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Abstract—We consider the problem of latency-optimizing file
splitting for transmission over a large multi-hop network. We
utilize recent results from random matrix theory to analytically
express the latency distribution as a function of the relevant
network parameters and the file size.

The resulting minimax problem can be solved using standard
nonlinear programming techniques for a variety of latency
metrics. We illustrate the reduction in latency obtained using
our technique, relative to some commonly-used heuristics, in the
large-file-large-multi-hop network setting and highlight the role
of random matrix theory in realizing the resulting performance
gains.

I. INTRODUCTION

We study the problem of transmitting a large file over paths
of potentially many hops, and seek optimal ways of splitting
the file into a large number of packets over multiple paths, each
with different operating parameters over its hops, to minimize
the end-to-end delay. The form of delay we consider consists
primarily of random queueing delay and transmission delay at
each intermediate hops.

Compared to queueing analysis of tandem of queues, see
e.g., [1] on reversible queueing networks, and [2], [3] on
non-reversible queueing systems, a key distinguishing feature
of our system is that in our tandem of queues there is no
arrival process. All packets are assumed to be available at the
beginning of the transmission. In this sense ours is not a steady
state analysis. In addition, we do not assume a discrete time
structure as is done in [2], [3]. We do assume that service times
at each hop are independent and exponentially distributed. In
this paper we focus on the setting where the queues are initially
all empty; the results can be extended to the setting where
the queues are assumed to be in equilibrium without much
difficulty by utilizing the results in [12].

The above assumptions make our model more suited for
applications like streaming and file transfer, rather than the
delivery of randomly arriving packets. We assume that the file
is divided into equal-length packets. In light of this, the inde-
pendent and exponential service time assumption is justified
by noting that at each hop the node may be serving other
applications/files, thus the effective service time perceived by
one particular stream/file is random and may be independent
from one node to another. This also applies to a wireless
scenario where the transmission times of equal-length packets
vary depending on the level of congestion and interference

in the environment due to backoff and contention resolution
schemes used at the MAC layer.

Since our system never reaches steady state, our analysis
does not involve the derivation of queue occupancy distribution
which is commonly done in queueing analysis. Instead, we use
recent results from random matrix theory [12] to analytically
express the latency distribution as a function of the relevant
network parameters and the file size in the large-file-size,
large-network asymptotic regime.

Fig. 1. The problem of splitting a large file for transmission over a large
many-path network.

II. PROBLEM: OPTIMAL FILE SPLIT FOR FAST DELIVERY

We consider the following file transfer problem. Suppose
we have a file segmented into M equal-length packets; M
can potentially be very large. (The size of each packet is
arbitrary, and can be normalized according to the nominal rate
of transmission.) As depicted in Figure 1, we wish to transfer
this file from a source node S to a destination node D. There
are multiple routes we can potentially choose from for the
transfer, we assume for the time being that these routes are
mutually exclusive, i.e., they do not share common nodes. We
ask the general question of how to decide what portion of the
file to allocate to each route so as to minimize a certain delay
measure.

Formally, we will denote the set of k routes between S
and D by R = {R1, R2, · · · , Rk}. A route Ri contains an
ordered list of li relay nodes, in addition to starting with S

and ending with D, i.e., Ri = {S, n(i)
1 , n

(i)
2 , · · · , n(i)

li
, D}.

The service rates of nodes nij ,∀i = 1, · · · , k, j = 1, · · · , li,
denoted by µ(i)

j are assumed to be known. Let λ(i)
j = 1/µ

(i)
j

be the corresponding (mean) service times. We assume that the



packet service times at each node is exponentially distributed
with mean λ(i)

j with independent service times at every queue
and every packet.

A. Case 1: mean delay

Consider the first case where we are only concerned with
the overall end-to-end delay of the task, i.e., we would like
to minimize the time from the start of the transfer till the last
packet reaches the destination. Note that in this case packets
do not need to be delivered in sequence, so the last packet just
mentioned refers to the last packet to reach the destination, not
necessarily the last packet in the sequence of M . In general,
when multiple routes are used packets will be delivered out
of order.

Specifically, suppose we split the set M into k sets, each
denoted as Mi, i = 1, · · · , k, and send the set Mi onto the
ith route. With a slight abuse of notation, we will use M (as
well as Mi) to denote both the set and the size of the set.

