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Abstract

This work studies the achievable secure rate per sourdexdisn pair in wireless networks. First, a path loss model
considered, where the legitimate and eavesdropper nodeasaumed to be placed according to Poisson point procestes w
intensitiesA and )\e, respectively. It is shown that, as long &s/\ = o ((log n)*2) almost all of the nodes achieve a perfectly
secure rate of2 f for the extended and dense network models. Therefore, uhdse assumptions, securing the network

does not entail a loss in the per-node throughput. The aabily argument is based on a novel multi-hop forwardingesne
where randomization is added in every hop to ensure maximdliguity at the eavesdropper(s). Secondly, an ergodingadi
model withn source-destination pairs amd eavesdroppers is considered. Employing the ergodic aremte alignment scheme
with an appropriate secrecy pre-coding, each user is showacthieve a constant positive secret rate for sufficienttgela.
Remarkably, the scheme does not require eavesdropper Giglthe statistical knowledge is assumed) and the secuoeighput
per node increases as we add more legitimate users to therkdtwthis setting. Finally, the effect of eavesdropperugibn on
the performance of the proposed schemes is characterized.

I. INTRODUCTION
A. Background

In their seminal work[[1] Gupta and Kumar have shown that gmedomly located nodes can achieve at most a rate that
scales Iik%, as the number of nodes— oo, under an interference-limited channel model. Howevergioposed multi-hop

scheme of[[1] only achieves a scaling 9,1% per node. This gap was recently closedlih [2], where the aﬂtpmposed

a highway based multi-hop forwarding protocol that achie rate per source-destination pair in random networks.
this approach, a set of connected highways, which span tivgorie both horizontally and vertically, are constructedhen,
each source-destination pair communicates via a timesidivistrategy, where the source first transmits its messageet
closest horizontal highway. Then, the message is trareghamt multi-hop fashion to the appropriate vertical highywathich
carries the message as close to the destination as podsibédly, the message is delivered to the destination nodm fr
the vertical highway. The existence of highways, whichsatcertain desirable properties, is established by bamgwools
from percolation theory. Contrary to this multi-hop appraa single-hop scheme called as ergodic interferenceraégt [3]
(see alsol]4],[1B]) is recently employed inl [6] and, with &rliy node placement and arbitrary traffic pattern, the astiand
multicast capacity regions of dense networks are chaiaete(up to a factor otogn) under the Gaussian fading channel
model. These line of works assumed an interference-lingtethnel model, where the interference is considered ag (fibis
focus of this work as well). Contrary to this model| [7] catesied Gaussian fading channel model and proposed hietatchi
cooperation schemes that can increase the per-node raseafdproach is further improved in the follow-up works (ses.,
[8], 9], and references therein).

The broadcast nature of the wireless communication makssasiteptible to eavesdropping. This motivates considering
secrecy as a quality of service (QoS) constraint that must be aceaufdr in the network design. State of the art crypto-
graphic approaches can be broadly classified into publycalel private-key protocols. Public-key cryptography asssi that
the eavesdropper(s) has limited computational power, @asethe decryption requires a significant complexity withibwe
knowledge of the key [10]. Private-key approaches, on therohand, assume that a random key is shared in private betwee
the legitimate transmitter and receiver. This key is usedeture the transmitted information from potential eavaspler(s).
One of the earliest examples of private-key cryptographthés Vernam’s one time pad schemel[11], where the transmitter
sends the XOR of the message bits and key bits. The legitimmatgver can decode the messages by XORing the shared key
with the received sequence. In [12], Shannon showed thatsttfieme achieves perfect secrdcgnd only if the two nodes
share a key of the same length as the message. The scalingflairgless networks under the assumptiorpoé-distributed
private keys was studied ih [13]. However, it is importanhtite that, the key agreement step of the cryptographic pottads
arguably the most challenging part and this step becomeasraeee daunting as the network size grows. Our work avoids the
aforementioned limitations by adopting an informationattegic framework for secrecy in wireless networks. In pafgér, we
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assume the presence of eavesdropper(s) nfthite computational power and characterize the scaling laws of the network
secrecy capacity whileelaxing the idealistic assumption of pre-distributed keys.

The notion of information theoretic secrecy was introdubgdShannon to study secure communication over point-totpoi
noiseless channels ]12]. This line of work was later extenbg Wyner [14] to noisy channels. Wyner’s degraded wiretap
channel assumes that the eavesdropper channel is a deyedamh of the one seen by the legitimate receiver. Undear thi
assumption, Wyner showed that the advantage of the mainnehawer that of the eavesdropper, in terms the lower noise
level, can be exploited to transmit secret bits using rantdiming codes. Thikeyless secrecy result was then extended to
a more general (broadcast) model(inl[15] and to the Gaussitimg in [16]. Recently, there has been a renewed interest i
wireless physical layer security (see, e.g., Special Issumformation Theoretic Securiti=EE Trans. Inf. Theory, June 2008
and references therein). The secrecy in stochastic neswsrktudied in[[17], where it is shown that even a small dgnsit
eavesdroppers has a drastic impact on the connectivityeo$dierecy graph. Connectivity in stochastic networks wéitrecy
constraints is also studied in [18], [19], where the noderéeglistribution is analyzed. However, according to the bésur
knowledge, information theoretical analysis of secreqyacity scaling in large wireless networks has not been stlit the
literature before.

B. Contributions

This paper considers wireless networks with secrecy cainsst We study two different channel models: 1) Static pasis
model, and 2) ergodic fading model. For the first model, wesa®r a stochastic node placement on a square region, wieere t
legitimate nodes and eavesdroppers are distributed dngota Poisson point processes with intensityand )., respectively.
(For extended networks, the area of the region iand A = 1; and, for dense networks, area of the region @nd A\ = n.)
The path loss is modeled with a power loss exponernt of 2. This model suits for the scenarios where the channel gaes a
mostly determined by path losses. In the second medsgurce-destination pairs amg eavesdroppers are considered, where
the gain of each link is assumed to follow some fading prad@3dse assumptions on the fading processes will be clearan th
next section. Here, we note that our model includes a largefdading distributions.) Arguably, this model suits fatehse)
networks in which the inter node distances have a negligffiect on the channel gains compared to that of the underlyin
fading processes.

The results of this work can be summarized as follows.

1) For the path loss model, we construct a "highway backbaimilar to [2]. However, in addition to the interference
constraint considered in[2], our backbone constructiod amlti-hop forwarding strategy are designed to ensureesgcr
More specifically, an edge can be used in the highway if ang ibhere is a legitimate node within the corresponding squa
of the edge and if there is no eavesdropper within a cedirecy zone around the node. We show that the network still
percolates in thislependent edge model, and many highway paths can be constructed. iHexddition to the careful choice of
the secrecy zone, our novel multi-hop strategy, which e@f®the usage of andependent randomization at each hop, allows
the legitimate nodes to create an advantage over the eapgsis, which is, then, exploited to transmit secure bier dle
highways. This way, we show that, as long)ag = o ((log n)_2), almost all source-destination pairs achieve a secure rate

of \/Lz with high probability, implying that the secrecy consttaitoes not entail a loss in the per-node throughput (in
terms of the scaling). (Note that= 1 for extended networks antl= n for dense networks.) In these scenarios, the proposed
scheme, which uses independent randomization at the tid@sof each hop, is the crucial step to obtain the results.

2) For the ergodic fading model, employing the ergodic ieiemce alignment scheme |([3].] [4].] [5]) with an appropriat
secrecy pre-coding we show that each user can achieve geldere, the secrecy rate per user is shown to be positive ést m
of the relevant fading distributions. In particular, in thigh SNR regime, the proposed scheme allows each user tevachi
secure degrees of freedompt= [% — %]’“ even with the absence of eavesdropper CSI. We observe #ratpge performance
of usersincrease as we add more legitimate users in the network for this sé@campared to the result obtained for the path
loss model.

