)

}

= mg(
T

m
) ,

where the third equality is due to the induction hypothesis
and the first term on the RHS is obtained at∆ti = T−∆tm+1

m−1 ,
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i = 2, . . . , m. The last equality invokes Lemma 2 in the special
case ofn = m − 1, and is obtained at∆tm+1 = T

m . Com-
bining these we conclude that the minimum value of Fisher
information is mg( T

m ), when ∆ti = T
m , i = 2, . . . , m + 1.

Thus the casem + 1 also holds, completing the proof.
Theorem 1 states that given the total sensing periodT and

the total number of samplesm, provided that the sampling
is done sparsely (with sufficiently large sampling intervals),
the Fisher information attains its minimum when all sampling
intervals have the same value, i.e when using a uniform
sensing schedule. In this sense uniform sensing is theworst
possible sensing scheme in that any deviation from it, while
keeping the same average sampling intervalT/(m − 1), can
only increase the Fisher information. This increase in Fisher
information become more significant when sampling gets
sparser, whenT/(m − 1) increases.

Note that for the above result to hold we need the condition
∆ti > αu/θ0. This is because the analysis involves comparing
specific sampling sequences, i.e., the average performance
(over channel on/off realizations) of an exact sampling se-
quence. When a random algorithm is used, the sampling
sequences are generated randomly, with some sequences per-
forming better than others. The average performance is now
also averaged over all possible sampling sequences. Our
numerical results indicate that in this average sense a random
sensing algorithm performs better than uniform sensing as long
as theaveragesampling interval satisfies the sparsity condition
(i.e.,T/(m−1) is sufficiently large), rather than requiring the
same for every sampling interval for every sampling sequence.

C. A comparison between different random sampling schemes

Having established that random sampling schemes result in
higher value of the Fisher information than uniform sens-
ing, we next compare different random sampling schemes.
Assuming that the sampling intervals∆ti’s are generated
independently according to some pdff(∆t) we now examine
the expectation of the Fisher function, averaged over randomly
generated sampling sequences, calculated as follows.

E[g(∆t)] =

∫ ∞

0

g(∆t)f(∆t)d∆t (17)

=

∫ ∞

0

[g(µo) + g′(µo)(∆t − µo)

+ · · · + g(n)(µo)(∆t − µo)
n

n!
+ · · · ]f(∆t)d∆t

= g(µo) + g′(µo)µ1 + · · · + g(n)(µo)µn

n!
+ · · ·

where the Taylor expansion is around the expected sampling
intervalµo = E[∆t], or T/(m−1) for given windowT andm
number of samples taken, andµn =

∫ ∞

0 (∆t−µo)
nf(∆t)d∆t

is thenth order central moment of∆t.
In order to have a fair comparison (and to ensure the

same sparsity condition), we will fixT and m, and thus fix
the average sampling intervalµo under different sampling
schemes. Also note that the valueg(n)(µo) is completely
determined by the channel statistics and not the sampling

sequence. Consequently the expected value of the Fisher
function is affected by the selection of a sampling scheme only
through the higher order central moments resulting from the
distributionf(). Note that the expectation of the Fisher func-
tion under uniform sampling with constant sampling interval
µo is simply g(µo) (i.e., only the first term on the right hand
side remains). Therefore any random scheme would improve
upon this if it results in a positive sum over the higher order
terms. While the above equation does not immediately lead
to an optimal selection of a random scheme, it is possible
to seek one from a family of distribution functions through
optimization over common parameters.

In Table I we have listed the higher order central moments
of normal, uniform and exponential distributions2. It can be
easily concluded that among these three choices the Fisher
function has the largest expectation under the exponential
distribution. Recall that all quantitative analysis in this section
is based on the assumption that the channel has exponentially
distributed on/off durations. Since the expectation of theFisher
function is a quadrature ofg and pdff as show in (17), a
random sampling scheme with a pdf matching the shape ofg
will achieve a larger value. This may explain why in this case
exponentially distributed sampling intervals perform thebest.

As an example, the Fisher function of exponentially dis-
tributed on/off channel model withE[T1] = 1 and [T0] = 2
is shown in Fig. 3, and the Fisher information under different
sampling distributions are given in Fig. 4. The sampling times
under different distributions are generated as follows. Wefix
a sensing windowT and an average number of samplesm 3.
We place the first and the last sampling times at time0 and
T , respectively. We then sequentially generate∆t2, ∆t2, · · ·
according to a given pdff() with parameters normalized such
that it has a mean (sampling interval) ofT/(m− 1). For each
∆ti we generate we place a sampling point at time

∑i
k=2 ∆tk.

This process stops when this quantity exceedsT . Note that
under this procedure the last sampling interval will not be
exactly according tof() since we have placed a sampling
point at timeT . However, this approximate seems unavoidable.
Alternatively we can allowT to be different from one trial to
another while maintaining the same average. As long asT is
sufficiently large this procedure does not affect the essence or
the fairness of the comparison. (Note that Fig. 4 could also be
obtained using numerical integration rather than simulation.)

D. Simulation results

In this subsection we numerically compare the performance
of uniform sensing and random sensing. Our simulation is
done in Matlab and uses a discrete time model. We assume a
time unit of 1s; the on/off periods are rounded to the closest

2Here uniform distribution refers to the sampling interval being randomly
selected according to a uniform distribution, not to be confused with uniform
sensing where sampling intervals are a constant. For normaldistribution the
probability distribution function is cut off at zero and then renormalized.