Denote by ti(Mi) the time of arrival of the last packet in
the set Mi over route i. Note that ti(Mi) is a function of
all service rates along route i, µ(i)

1 , · · · , µ(i)
li

or equivalently
the mean service times {λ(i)

j = 1/µ
(i)
j }. It is however not a

function of the positions of the packets within the set Mi, as
these packets are assumed to be available at the beginning.

The optimization problem we would like to solve is the
following and will be referred to as problem (P1):

(P1) min
M1∪···∪Mk=M

E [max{t1(M1), · · · , tk(Mk)}] (1)

As formulated above, (P1) is a constrained integer program-
ming problem. Let pi = Mi/M be the proportion assigned to
link i. Then the continuous relaxation of (P1), referred to as
(P1a), yields the constrained optimization problem:

(P1a) min
p1+···+pk=1

maxE [{t1(p1), · · · , tk(pk)}] . (2)

B. Case 2: elastic delay deadlines

Suppose the file being transferred is being played back
as packets are received. This will result in, possibly hard,
deadline constraints imposed on individual packets. Assume
the file transfer starts at time 0, and denote by t̄i, i = 1, · · · ,M
the desired time at which packet i should be received at node
d. For instance, t̄i could be the time at which packet i is
scheduled to be played.

Suppose we use a function f(t, t̄) to measure how much the
deadline is missed, or the penalty assessed for missing it, when
the deadline is t̄ while the actual arrival time is t. This could
be a simple difference, i.e., f(t, t̄) = [t − t̄]+, or a uniform
penalty f(t, t̄) = c · I{t>t̄}, or something more complicated.

The same delay measure f() applies to vectors of times, i..e,
f(t, t̄), where t = {t1, t2, · · · , tk} denotes the arrival times of
the last packets from each of the k routes and t̄ = {t̄1, · · · , t̄k}
are the respective deadlines.

Under such a setting, we would like to solve the following
problem, referred to as problem (P2):

(P2) min
M1∪···∪Mk=M

E [f(t, t̄)] (3)

As before with pi = Mi/M , we have the relaxed continuous
optimization problem:

(P2a) min
p1+···+pk=1

maxE [{f(t1(p1), t̄1), · · · , f(tk(pk), t̄k)}] , (4)

where f(t, t̄) measures how much the deadline was missed
by the last packet. One can also perform the optimization
with respect to minimizing the probability that the latency is
greater than a certain deadline. We note that (P2) and (P2a)
can handle, in principle at least, individual deadlines for each
packet but, as given, we are only considering the “elastic”
deadline for the last packet.

III. PERTINENT RESULT FROM RANDOM MATRIX THEORY

The relevant result from random matrix theory is stated next.

Theorem 3.1:
ti(pi)− piMµi(pi)

3
√
piM σi(pi)

D−→ TW2, (5)

where D−→ denotes almost sure convergence and TW2 is the
type-2 Tracy-Widom distribution [4], [10] with µi(pi) and
σi(pi) given by:

µi(pi) =
1

yi

1 +
1

piM

n
(i)
li∑
j=1

λ
(i)
j yi

1− λ(i)
j yi

 (6)

σi(pi) =
1

y3
i

1 +
1

piM

n
(i)
li∑
j=1

(
λ

(i)
j yi

1− λ(i)
j yi

)3
 , (7)

and yi is the unique solution in [0, 1/max(λ
(i)
1 , . . . , λ

(i)
li

)] of
the equation:

li∑
j=1

(
λ

(i)
j yi

1− λ(i)
j yi

)2

= piM (8)

Proof: In [5] the authors utilize Johansson’s results [9]
to show the equivalence between the latency distribution,
assuming initially empty queues, and the last passage
percolation problem. This theorem establishes the
large-filesize, large network (or double asymptotic) analog of
the Glynn-Whitt results in [8]. The general expressions for
µi and σi were obtained in [7]. The extension of these
results to the setting where the queues are in equilibrium
appears in [12].
Theorem 3.1 provides the desired analytical characterization
for the latency distribution as a function of the service rates
(or mean service times) via the parameter pi. These
expressions can be solved numerically and plugged in to
solve the minimax problems (P1a) and (P2a).
We note that maxE[{t1(p1), · · · , tk(pk)}] in (P1a) is a
strictly quasi-convex function (this is readily proved by
noting that each ti(pi) is a strictly increasing function in pi
and the maximum of quasi-convex functions is quasi-convex
[6].) Consequently, (P1a) and (P2a) can be interpreted as the
minimization of a strictly quasi-convex function on a convex



set (i.e.
∑
i pi = 1) so that the local minimum is a global

minimum (proof of feasibility and existence of the unique
minimum is relatively straightforward) and standard
numerical optimization techniques can be used to find this
optimum [6].