3) Finally, we focus on the eavesdropper collusion, wheeeetvesdroppers are assumed to share their observatielys fre
For the extended networks with the path loss model, the saalang result is shown to hold for the colluding eavesdrappe
scenario whem\, = O ((logn)‘2<1+P>) for any p > 0. For the ergodic fading model, extensions to many eaveg@rop
collusion scenarios are discussed. In the extreme casegvdiiethe eavesdroppers collude, it is shown that the prxgbos
scheme allows each user to achieve a secure degrees of fresfdp = [% — Z=]*. We note that, for the path loss model
under the stated assumptions, the eavesdropper collusies bt affect the performance of our multi-hop scheme (imge
of scaling). On the contrary, for the ergodic fading modkg eavesdropper collusion has a clear effect on the achéevab
performance of our ergodic interference alignment scheme.

C. Organization

The rest of this paper is organized as follows. Sedfibn Hoitices the two network models (path loss and ergodic fading
models). In Sectiohdll, we consider the path loss model amgelbp our novel multi-hop secret encoding scheme. Selfdbn



focuses on the ergodic fading scenario and proposes ergugiderence alignment scheme for security applicatidns.
Section[¥, we focus on the colluding eavesdropper scenatioacluding remarks are given in Section VI, and, to enhance
the flow of the paper, some of technical lemmas and proofsedegated to the Appendix.

II. NETWORK MODELS

The set of legitimate nodes is denoted Bywhereas the set of eavesdroppers is representéd Byring time slott, the
set of transmitting nodes are denoted byt) C £, where each transmitting usérc 7 (¢) transmits the signak;(t). The
received signals at receiving nogdes £ — 7 (¢) and at eavesdroppere £ are denoted by (¢) andY.(t), respectively:

Yi(t) = Y hiy(OXi(t) + Z(t) 1)
€T (t)

}/e(t) = Z hi,e(t)Xi(t)+Ze(t)v (2)
€T (t)

where receivers are impaired by zero-mean circularly symmmeomplex Gaussian noises with varian¥g. We denote this
distribution by CA (0, Ny). Assuming that each transmitter is active owérchannel uses, the average power constraint on

channel inputs at each transmitter is g|ven7byz | X;(t)|* < P. Note that, for i.i.dCA/(0, P) input distribution, SNR& L
is the signal-to-noise ratio per complex symbol

A. Satic Path Loss Model with Sochastic Node Distribution

In the path loss model we consider, the signal power decaystive distancel asd~—* for somea > 2; and the distance
between node and nodej is denoted byi;;. The path loss is modeled ial(1) afid (2) with

hig(®) = \Jdif hielt) = /a2 ®)

The set of all observations at eavesdroppés denoted byY . = {Y,(t), Vt}.

The extended network model is a square of side-length (the area of the region i®). The legitimate nodes and
eavesdroppers are assumed to be placed randomly accavdiugsson point processes of intensity= 1 and \., respectively.
The transmitters are assumed to knaypriori whether there is any eavesdropper within some neighborbpadt (the size of
the neighborhood will be clear in later parts of the text). &ve aware of the idealistic nature of this assumption, bli¢\e
that it allows for extracting valuable insights in the prerol. To analyze the worst case scenario from a security paiepehe
legitimate receivers are assumed to consider interferaaawise, whereas no such assumption is made on the eavyesdrop
all of which are assumed to be informed with the network togglperfectly.

Now, consider any random source-destination pair, whezestiurces wishes to transmit the messayjé, 4 securely to the
intended destinatiod. In our multi-hop strategy, each transmission consistd athannel uses per hop. We say that the secret
rate of R is achievable for almost all the source-destination pairg)( if

« The error probability of decoding the intended messageeairitended receiver can be made arbitrarily smalNas» oo,

and
« The information leakage rate associated with the transomisf the message over the entire path,
be made arbitrarily smalte € £ as N — oo,
for almost all 6, d).

If there areH hops carrying the messagdé&’; 4, one only needs to consider the associated channel olisewwait the
eavesdropper when evaluating our security constraintcéleour second condition is satisfied Ii?Ws'd;Ye(]l\;"”’Ye(H)) can
be made arbitrarily small for sufficiently large block lehgt whereY.(h) denotes the lengtt¥ channel output vector at
eavesdropper € £ during hoph@

To derive our asymptotic scaling results, we use the foligaprobabilistic version of Landau’s notation. We sfyn) =
O(g(n)) w.h.p., if there exists a constahtsuch that

hm Pr{f(n) <kg(n)}=1.

We also say thaf(n) = Q(g(n)) w.h.p., if wh.p.g(n) = O(f(n)). We denotef(n) = O(g(n)), if f(n) = O(g(n)) and
f(n) = Q(g(n)). Lastly, we sayf(n) = o(g(n)), if L2 — 0, asn — cc.

We also analyze a dense networks with the patle loss model tantastic node distribution similar to above, where we
assume that the network is deployed on a square region ofatedt In this case, we assume that the legitimate nodes have
an intensity of\ = n.

IWSdY) . can

1 We note that the length of the observation vec¥ regarding messag¥/; 4 is NH for H hops andN channel uses per hop. Therefore, to analyze
the mutual information leakage rate per channel use onetrbigtempted to use dWes.a; Yel(\}l)q Ye(H)) in the secrecy constraint. However, Bshops

d(Ws a;¥e(1), -, Ye (H)) - P

is made arbitrarily

carr)ll| the same messag¥; 4, the overall information accumulation at the eavesdroppight be large even if NI
small.




B. Ergodic Fading Model

Fading process for the link fromto k, denoted byh; ;(¢), is assumed to be drawn i.i.d. across time according to some
ergodic fading process. The ergodic fading is modeledlinatij [2) with the following two assumptions:

» The channel gains for the legitimate usérs;, are assumed to be drawn from independent distributiongéchi, j € )

that are symmetric around zero (that iSRf; = h} = Pr{h; ; = —h}); and
» The fading process for eavesdroppet &, i.e., h; ., is assumed to be drawn independently from the same distibu
Vi e K.
Note that, as we assume a certain distribution for any gik@msmitter-receiver pair, the location of the nodes arerelevvant
in this model. In addition, the second assumption on thenfpgirocesses ensures that each eavesdropper has sttittiea
same channel to each transmitter.

We denoteY, £ {Y.(1),---,Ye(N)}, H(t) £ {hi;(),Vi,5 € K}, H = {H(1),--- ,H(N)}, He(t) & {hi(t),Vi €
K,Ve € £}, andH, & {H.(1),--- ,H.(N)}. Here,H is assumed to be known at legitimate users, whereas eappsiso
are assumed to know bo# andH..

We assume that each transmitter in the network has an ayb#ral distinct receiver and the set of legitimate nodes, i.e
L, consists ofn source-destination pairs. For notational conveniencegmemerate each transmitter-receiver pair using an
element ofC = {1,--- ,n}, and denote the channel gain process associated with fithersraceiver pairi with h; ;(¢). In
this model, transmitter-receiver paire K tries to communicate a secret messajee W;. Denoting the decoding error at
the receiver byP, ;, we say that the secret rafe; is achievable, if for any > 0, 1) [W;| > 2V% 2) P, < ¢, and 3)
%I(Wi; Y. . H H,.) <¢, Ve €&, for sufficiently largeN. We finally say that the symmetric secure degrees of freeddwk)

(per orthogonal dimension) of is achievable, if the rat&; is achievable for paii € K and

< lim L

~ SNR—oo log(SNR)’
[1l. THE PATH LOSSMODEL

In this section, we first focus on extended networks with & ji@gés model ¢ > 2) and stochastic node distribution (Poisson
point processes) as detailed in Secfionll-A. Our achidiglsirgument is divided into the following four key steps:

1) Lemmall uses the idea sécrecy zondo guarantee the secrecy of the communication over a sirage h

2) In Lemmd2, we introduce our novel multi-hop forwardingagtgy which uses independent randomization signal in each

hop. This strategy is shown to allow for hiding the informatifrom an eavesdropper which listens to the transmissions
over all hops.

3) Using tools from percolation theory, we show the existéent a sufficient number of horizontal and vertical highways

in Lemma[3, and we characterize the rate assigned to eachamottee highway in Lemm@l 4.
4) The accessibility of highways foalmost all the nodes in the networks with the appropriate rates is ksitall in
Lemma[b.
Our main result, i.e., Theorefd 6, is then proved by combinhrg aforementioned steps with a multi-hop routing scheme
(Fig. 1).