3The reasonm is only an average and not an exact requirement is because
we cannot guarantee to have exactlym samples within a window ofT if we
generate sampling intervals randomly according to a given pdf. By allowingm
to be an average we can simply require the pdf to have a mean ofT/(m−1).
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TABLE I
HIGHER CENTRAL MOMENTS

Normal Uniform Exponential

n is even n!σn

( n
2

)!2
n
2

µn
o

n+1

n is odd 0 0
µn

o

∑n

k=0

(−1)kn!
k!
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]=1

Fig. 3. Fisher function of exponentially distributed channel model

integers4. The sampling intervals under uniform sensing are
⌊T/(m − 1)⌋ where T is the total length of the sensing
period andm the number of samples allowed. Under the
random sensing scheme, we fix the average sampling interval

4We note that the choice of the time unit is rather arbitrary and inconse-
quential for our purpose.
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Fig. 4. Comparison of Fisher information: Normal vs. Uniform vs. Expo-
nential

to be⌊T/(m−1)⌋ and sequentially generate random sampling
intervals as described in the previous subsection.

Fig. 5 compares the performance for an exponentially
distributed channel model under different values ofm over a
duration ofT = 4096s. The maximum sample number is4096;
this is because the on/off periods are rounded to integers, so
there is no point in sampling faster than once per1 unit of
time. Sampling points are randomly placed using a uniform
distribution. For both parameters we see that random sensing
outperforms uniform sensing, and significantly so whenm is
small. This validates our earlier analysis.
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Fig. 5. Performance comparison: random sensing vs. uniformsensing

Fig. 6 shows the performance comparison between random
sensing and uniform sensing for a channel with Gamma
distributed on/off periods. The probability density functions
of such a channel model can be expressed as







f1(t) = tk1−1 e−t/λ1

λ
k1
1

Γ(k1)

f0(t) = tk0−1 e−t/λ0

λ
k0
0

Γ(k0)
.

(18)

They are each parameterized by a shape parameterk and a
scale parameterλ, both of which are positive. In this case,
the Laplace transforms off0(t) and f1(t) are (1 + λ0s)

−k0

and (1 + λ1s)
−k1 , respectively, and the expectation of the

on/off periods areE[T1] = k1λ1 and E[T0] = k0λ0. In the
simulation bothk1 and k0 are set to2, with a simulated
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time of 5000s. For random sensing the sampling intervals are
randomly generated following an exponential distribution. We
see that random sensing again outperforms uniform sensing
using such a channel model.
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Fig. 6. Performance comparison of gamma distributed channel model

In Fig. 7, we compare the performance between different
random sampling schemes. Keeping the same average, the
sampling intervals are generated following normal, uniform,
and exponential distributions, respectively. We see that expo-
nential random sampling outperforms the other two. This is
consistent with our earlier analysis.
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Fig. 7. Performance comparison of random sampling: Normal vs. Uniform
vs. Exponential

V. RANDOMIZED UNIFORM SENSING

We see from the preceding analysis that making the sam-
pling intervals non-uniform can improve the performance of
the ML estimator. On the other hand, a non-uniform scheme,
and in particular a purely random sequence of sampling
intervals, will result in a more complex form of the likelihood
function and hence computationally more costly.

This motivates us to propose a simple variation to uniform
sensing, a hybrid between uniform sensing and random sens-
ing. This is referred to as therandomized uniform sensing. As
we have pointed out, the main reason why uniform sensing
does not perform well is its lack of variability in the sampling
intervals. Thus the main idea behind the randomized uniform
sensing scheme is to adopt two different sampling interval
values, a long one and a short one, denoted by∆tl and∆ts,
respectively. Assume we sample with the short intervalms

times. Then given the sensing periodT and a required number
of samplesm, we can sense the channelml times with long
interval ∆tl, whereml = m − ms and∆tl = T−(ms−1)∆ts

m−ms
,

assuming we place a sample point at times0 andT , respec-
tively.

To further simplify the scheme, we can group together long
and short intervals. In our numerical experiments presented
next we simulated the following specific instance. The algo-
rithm starts by sensing the channel with long intervals∆tl.
Then at a randomly selected time (which could be time0)
or upon completing allml samples, whichever occurs first,
it switches to sensing with short intervals and collectsms

samples. At this point the algorithm switches back to sensing
with long intervals and completes the collection of whatever
remains of theml samples. Essentially the algorithm seeks to
place a group ofms sampling times, each spaced∆ts apart,
at a random location within the sensing period.

Fig. 8 shows the comparison among random sensing, uni-
form sensing and randomized uniform sensing. The simulated
time is T = 5000s, the short interval is set to be one third of
the average sampling interval, the number of short interval
samples is set to be⌊m/2⌋, while maintaining the same
interval average of⌊T/m⌋ by adjusting the long intervals. We
see clearly that this randomization scheme is very effective
yet simple. Since the channel is sampled at alternate but de-
terministic intervals, the estimation computation is far simpler
than for purely random sensing.

VI. CONCLUSION

In this paper, we studied three sensing schemes for the
channel estimation problem in cognitive radio networks. Anal-
ysis and simulations shows that random sensing with ran-
domized sampling intervals outperforms uniform sensing for
exponentially distributed on/off channel model at low sampling
rate. A randomized uniform sensing scheme was proposed
to obtain better tradeoff between estimation accuracy and its
computational cost.
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