IV. NUMERICAL EXPERIMENTS

In what follows, we solve (P1a) by plugging in the analytical
results from Theorem 3.1 and by noting that the TW2

distribution has a mean of −1.7711 and a variance of
0.813194 [10].
Consider a simple setting where we have k = 2 routes and a
file of M = 200 packets is to be transmitted with minimum
mean delay. Routes 1 and 2 contain N1 and N2 hops with
identically distributed service times with mean λ1 = 1 and
λ2 = 2, respectively. The optimal allocation for Route 1,
denoted by popt is computed by solving (P1a) using the
analytical expressions for the latency as a function of the
service times as described in Section III.
We will contrast this optimum with two simple heuristics
(referred to as H1 and H2, respectively). The first one simply
assigns packets to a route proportional to the end-to-end
delay on that route. The resulting allocation to Route 1 is
denoted by ph,1 and is given by:

ph,1 =
N2λ2

N1λ1 +N2λ2
.

The second heuristic tries to balance the delay on the two
routes, using only the average statistics (this would be a
precise calculation if all services times are deterministic).
The resulting allocation to Route 1 is denoted by ph,2 and is
obtained as follows. The total delay on Route 1 is

N1λ1 + (ph,2M − 1)λ1 ,

because it takes N1λ1 for the first packet to arrive, and an
additional (ph,2M − 1)λ1 for the last packet to arrive
assuming perfect pipelining. We can then equate the total
delay on both routes and solve ph,2:

N1λ1 + (ph,2M − 1)λ1 = N2λ2 + ((1− ph,2)M − 1)λ2 ,

which yields

ph,2 =
(N2 − 1)λ2 − (N1 − 1)λ1 +Mλ2

M(λ1 + λ2)
.

If the RHS of the above equation is negative – this happens
if the condition (N1 − 1)λ1 > (N2 − 1)λ2 +Mλ2 holds –
then the delay on the two routes cannot be balanced, and this
heuristic would simply allocate all packets to Route 2.
Similarly, if the RHS of the above equation exceeds 1 – this
happens if the condition
(N2 − 1)λ2 − (N1 − 1)λ1 +Mλ2 > M(λ1 + λ2) holds –
then the heuristic would allocate all packets to Route 1.
Figure 2 shows the improvement in latency obtained using
the new algorithm for different values of N1 and N2.

In this setting, the (asymptotic) latency for each route can be
written explicitly. Let p1 = p so that p2 = 1− p. Then, we
have that:

t1(p) = λ1(
√
N1 +

√
pM)2 + o(M1/4),

and

t2(p) = λ2(
√
N2 +

√
(1− p)M)2 + o(M1/4),

so that
popt = max{t1(p), t2(p)}

subject to p ∈ [0, 1]. Let c1 = N1/M , c2 = N2/M and
β = λ2/λ1. After neglecting the o(M1/4), the above
optimization problem is equivalent to:

popt = max{t̃1(p), t̃2(p)}

where
t̃1(p) = (

√
c1 +

√
p)2,

and
t̃2(p) = β(

√
N2 +

√
(1− p))2.

Figure 3 shows the optimal allocation as a function of β and
c in the setting where c1 = c2 = c. When c −→∞,
p1 = popt = I{λ1<λ2}. This corresponds to the setting where
the M � N1, N2 so that the optimal allocation is to send all
(the relatively few) packets on the route with the smaller
mean service time. When c −→ 0, then
p1 = popt = λ2/(λ1 + λ2). This corresponds to the setting
where M � N1, N2 so that a proportional
throughput-maximizing allocation is also the optimum. Our
algorithm yields an answer between these two extrema in the
setting where M = O(N1), O(N2) so that the filesize is on
the order of the number of hops. Figure 4 shows the gains
obtained in a more heterogenous setting.