We partition the network area into squares of constant sdgth c. We further divide the area into larger squares of
side f;de, each of which containgf;d)? small squares. These small squares take turn over a Tinisi@ivMultiple-Access
(TDMA) frame of size (f;d)? slots. In each slot, a transmitter within each active smallase can transmit to a receiver
that is located at most squares away as illustrated in Figy. On the same figure, we also show the secrecy zone, around a
transmitting square, consisting of squares that are at fidssquares away. Our first result establishes an achiesauere
rate pera single hop active overN channel uses, under the assumption of a single eavesdroppiie boundary of the
secrecy zone.

Lemma 1 (Secure Rate per Hop): In a communication scenario depicted in Figthe secure rate, simultaneously achievable
between any active transmitter-receiver pair is:

n Vi € K. (4)

Rrn =1 ft1d)2 [log(1 + SNRrg) — log(1 + SNR..)] , )
where

A Pd+1)"%*(v2)"*
SNRrr = N, + P3(f1)—2d—c—5(a)’ (6)
S(a) = i(i —0.5)", (7

=1
s P(fo)cdoc@

SNR.- £ 5 (8)
[ G (©)

d )



and
A+ [ P asa
— |1+ —38 *d" %S < (fe)™. 10
(d)o‘ + N, (ft) c (Oé) (f ) ( )
Here, secrecy is guaranteed assuming the presence of asdegwger on the boundary of the secrecy zone.

Proof: In Fig. 2, consider that one node per filled square is transmittinguAsng that there is a transmission from every
such square, we denote the interference set seen by oumdgsiglegitimate receiver d. Since the legitimate receivers
simply consider other transmissions as noise in our modelpbtain the following SNR at the legitimate receiver.

Pd; %

No+ > Pdg
i€T
where the distance between the transmitter and receiveanietdd asirr and that between interferére Z and our receiver
is denoted byl; .
We now consider an eavesdroppeg £ listening to the transmission and upper bound its receivet 8y the following.
Pd;o
SNR, < — e 12
R < 5= (12)

o

SNRyp = (11)

where the distance between the transmitter and the eaygmtro is denoted bydr.. Here, the upper bound follows by
eliminating the interference at the eavesdropper. Thetnot®n in Fig.2 allows for showing that

drr < (d+1)ev?2, (13)
dTe 2 fedC, (14)

and

Zdi_Ra = ZSzzft (d+1)) %%

€L
< 8(fidc)” Z i(i—0.5)"
S S, (15)

where(a) follows by choosing

fid = 2(d+1), (16)
and the last equality follows by defining
é Z i(i—0.5)" (7)
=1

which converges to some finite value @as> 2.

Using [13), [(I%),[(I5) in[(11) and(1L2), we obtain the follogs.
Pd+1)%c *(v2)~"

> 2
SNRrr = SNRrg N, + P8(ft)~“d—2c=2S(a)’ (18)
and P —a o
SNR < SNR. 2 WTC (19)
Hence, SNR i > SNR. for every eavesdropper, once we choos¢. such that
d+ 1D)*(V/2)™ P P
e (El)if) L+ 5 8(F) e S (a) | < (o)™ (20)

We then construct the secrecy codebook at the transmitteohgidering an eavesdropper that observes the signal® of th
transmission othis hop only with an SNR ofSNR.-. Based on the Gaussian wiretap channel capacity [16], oneasily
show that the followingperfectly securerate is achievable

Rrp = [log(l + SNRrgr) — log(1 + SNR.- )} , (21)

(fed)? d)
where the(f;d)? term is due to time-division described above. ]

Next we introduce our novel multi-ho@ndomization strategy which ensures secrecy over ¢hgre path, from a source to
a destination node, avery eavesdropper observirayl transmissions.



Lemma 2 (Securing a Multi-Hop Path): Securing each hop from an eavesdropper that is located obahedary of the
secrecy zone is sufficient to ensure secrecy from any eaygser which listens the transmissions from all the hops &nd |
outside the secrecy zones of transmitters of hops.

Proof: We consider a source, a destinationd, and an eavesdropperin the network. Without loss of generality, we
assume that the multi-hop scheme ugésops to route the message. We design the secrecy codeboeklhatransmitter
according to highest possible eavesdropper SNR assumiptiagach hop. In our multi-hop routing scenario, each codtéhef
ensemble at the transmitter of hemenerate@™ (R +Ei—%) codewords each entry with i.i. dN(0, P), for somee; > 0,
and distributes them int®" i bins. Each codeword is, therefore, represented with thie {up, 4, w?), wherew, 4 is the bin
index (secret message) and is the codeword index (randomization message). To trarﬂmmessage)s_,d, the encoder of
transmitter: will randomly choose a codeword within the bin, 4 according to a uniform distribution. This codeword, i.e.,
X (ws 4, w?), is sent from transmitter. It is clear now that each transmitter on the path aiedspendent randomness, i.e.,
the codeword indexvf is independent ofv? for i # j.

We consider an eavesdropper at the boundary of the secre®y aound the transmitter of the hepand denote it by

. We subtract all the interference seen by this virtual node denote its observations for hapas Y.:. Omitting the
|nd|ces(ws 4, wr), for simplicity, we denote the symbols transmitted from ttensmitter; asX;; and setR”” =I(X;;Yer )
log (1 + SNRei) (Note that this is the rate loss ihl (5).) We continue as below

IWsa;Ye) = I(Wsa;Ye(1), -, Y(H))

(a)
< I(Ws,d;Ye’{a"' aYe’j{)

I(Wea, Wi Wi Yoz, - 7Ye%)—](wlz,... WEYer, o Yo, Wa.q)
®
< IXay- X Yer, oo Yo ) = HWE oo WEIWea) + HWE, - W[ Yer, -, Yer , We a)
H
N XK Xy Y Yoo Yo ) = HOVE o W)
=1
H
+ ZH(Wiwle%,daYefa" eH7W17"' 7Wf71)
=1
H
= |:I(XZ,YeﬂYe*1«, e 7Y6f71) + I(Xl, e ,Xifl,XiJrl, e 7XH;Y6:|Y6){7 e ,Yezil,xi)
=1
— NR? + N% + HWE Y, Wsyd)}
@ [ T €1 + €2
< SU|H(Yo Yo, Yer )~ H(Ye:[Yer, o, Yer |, Xi) — NRE + N2 2
i=1 =
© & €1+ €
T 1 2
< D |H(Ye) = H(Ye|X)) = NRf + N=— }
=1 =
H -
— 31X Ye:) - NRF + N +€2]
i=1 - ' H
)] [ - €1 + €2
< ) |NI(Xi:Ye) — NRY + Noor?
=1 =
= N(El +62)
where (a) is due to the fact thaf.- is an enhanced set of observations compared to thafecﬁt) (b) is due to the data
processing inequality and the Markov chdiWs q, Wi, -+ Wit = {Xq,-+ ,Xu} = {Yer, -+, Y }, (c) follows since

W, q andWF are independent, (d) is due to fact that the second term ilsuheis zero and due to Fano’s inequality (as we
chooseRf < I(X;;Yex), the binning codebook construction allows for decodinglaanization message at the eavesdropper
given the bin index for almost all codebooks in the ensembié) define the decoding error probability &s .- = Pr{Wf #+
W}, wherelW? is the estimate of the randomization mess&igé given (Ye:, Ws,4), and bound

H(P. cx)
N

H(W?|Ye:,Woa) <N ( + Pe,ezRf) < N% (22)

with somees — 0 as N — oo, (e) follows by the fact that conditioning does not increttee entropy and the observation that
N
H(Ye:f |Ye’{, . Y * ,XZ) = H(Ye’f |Xz)1 and (f) is due to the fact thdI(XZ, Ye%) = Z I(XZ, Y.+ (t)D/e* (1), cee ,}/e’f (t—
L K K t:l K K k2



1)) < éﬁl H(Yor (1)) — H(Ye: (0 X:(t)) = NI(X;: Vi ).

After setting,e = ¢; + €5, we obtain our result: For any given> 0, % <easN — 0. ]

Note that, the number of hops scale ds= O(y/n) and in [22) we haveP, .- decays exponentially iV. Thus, we can
say that the multi-hop transmissions require larger blerigths, as: gets large, to assure secrecy with this scheme.

The following result uses tools from percolation theory stablish the existence of a sufficient numbeseture highways
in our network.

Lemma 3 (Secure Highways): There exist a sufficient number akcure vertical and horizontal highways such that, as
n — oo, each secure highway is required to se@g/n) nodes and an entry (exit) point has w.h.p. a distance of at mos
x'logn away from each source (respectively, destination) for séimt constant<’ > 0, if ¢ > ¢¢ for some finite constant
co>0and), — 0.

Proof: We first describe the notion of secure highway and the peioalanodel we use in the proof. We note that most
of this percolation based construction is developedin[2)] and here we generalize it for secrecy. We say that eaghreq
is "open” if the square has at least one legitimate node aerktare no eavesdroppers in the secrecy zone around thesquar
We denote the probability of having at least one legitimaidenin a square by. It is evident that

2
b= 1- eic )
and hencep can be made arbitrarily close foby increasing:. For any given transmitting square, we denote the protgbili
of having an eavesdropper-free secrecy zoneg.byhe number of eavesdroppers within a secrecy zone is adPoissdom
variable with parametek. (2f.d + 1)2¢?, and hence,

q= e—)\e(2fed+1)2c2.
Thus, ¢ gets arbitrarily close td, asn — oo, since. — 0 with n (f., d, andc are some finite numbers for the highway
construction).

We then map this model to a discrete edge-percolation madkla( bond percolation on the random square grid [21])
by drawing horizontal and vertical edges over the open sglavhere an edge is called open if the corresponding sgsiare i
open (see Fig3). We are interested in characterizing (horizontal andie@)t open paths that span the network area. Such
open paths are ourorizontal and vertical highways. We only focus on horizontal highways for the rest of the isecas the
results hold, due to symmetry, for the vertical highways. Mmark that, in our model, the status of edges are not staftigt
independent due to the presence of associated secrecythané@stersect for successive squares. Notice that thesstdttwo
edges would be independent if their secrecy zones did narsiett, which happens if there were at lengtd squares between
two edges. Therefore, this dependent scenario is refeored finite-dependent model, #s andd are some finite numbers.
Due to Lemma1l2, given in AppendiX A, this dependent matimhastically dominates an independent model, in which edges
are independently open with probabilipy, wherep’ can be made arbitrarily high if¢ can be made arbitrarily high. This
independent scenario can be constructed by following thpssprovided in[[22]. Therefore, after proving the perdolaiof
the network with some desirable properties under the intdgrce assumption, the network will also percolate withstrae
properties under the finite dependence model as pahd ¢ can be made sufficiently large.

Using the independent edge model, applying Leriima 13, givelpipendix[A, with edge openness probability 6f and
noting the fact thain = % (Fig. 3), we obtain the following: There are w.h.(,/n) horizontal paths, which, for any given
x > 0, can be grouped into disjoint sets [aflogn| highways that span a rectangle area of sizbogn — €) x /n, for some
§ > 0, and some — 0 asn — oo if p’ is high enough. Then, the network area is sliced into slabsidsf lengthw, chosen
so that the number of slabs match with the number of highwaysach rectangle. Then, each source (destination) intthe
horizontal (vertical) slab will access the correspondirghtvay (Fig.4). This way, each highway is required to serve at most
2w+/n nodes and an entry (exit) point has w.h.p. a distance of at ridsg n away from each source (respectively, destination)
for some finite constant’ > 0. The former claim follows by an application of Chernoff bakigiven in Lemma4, and union
bound (seel[2, Lemma 2] or [20, Lemma 5.3.5] for details) drel latter incorporates the negligible horizontal distaate
mostcy/2) in addition to the vertical distance, which scales<dsg n. Finally, due to the statistical domination argument given
above, these percolation results will also hold for our éirdependent model, ag can be made arbitrarily large as— oc.
Formally, 3¢y € (0, 00) such that, for any: > ¢y, pg can be made sufficiently high X. — 0 asn — oco. This translates to
high enoughy’ by Lemma IR, which shows that the dependent model has thenyogiven in Lemma 13 as well. ]

With the following lemma we conclude the discussion of higlya:

Lemma 4 (Rate per Node on the Highways): Each node on the constructed highways can transmit to theeir mop at a
constant secure rate. Furthermore, the number of nodeshégttivay serves i®(y/n), and therefore each highway can w.h.p.

carry a per-node secure throughput(® ﬁ .

Proof: The highways are constructed such that there is at leasegiterate node per square and there are no eavesdroppers
within the secrecy zone around the squares of the highwaychese one legitimate node per square as a member of the
highway, and compute the rate that can be achieved with tHa-hop strategy. From Lemmia 1 (witth= 1) and LemmdR2,



one can see that highways can carry datairely with a constant positive rate. As each highway carries the data fof./n)
nodes due to Lemnid 3, the achievable rate per node on highis/&y \/iﬁ . [ ]

Our final step is to show that almost all the nodes can accesiginways simultaneously with high probability with a rate
scaling higher tha ﬁ :

Lemma 5 (Access Rate to Highways): Almost all source (destination) nodes can w.h.p. simubiasty transmit (receive)
their messages to (from) highways with a secure rat@ (flogn)3~), if Ac = o ((logn)~?).

Proof: To calculate the rate of each node transmitting to the ctdsaszontal highway, we follow the same procedure
given in the proof of Lemmé&l4. However, this time we chodse- " logn in Lemmall for some finite:” > 0, as the
nodes within each transmitting squares need to transmitreceiver at a distance of at most logn squares away (due to
Lemmal3). (Here, we can choose smallest numbee> '%' making " logn integer.) In addition, compared to Lemrhh 4,
where only one node per square is transmitting, here altitegie nodes within small squares should access the highway
w.h.p., which is accomplished with a TDMA scheme.

As d = k"logn — oo, we see from[(6),[{8),[{5) that a per-node rate(df(logn)~>~*) is achievable. Note that, to
satisfy [10) and thug{5), any choice ¢f > /2 suffices asn — co. However, for this case, due to time division between
nodes within squares this rate needs to be further modifigainAapplying the Chernoff bound (Lemrhal 14) and the union
bound one can show that there are w.lxjlog ) legitimate nodes in each square (see [2, Lemma 1] Or [20, L&B3.4]
for details). Therefore, w.h.p. the secure r@té(log n)*3*a) is achievable to the associated highway from a source néde, i
there isno eavesdropperin the associated secrecy zone. Next, we show that this adpbn with a very high probability if
Ae = 0 ((logn)~?) asymptotically (as1 — ).

From Fig.2, it is clear that the presence of an eavesdropper elimiriagepossibility of secure access to a highway from
a region of aread = (2f.d + 1)2c%. We denote the total number of eavesdroppers in the netwo{K|aPoisson r.v. with
parameter\.n), and the total number of legitimate users in the networkdgPoisson r.v. with parametem = n). Let the
total area in which the eavesdroppers make it impossibledolr a highway bel¢. Clearly, As < A|€|. Let us further denote
the number of legitimate users in an area&€| as|L 4 ¢||. Then, using the Chebyshev inequality (please refer to Laffhfn
in Appendix[8), we obtain

€] < (1+4€)Aen,
L] > (1-e)n, (23)
ILagll < (I+eAlE]

for any e € (0,1) with high probability (asn — oo). We denote the fraction of users that can not transmit thwéys due
to eavesdroppers & which can be upper bounded by

IL el e €)2(2fed + 1)2c2\en
BV (I—€n

with high probability (asn — o0). The first inequality follows since the eavesdroppers cavelintersecting secrecy regions,
the second inequality follows froni (P3), and the limit hollsd = x” log(n) and A, = o ((log n)_2). This argument shows
that almost all of the nodes are connected to the highways-asco.

Similar conclusion can be made for the final destination soday given destination node can w.h.p. receive data fraen th
highways securely with a rate 6f ((logn)=2~). [

Now we are ready to state our main result.

Theorem 6: If the legitimate nodes have unit intensity £ 1) and the eavesdroppers have an intensity.of o ((log n)_2)

in an extended network, almost all of the nodes can achiewxzares rate of) \/Lﬁ) with high probability.