V. THE IMPACT OF o(n) BOTTLENECK HOPS

An important consequence of Theorem 3.1, via its
connection with random matrix theory [12], [11] is that it
allows us to examine the impact of a few bottleneck paths
on the latency and consequently the optimal allocation.
Theorem 5.1: Consider mean service times λ1, . . . , λn with
one bottleneck having λn > max{λ1, . . . , λn−1}. Then as
n,M →∞ we have that:

t(M,n)

n

a.s.−→


λn
n

(
1 +

1

M

∑n−1
i=1

λi
λn − λi

)
if λn > τ

µ(n/M) in (6) otherwise.
(9)

where τ is the solution of the equation:

n

M
=

1

n

n−1∑
i=1

(
λi

τ − λi

)2

. (10)

Proof: The above result exploits the connection between
the latency analysis problem, the last passage percolation
problem and the largest eigenvalue of complex Wishart
distributed sample covariance matrices established in [5].
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(a) M = 200, N1 = 40, N2 = 40.
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(b) M = 200, N1 = 60, N2 = 40.
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(c) M = 200, N1 = 80, N2 = 40.
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(d) M = 200, N1 = 160, N2 = 40.

Fig. 2. Here we have k = 2 routes as in Figure 1 with M = 200 packets to be transmitted. Routes 1 and 2 contain N1 and N2 hops with identically
distributed service times with mean λ1 = 1 and λ2 = 2, respectively. The optimal allocation for Route 1, denoted by popt is computed by solving (P1a)
using the analytical expressions for the latency as a function of the service times as described in Section III. The optimum is contrasted with the two heuristics
H1 and H2, respectively.

The explicit condition for the phase transition threshold
appears in [11] where it is shown that the results hold for
o(n) bottlenecks as well. The distributional results appear in
[7].

The above result highlights the possible sub-optimality of
any heuristic for (P1a) that exclusively utilizes service time
statistics of a single hop without taking into account the file
size and the service time parameters of the other hops. A
similar result holds for the distribution as well and
consequently for (P2a)- we omit the details here.

VI. DISCUSSION AND EXTENSION

There are a number of extensions and relaxations of
assumption we would like to pursue. The first is to extend
this framework to the case of non-disjoint routes. In this case
as different streams of packets share the same
node/resources, the delay analysis on different routes
becomes coupled. The analysis will also have to take into
account the scheduling (or resource sharing) policy adopted
by a node in transmitting packets from different streams. If
this problem turns out to be tractable, then this delay analysis
could be a powerful tool in finding the best set of routes.
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0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

M = 200, p
h,1

 = 0.33333, p
opt

 =0.53741, Impr. = 21.4992 %

p
1
 = Proportion assigned to Link 1

La
te

nc
y 

(u
ni

ts
)

 

 

max(t
1
,t

2
)

t
2
(1−p

1
)

t
1
(p

1
)

Fig. 4. Here we have k = 2 routes as in Figure 1 with M = 200 packets
to be transmitted. Routes 1 and 2 contain N1 = 160 and N2 = 40 hops
with service times given by the vectors λ1 = [1, ..., 1, 0.5, · · · , 0.5] and
λ2 = [2, ..., 2, 1, · · · , 1], respectively. The optimal allocation for Route 1,
denoted by popt is computed by solving (P1a) using the analytical expressions
for the latency as a function of the service times as described in Section
III. The optimum is contrasted with the total-route-delay based allocation
ph,1 = N2λ2/(N1λ1 +N2λ2).

A second extension is to relax the assumption that service
times are independent across different nodes. In practice
there are a number of reasons why service times may not be
independent, even if all routes are disjoint and all packets
are of unit size. A prime example is a wireless scenario,
where different node within the same interference domain

compete for channel access, and thus their services times are
all coupled. In general interference relationship can be very
complicated and sometimes form a chain: e.g., A may
interfere with B, who interferes with C, but A and C do not
interfere, etc. This relationship extends to the streams as
well, i.e., stream 1 may interfere with stream 2, which
interferes with stream 3, but 1 and 3 do not interfere, and so
on. Also note that two streams can have multiple points
along their path where nodes interfere. In such cases the
delay analysis may need to take into account not only the
topology (interference relationship among routes) but also
the MAC layer channel access and transmission scheduling
policies.
Interesting questions to be asked include (1) whether it’s
possible to obtain delay as a function of these scheduling
policies, and (2) when the file size is large and the routes are
long, to what extend do these scheduling policies really
matter.
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