Proof: In our multi-hop routing scheme, each user has a dedicatei# r@ue to the time division scheme described
below) with each hop sending the message to the next hop/éwelannel uses. The secrecy encoding at each transmitter is
designed assuming an eavesdropper on the boundary of trexgeone and listening to this hop (observations of lengjh
only. This way, a transmitter can achieve the rate reporidcemmal. Then, we can argue that this secrecy encoding schem
will ensure secrecy from an eavesdropper that listens tdrémesmissions of every hop due to Lemila 2.

Now, the main result follows by Lemnia 4 and Lemima 5 by utiigantime division approach. That is the total transmission
time of the network is divided into four phases, as shown g Fi During the first phase, the sources that are not affected by
eavesdroppers (i.e., almost all of them due to Leriima 5) whlpv transmit their messages to the closest highway ewint.p
Then, the secret messages of all nodes are carried throadiotizontal highways and then the vertical highways (Lerdna
During the final phase, the messages are delivered from tiavalys to almost all of the destinations (Leminha 5). Hence, by
Lemma4 and Lemmia 5, as the secrecy rate scaling per nodeitieditny the transmissions on the highway, we can see that
almost all of the nodes achieve a secure ratéhéf\/iﬁ) with high probability. This concludes the proof. ]

Few remarks are now in order.

-0 (24)



1) The expected number of legitimate nodesjsvhereas the expected number of eavesdroppets is o(n(logn)~2) in
this extended network. Note that satisfiesn, = O(n!=¢) for any e > 0, and hence network can endure eavesdroppers as
long as total number of eavesdroppers scale slightly lolvan that of legitimate nodes.

2) Utilizing the upper bound of[[1] for the capacity of wireke networks, we can see that Theorem 6 establishes the
achievability of the sameptimal scaling law with and without security constraints. It is worth notingathin our model,
the interference is considered as noise at the legitimateivers. As shown in_[7], more sophisticated cooperatioategies
achieve the same throughput for the case of extended netwdtk oo > 3. This leads to the conclusion that cooperation in
the sense of [7] does not increase the secrecy capacity whels andA. = o ((log n)*2).

3) Ae = o(1) is tolerable if each node shares key only with the closest Higrvay member. If each node can share a secret
key with only the closest highway member, then the proposed scheme caantigined with a one-time pad scheme (see,
e.g., [11] and[[12]) for accessing the highways, which rssinl the same scaling performance for angy— 0 asn — oc.

4) Can network endure A, = o(1) without key sharing? Note that in our percolation theory result, we have choseiss
of side lengthc (edge length in the square lattice wag2, see Fig.3) satisfyingc > ¢, to makepq sufficiently large in order
to havep’ > % for Lemmal18. We remark that for independent percolatiom wilge probability’ in a random grid, for any
v € (0,1), Ip*(v) such that forp’ > p*(~), the random grid contains a connected component of at teastvertices (see,
e.g., [20, Theorem 3.2.2]). Thus, as longJas= o(1), for somee’, e* > 0, we can choose a very large, but constanfio
make sure thapq is very close tal) to havep’ = 1 —¢’ > p*(1—¢*), which implies that there are w.h.fl. — ¢*)n? connected
vertices. Therefore, we conjecture that, for any given 0 and for A\. = o(1), per-node secure throughput 8{1/+/n) is
achievable for(1 — ¢) fraction of nodes (we conjecture that these are the nodédi#ive constant distances to highways).

We now focus on the dense network scenario. The stochagtie digtribution for this scenario can be modeled by assuming
that the legitimate and eavesdropper nodes are distritagdtbisson point processes of intensifies n and )., respectively,
over a square region of unit area. The proposed scheme inr¢v@ps section can be utilized for this topology and theeam
scaling result can be obtained for dense networks as fazethin the following corollary.

Corollary 7: Under the stochastic modeling of node distribution (Paispoint processes) in a dense network (on a unit
area region) with the path loss model (with> 2), if the legitimate nodes have an intensity b= n and the eavesdropper
intensity satisfies%@ =0 ((log n)‘2), then almost all of the nodes can simultaneously achievearseate of(2 (\/iﬁ)

Proof: The claim can be proved by following the same steps of thefpsb@heoren6 with scaling the transmit power
from P to (% at each transmitter, and scaling each distance parametdiviojng with \/n. Note that, with these scalings,
signal to interference and noise ratio (SINR) calculatiand percolation results remain unchanged. [ ]

IV. THE ERGODIC FADING MODEL

We now focus on the ergodic fading model described in Sedfidi and utilize the ergodic interference alignment for
secrecy. Frequency selective slow fading channels aréestuid [23], where each symbol time= 1,--- | N corresponds to
F frequency uses and the channel states of each sub-chanrehreonstant for a block oV’ channel uses and i.i.d. among
B blocks (V = N’B). For such a model, one can obtain the following high SNRItdsuutilizing the interference alignment
schemel([4].

Theorem 8 (Theorem 3 of [23]): Forn source-destination pairs with, number of external eavesdroppers, a secure DoF of
n= [% — %}’L per frequency-time slot is achievable at each user in thedérgsetting, in the absence of the eavesdropper
CSl, for sufficiently high SNRN, and F.

This interference alignment scheme is shown to achieve aresddoF of[% — %]+ per orthogonal dimension at each user
when all the eavesdroppers colludel[24]. Remarkably, vhith $cheme, the network is secured against colluding eavggers
and only a statistical knowledge of the eavesdropper CSéélad at the network users. However, the proposed scheme onl
establishes a high SNR result in terms of secure DoF per ls@ddition, the stated DoF gain is achieved in the limit of
large number of sub-channels, which is unrealistic in pcador large number of users, (The result is achieved when the
design parameten gets large, wheré" = Q(m"Q) 23], [24].)

Providing secure transmission guarantees for users at BRyv@th finite number of dimensions is of definite interest. In
this section, we utilize the ergodic interference aligntretemel([B] to satisfy this quality of service (Qo0S) requiest at the
expense of large coding delays. Ergodic interference ml@gnt can be summarized as follows. Suppose that we can find som
time indices in{1,--- , N}, represented by, 5, - -- and their complements, t,, - - -, such thath; ;(t,,) = hi,i(fm), Vie k,
andh; j(tm) = —hi ;j(tm), Vi,j € K with i # 4, for m = 1,2,---, N;. Now, consider that we sent the same codeword over
the resulting channels, i.e., we s&(t,,) = X;(t,,), vm. Then, by adding the observations seen by destinatifun these
two time instance sequences, the effective channel canpresented as

whereas the eavesdroppepbserves

Z?:e(tm) ]Xi(tm)—i- { ?EW ] (26)



10

form =1,2,--- , N;. Remarkably, while the interference is canceled for thditaegte users, it still exists for the eavesdropper,
whose effective channel becomes multiple access channbl single input multiple output antennas (SIMO-MAC). By
taking advantage of this phenomenon together with explpithe ergodicity of the channel, secure transmission again
each eavesdropper is made possible at each user for any Sf¢Bn@ing on the underlying fading processes) as reported in
the following theorem, which is the main result of this sewti

Theorem 9: Fort=1,2,---, let
Yi(t) & 2hii(1) X, (t) + Zi(t) + Zi(t), (27)
?6 (t) £ Z I:Ii,E(t)Xi (t) + Ze (t)7 (28)
i=1

Hio(t) 2 [hie(t) hie(®)]T, and Ze(t) £ [Ze(t) Z.(t)]T, where,¥i € K andVe € &, Z; and Z, are ii.d. asZ; and Z,
respectively; and; . is i.i.d. ash, .. Then, source destination pdik IC can achieve the secret rate
+
R = |EUCCTI - g BUCh. XV 29)
n

on the average, where the expectations are over underlgigd processes.

Proof: We first need to quantize the channel gains to have a finitefqetssible matrices. (These steps are giveri_in [3]
and provided here for completeness.) ket 0. Chooser > 0 such that PfU; ;{|h; ;| > 7}} < €. This will ensure a finite
quantization set. Foty > 0, the y-quantization ofh; ; is the point amongy(Z + jZ) that is closest tch; ; in Euclidean
distance. They-quantization of channel gain matr#(¢) is denoted byH, (¢), where each entry is-quantized. Thusy-
quantized channel alphab®t, has size satisfying@)%2 < [H,| < (2{)2"2. We denote each channel type WHPY, for

b=1,---,B = |H,|. The complement of the channﬂz is denoted byHB, whose diagonal elements are the samélé,s
and the remaining elements are negatives of thd‘t‘[bf
We next utilize strong typicalityl [25] to determine the nuentof channel uses for each type. Consider any i.i.d. seguenc

of quantized channel matric&f, (1), --- ,H, (V). Such a sequence is calléetypical, if
N(PH{H’} - 6) < #{H}[H,(1),-- ,H,(N)} < N(PH{H}} + ), (30)

where#{.|.} operator gives the number of blocks of each type. The setdf strong typical sequences is denoted/tg/v).
By the strong law of large nhumbers, we choose sufficientlgday to have P{AE;N)} >1—¢€.

Assuming that the realized sequence of quantized chanirehgatrices, i.e.H,(1),--- ,H,(NV), is é-typical, we use the
first N, £ N(Pr{H}} — §) channel uses for each channel typ&his causes a loss of at mastV B channel uses out oF,
which translates to a negligible rate loss. With again aig#gé loss in the rate, we choose eably as even. Note that the
complement block ob is b, which lasts forN; = N, channel uses, as b} = Pr{H.}.

We now describe the coding scheme, which can be viewed asgamierinterference alignment coding scheme with a
secrecy pre-coding. For each secrecy codebook in the etsarhtransmitteri, we generat@™ (%:+E7) sequences each of

B

length > % where entries are chosen such that they satisfy the long agerage power constraint ¢f. We assign each
b=1

codeword to2V 7 bins each witl2VEi codewords. Givenw;, transmitter randomly chooses a codeword in batcording to

the uniform distribution, which is denoted ¥, (w;, w?), wherew? is the randomization index to confuse the eavesdroppers.

The codeword is then divided int® blocks each with a length o% symbols. The codeword of block is denoted by

{Xxb(t),t = 1,---, 2} and is repeated during the lagf channel uses of the block i.e., X’(t) = Xf’(% + t), for

t=1,--- ,%. The channel gains, additive noises, and the received dgnibaenoted with the same block, i.e., channel

type, notation. Here, the effective channels during blbék given by

20 = 0X00 + 210 + 28 (54 e). @)
and
/ _ - hg,e(t) Zg(t)
=3 | g (i |20+ @0 | 2
fort=1,2,--- 2.

We essentially code over the above two fading channels sgeatedtinations and eavesdroppers. Here, to satisfy both the
secrecy and the reliability constraints, we choose thesrasefollows.

R = SEUGVIH)] = 5 BlI(Xs X VolFHL) ¢ 33
n

(2

Ry = %E[I(Xla 7X71;?6|H’H5)]’ (34)
n
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where the expectation is over the ergodic channel fadind tiha channel outputs; and Y. are given by the transformations

(22) and [(ZB), respectively.
For anye > 0, we choose sufficiently smadl. Then, in the limit of N — oo, 7 — o0, v — 0, each legitimate receiver

can decodd?; and W7 with high probability (covering a-typical behavior of theannel sequence as well) as
Ri-+ R = S BUI(Xs ViED] - e, (35)

wheree covers for quantization errors and unused portion of thencbbuses.
For the secrecy constraint we first consider each expressicdhe right hand side of the following equality.

1 1 1
NI(WIC;Yev:[_IvHe) = NI(W’va%;YeaHaHE)'FNH(W/%|WIC3Y67H7H6)
1
- NH(WIgé'WKv H, He)a (36)

where we denotélx = {W;,Vi € K} andWE £ {W? Vi € K}.
We have 1 1
NI(WK:a WI%7 YEa Ha HE) = NI(WK:a WI%» YE|H7 HE)

(a) -
S (P URTAN Ry S TORTHON: 88

5 N,

Vb

¢ bz::lz E[I(X X.:Y.H H
=~ N ( [ ( 1" n €| ) e)]—El)
c 1— -
9 | 262) (BUI(X1-  Xos Vo[ HHL)| - )
< GBI X VHH) + e, 37)

where (a) is due to the coding scheme and the data processiqgality, (b) is due to ergodicity with some — 0 as
N — o0, (€) is due to unused portion of channel uses with seme> 0 as N — oo.

Secondly, due to the ergodicity and the symmetry among tittens) the rate assignment implies the following: The sate
satisfy

1 -
Y Ry < S BU(Xs; Ye|Xic—s, H, He), (38)
€S
for any S C K. (Please refer to Lemma 8 aof [23] for details.) Thus, the oemidation indicesiV¢ can be decoded at the
eavesdropper given the bin indicedVi. Then, utilizing Fano’s inequality and averaging over theemble of the codebooks,
we have
1
NH(W/%|WK:7Y61H1H6) S €3, (39)
with somees — 0 as N — oo.
Third, asW¢ is independent of Wi, H,H.} and as eachiV” is independent, we have

N OVEIic L) = S HOVE) = 0 ST HOVE) = 1 STNRE = GBI oo X VR L (40
Finally, using [(3¥),[(39), and (#0) in (B6), we obtain
%I(W;C;YE,H,HE) <, (41)
which implies that
%I(Wi;YE, H H,) <eViek (42)
with somee — 0 as N — oo, which establishes the claim. ]

Note that for i.i.d. complex Gaussian input distributiom, i whenX;(¢t) ~ CN(0, P),Vi,t, the proposed scheme achieves

+
1 2P|h; i|? 1 P -
R, = |=FE [log (1 + #)] — —F |logdet (I + — > H, H;, , (43)
No = '

2 No on
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for useri € K. Here, for any non-degenerate fading distribution, e.@yl&gh fading wheré; , ~ CN(0,1),Vi € K,Vk €
K UE&, the second term of (43) diminishes mgets large. In particular, as — oo, R; scales as

%E [1og (1 + M)} _ Otog(m)|”

R, =
NQ n

)

and hence we can say that each user can achieve at least imepositstant secure rate for any given SNR for sufficiently
largen. (Please refer to Appendix B.)

To quantify the behavior of the scheme in the high SNR regiwe,now focus on the achievable secure DoF per user,
which can be characterized by dimension counting argumé&hts proposed scheme achieves [% — %r secure DoF per
user for any given non-degenerate fading model. (This cashben by dividing both sides of (#3) wiflog SNR and taking
the limit SNR — oo for any givenn.) Note that the pre-log gain of the proposed scheme is thes smrthat of[[23]. But,
remarkably, ergodic interference alignment allows us taimtsecrecy at any SNR by only requiring a statistical krealge
of the eavesdropper CSI. We note that this gain is obtaingdeaexpense of large coding delay (at least exponentialen th
number of users).

V. EAVESDROPPERCOLLUSION

In a more powerful attack, eavesdroppers caltude, i.e., they can share their observations. Securing infooman such
a scenario will be an even more challenging task comparednecolluding case [19]/[26]. Interestingly, even with lcaling
eavesdroppers, we show that the scaling result for the pathrhodel remains the same with the proposed multi-hop sshem
with almost the same eavesdropper intensity requirement.

Theorem 10: If the legitimate nodes have unit intensity (& 1) and the colluding eavesdroppers have an intensity of
Ae =0 ((logn)_z_”) for any p > 0 in an extended network, almost all of the nodes can achiewexars rate of) (ﬁ)
under the static path loss channel model.

Proof: Please refer to Appendix| C. ]

We note that, in the colluding eavesdropper scenario, thaltreequires only a slightly modified eavesdropper intgnsi
condition compared to the non-colluding case. Also, forhighway construction of the non-colluding case, the secremne
with an area of(2df. + 1)2¢* with f. > /2 was sufficient. However, for the colluding eavesdroppenade, legitimate
nodes need to know whether there is an eavesdropper or rthwlite first layer zone, which has an area(2df;, + 1)2c?
with f;, = §'log(n), whered’ can be chosen arbitrarily small (sde](62)). Hence, sectutiegnetwork against colluding
eavesdroppers requires more information regarding theseawppers compared to the non-colluding case. But, reahbrk
the optimal scaling law (se&l[2]) is achieved even when thesroppers collude under these assumptions.

For the ergodic fading model, the eavesdropper collusigredeses the achievable performance. Let us add independent
observations to the received vector given [in] (28) of ThedBemccording to eavesdropper collusion and denote colluding
eavesdroppers’ observations B.. for e* € £* £ {e},e5,---}. For example, ife; and e, colludes, their cumulative
observations is denoted ki}e; (SIMO-MAC with 4 receive antennas). In such a scenario, the proposed sclammeaised
to achieve the following rate.

Corollary 11: For a given eavesdropper collusion $ét source-destination paire X achieves the following rate with the
proposed ergodic interference alignment scheme for thederdading channel model:

1 ~ 1 ~
R; = min §E[I(X1,YZ|H)] — 2—E[I(X1,--- , Xn; Yeo [H, He) | (44)
n

e*g&*

Note that the proposed scheme achieyes [% — %r secure DoFs per user for non-degenerate fading distritmitio
when all the eavesdroppers collude. (This can be shown i iy setting€* = £, choosing the input distribution as

i.i.d. CN(0, P), dividing both sides byog SNR, and taking the limit SNR» oo for any givenn, andn.)

VI. CONCLUSION

In this work, we studied the scaling behavior of the capacftyvireless networks under secrecy constraints. For exnd
networks with the path loss model (the exponent is assumeatisfy o > 2), the legitimate nodes and eavesdroppers were
assumed to be randomly placed in the network according tesBnipoint processes of intensity= 1 and )., respectively.

It is shown that, when\. = o ((log n)*Q), almost all of the nodes achieve a secure raté) fﬁ , showing that securing
the transmissions does not entail a loss in the per-nodedghput for our model, where transmissions from other usegs a
considered as noise at receivers. Our achievability argtinsebased on novel secure multi-hop forwarding strateggreh
forwarding nodes are chosen such that no eavesdroppetsiexppropriately constructesecrecy zones around them and
independent randomization is employed in each hop. Toam fpercolation theory were used to establish the existence
of a sufficient number ofecure highways allowing for network connectivity. Finally, a time divisioapproach was used

to accomplish an end-to-end secure connection betweenstlaiosource-destination pairs. The same scaling resutsis
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obtained for the dense network scenario Wtﬁgn: 0 ((log n)*2). We note that, in the proposed scheme, we assumed that
nodes know whether an eavesdropper exist in a certain zeeeety zone) or not. An analysis of a more practical scenario
in which legitimate nodes have no (or more limited) eavegpen location information, would be interesting.

We next focused on the ergodic fading model and employeddé&goterference alignment scheme with an appropriate
secrecy pre-coding at each user. This scheme is shown topadbleaof securing each user at any SNR (depending on the
underlying fading distributions), and hence provides @enfance guarantees even for the finite SNR regime compared to
previous work. For the high SNR scenario, the scheme ami[%ve %]* secure DoFs per orthogonal dimension at each
user. Remarkably, the results for the ergodic fading séesalo not require eavesdropper CSI at the legitimate useig,a
statistical knowledge is sufficient. However, this gain igadned at the expense of large coding delays.

Lastly, the effect of the eavesdropper collusion is analyieis shown that, for the path loss model, the same per-node
throughput scaling, i.ef} ﬁ , Is achievable under almost the same eavesdropper inteegitirement. For the fading model,
the proposed model is shown to endure various eavesdropfiasion scenarios. In particular, when all the eavesdeopp
collude, a secure DoF d§ — “<]* is shown to be achievable.

We list several future directions here: 1) Characterizimg full trade-off between secure throughput vs. eavesdnoppde
intensity is of definite interest. 2) We have not exploitedperation techniques to enhance security in this work. €mdjpn
in the sense of_[7] may be helpful. For example, in the extdmuetwork scenario, hierarchical cooperation might inseea
the per-node throughput far < 3 or achieve the optimal throughput far > 3 even with higher eavesdropper intensities.
In addition, cooperation for secrecy strategies (see, 2@}, [28] and references therein) may be beneficial in eohey the
scaling results. 3) A uniform rate per user is consideredhia work. Arbitrary traffic pattern can be considered forrsse
with distinct quality of service constraints. 4) Eavesgrers are assumed to be passive (they only listen the trasismss.

An advanced attack might include active eavesdroppersshmmay jam the wireless channel. Securing information irhsuc
scenarios is an interesting avenue for further research.

APPENDIXA
LEMMAS USED IN SECTION[T

Lemma 12 (Theorem 7.65, [21]): Let d, k > 1. Consider random variablés$, and Z7 taking values in{0, 1}, for z € 7,
DenoteZ™ = {ZT : x € 7™} as a family of independent random variables satisfyingBr= 1} = 1 — P{ZT =0} = =.
Also, denote Euclidean distance Zf' asd(-,-).

If Y = {Y, : z € Z%} is a k-dependent family of random variables, i.e., if any two $ailies {Y, : = € A} and
{Y] : 2’ € A’} are independent whenevéfz, z') > k, Vo € A,Vz' € A, such that

PH{Y, =1} >4, Vz € Z°,

then there exist a family of independent random variallié&’) such thaty statistically dominates Z™(%), wherer(d) is a
non-decreasing function : [0,1] — [0, 1] satisfyingw(6) — 1 asd — 1.
Proof: The proof is given in[[22], where the authors also provide mstaiction of the independent model. See also [21].
[ |

Lemma 13 (Theorem 5, [2]): Consider discrete edge percolation with edge existendeapility p on a square grid of size
m x m (number of edges). For any given> 0, partition the area intqﬁ_em) rectangles of sizen x (klogm — €,,),
wheree,, = o(1) asm — oo and is chosen to have integer number of rectangles. Deneteniximal number of edge-
disjoint left to right crossings of théh rectangle ag”?, and letN,, = min; C? . Then,Vx > 0 andVp € (%, 1) satisfying
klog(6(1 —p)) < —2, 36 > 0 such that

lim PH{N,, <dlogm} =0. (45)
m—0o0
Proof: The proof is given in[|2, Appendix I]. See also [20, Theorerd.9]. [ ]
Lemma 14: Consider a Poisson random variatfeof parameter\. Then,
- T
PX > a) < N s (46)

Proof: The proof follows by an application of the Chernoff bounced®e refer ta ]2, Appendix 1] of [20, Appendixia
Lemma 15: Consider a Poisson random varialifeof parameter\. Then, for anye € (0, 1),

Ali_)m P(X <(1—-¢€A) =0, 47
and
)\Hjn PX<(1+¢A) =1 (48)

Proof: The proof follows by utilizing the Chebyshev’s inequality. [ ]
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APPENDIXB
R; > R FOR SOME CONSTANTR > 0 IN (43)ASn — oo
Consider that the statistics f .s are given by 1) = E[R{h; .}] + jE[S{hi.}] is a complex number with finite real and
imaginary parts, and 2) £ E[|h; .|?] is a finite real numbeli € K, e € £. Let us further assume th#i + Nio > ﬁiﬂefl;ﬁe

=1
is a positive definite matrix. Focusing on the second ternid@j,(we obtain '

1 P - (@ 1 P & -
- i ) * < — i . *
S |logdet <12 N ; HH)] < ;- logdet <12 N ;E [HHD (49)
w 1 P P2
= 5 log (1 + FOQnS + N—gn2(s2 — g/ (50)
_ Ollog(n) -
n 9

where (a) is due to Jensen’s inequalitylagdet(-) function is concave in positive definite matrices, and (Blofes from

|h’i-,€|2 h’i-,eilze
hi,eh;‘_’e |hi,e|2 ’

elan] = (e 1)

Thus, the second term df (43) becomes insignificafit) asn — oo; and3R > 0 such thatR; > R, Vi € K for sufficiently

which implies

largen. Note that the assumption thhf + Nio > H; H;, is a positive definite matrix holds in the limit of largealmost
i=1 i

surely. (Here, due to strong law of large numbers, the surwerges tonF {f{i,efl;e} with probability 1.)

APPENDIXC
PROOF OFTHEOREM[IO

The proof follows along the same lines of the proof of Theol@&by generalizing the secrecy zone approach to multi-level
zones, where the area of each zone is carefully chosen tinabiatatistically) working bound for the SNR of the collodi
eavesdropper.

In Fig. 5, we show thezones around a transmitting square: Zone of lekefor k¥ € {1,---, L} has an area of{;,, and the
associated distance is denoted wjihdc with somef;, > 1 and f;, > fi,._,. Note that, we takef;, as a design parameter.
We will choosef;, differently, depending on whether a node is forwarding dater a highway or accessing to/accessed by
a highway. Furthermore] and f;, may depend om, i.e., expected number of users.

We now provide generalization of Lemma 1 to the colludingesalvopper case.

Lemma 16 (Secure Rate per Hop): In a communication scenario depicted in Rigino eavesdroppers in the first zone), the
rate

Rrp = (ftld)Q [log(1 + SNRrg) — log(1 + SNRe-)] ©, (52)
where

s P+ (V2
SNRrr = NS Ps(f)ed—oc—5(a)’ (53)
S(a) = i(i —0.5)"7, (54)

=1

€ CQ—a —a L
s & DUEDRE 00, S (i) (55)

k=2
o> 2drD (56)

d )
is w.h.p. securely and simultaneously achievable betwegraative transmitter-receiver pair ff, is chosen such that

Ned?(f1,)? — 00, asn — oo, for k=12,3,---. (57)
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Proof: The steps of the proof are similar to that of Lemia 1. Here, ®ednto derive a working upper bound for the
colluding eavesdropper SNR. In our case, secrecy is gudra#ssuming that the eavesdroppers are located on thedrgpund
of each level of zones. We first bound the number of eavesérspd each level. We have

Ay, < (2dfy, +1)2c < 9d2(fy,)%c?, (58)

asd > 1 and f;, > 1. Hence, the number of eavesdroppers in ldyetan be bounded, using the Chebyshev’s inequality (see
Lemmal15b), by

€5 ] < (1+ A9 d*(f,) (59)
w.h.p., for a givere > 0, as long as we choosg, to satisfy
Aed?(f1,)* — o0, asn — oo.

Now, we place|&} | number of eavesdroppers from layerat distancef;, _,dc for k = 2,3,---. This is referred to as
configuration£*. These colluding eavesdroppers can do maximal ratio camifthis gives the best possible SNR for them)
to achieve the following SNR.

L
P E(fr ) Yemd™
=2
Ny

P(1+€)9c?~d~> L 9 o
NO )\ed ];(flk) (flk—l)

2 SNRe.. (60)

]
Note that the challenge here is to chogbg such thatSNR:- < oo, and at the same time to satisfy (57). With some
appropriate choices of these parameters, we generalizena&nand LemmaBl5 to the colluding eavesdropper case.
Lemma 17 (Rate per Node on the Highways): If \. = O((logn)~2), each node on the constructed highways can transmit
to their next hop at a constant secure rate. Furthermoreeifitmber of nodes each highway serve®(s/n), each highway

can w.h.p. carry a per-node throughput@(ﬁ).

Proof:
We show the result foA, = © ((log n)_2), which will imply the desired result (as lowering the eawesgber density can

not degrade the performance). Consequently, there exsistantsA, A, andn; such that

SNRe- =

<

A(logn)™2 < X\ < A(logn)~2, for n > ny, (61)
whereA < A.

We choose each level of zones over the highways by setting
(=) ogmy ! 62
fu = OACZD? (logn) . (62)

Here,
Ae(2f1,d +1)%¢ < AI(fy,)%d?c? (63)
2

_ /\ed(loin) (64)
< 9, forn > n,. (65)

Therefore, due to our percolation result, i.e., Lem8paeach member of a given highway does not have any eavesdroppe
within their first level secrecy zone @scan be chosen arbitrarily small. Now, as the above choiae sdsisfies

Ned?(f1,)? — 00, asn — oo, for k=2,3,---

we can utilize Lemma to achieve a secrecy rate of
1 1 1 -
Rrr = —— | =log(1 4+ SNRrg) — = log(1 + SNRe+) | . 66
i = s | 31081+ SNRrw) — 3 log(1 + SNRE)| (66)

Now, we provide an upper bound f@&\Re-. First, note that our setup results in

2—a

(fi)?(fr_)) ™" = (ﬁ) o
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Hence,

2—a
2

SNRe. — fg%ﬂggu-q)ﬁ%)__ (67)
< 2Pt -0 (57)
0
forn >mn, (68)
— 0, asn — oo, (69)

where the last step is due to the observation that the nunfdevels can be upper bounded by
log(log n)
log(g)

Therefore, there exists, such that for alln > no, the rate expression satisfi®&-r > R for some constank. The second
claim follows from Lemma3.

L-1< (70)

]
Lemma 18 (Access Rate to Highways): Almost all source (destination) nodes can w.h.p. simubtasty transmit (receive)
their messages to (from) highways with a secure rat@ ¢flogn)~3=%), if A. = O ((logn)~(3*#)) for any p > 0.
Proof:
We show the result fon, = © ((log n)‘(2+/’)), which will imply the desired result (as lowering the eaveggber density
can not degrade the performance). Consequently, therts exiastants\, A, andns such that

A(logn)~® < X, <A(logn)~**, for n > n, (71)

whereA < A.
At this point, we can upper bound the fraction of nodes that oat access to a highway due to an existence of an
eavesdropper in their first secrecy zone. Following theyaimin Lemmdb, as long as we satisfy

Ae(fi,)?d* = 0, asn — oo, (72)
almost all the nodes can access to the highways. To compeitactiievable secrecy rate with Lemrhawe need to satisfy
Ae(f1,)%d* — oo, asn — oo, for k =2,3,--- . (73)
Further, we can show that as long as we satisfy
L
)‘edQ Z(flk)Q(flk—l)_a < Ca asn — oo, (74)
k=2

for some constant’, the achievable rat®; in Lemma 16 scales lik& ((logn)~2~“) asd = " log n. Due to time-division
among the legitimate nodes accessing the highways (therevéirp.O(logn) nodes within small squares), the secrecy rate
per user satisfie® ((logn)=37%).
Here, to satisfy[(742) [ (73)[(T4) witli = " logn, we choose the secrecy zones as
fi = (logn)" ", (75)
with somer satisfying2 < r < .
]
Note that, Lemma]2 that the per hop security implies the adp security also holds for the colluding eavesdropper
scenario. That is, the security obtained for configurationfor each hop is sufficient to ensure secrecy against coliudin
eavesdroppers listening all the hops. Combining thesdtsesiith the percolation result given in Lemrhd 3 concludes th
proof.
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Fig. 1. A typical multi-hop route consists of four transnissphasesi) From source node to an entry point on the horizontal high@&paycross horizontal
highway (message is carried until the desired vertical \mighmember)3) Across vertical highway (message is carried until the egiie), andt) From the

exit node to the destination node.

.

Fig. 2. The transmitter located at the center of the figuréhessto communicate with a receiver thatdisquares away. The second square surrounding the
transmitter is the secrecy zone, which is the region of painat are at mosf. d squares away from the transmitter. Side length of each sgsatenoted
by c. The time division approach is represented by the shadedrasjuhat are allowed for transmission. It is evident from dlashed square that the time

division requires(f; d)? time slots.
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Fig. 3. Horizontal and vertical edges in the discrete bondglation model are denoted by dotted lines. A dotted edgepen (used for the highway
construction) if the corresponding square is open. Thezecdr) number of edges in the random graph.

rlogn — e

Fig. 4. There arddlogn] number of disjoint highways within each rectangle of sizdogn — €) x /n. The legitimate users in the slab, denoted by
dotted lines, of the rectangle is served by the highway dehetith red bold line.

| flde
ftdC
® o e |°
: flldc
o ® L o
! dc

- [ )
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2

Al

Fig. 5. The second square surrounding the transmitter ise¢hgecy zone (zone of levé), which is the region of points that are at m¢fsfd squares away
from the transmitter. The zone of levklis denoted with distancg, dc and has an area of;, .
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