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Abstract—In this work, we study the effects of finite buffers
on the throughput and delay of line networks with erasure
links. We identify the calculation of performance parameters
such as throughput and delay to be equivalent to determining
the stationary distribution of an irreducible Markov chain . We
note that the number of states in the Markov chain grows
exponentially in the size of the buffers with the exponent scaling
linearly with the number of hops in a line network. We then
propose a simplified iterative scheme to approximately identify
the steady-state distribution of the chain by decoupling the
chain to smaller chains. The approximate solution is then used
to understand the effect of buffer sizes on throughput and
distribution of packet delay. Further, we classify nodes based
on congestion that yields an intelligent scheme for memory
allocation using the proposed framework. Finally, by simulations
we confirm that our framework yields an accurate prediction of
the variation of the throughput and delay distribution.

I. I NTRODUCTION

In networks, packets that have to be routed from one node to
the other may have to be relayed through a series of intermedi-
ate nodes. Also, each node in the network may receive packets
via many data streams that are being routed simultaneously
from their source nodes to their respective destinations. In such
conditions, the packets may have to be stored at intermediate
nodes for transmission at a later time. If buffers are unlimited,
the intermediate nodes need not have to reject or drop packets
that arrive. For practical reasons, buffers are limited in size.
Although a large buffer size is preferred to minimize packet
drops, large buffers have an adverse effect on the mean and
variance in packet delay. Additionally, as second-order effects,
using larger buffer sizes at intermediate nodes would have
practical problems such as on-chip board space and increased
memory-access latency. Though our work is motivated partly
by such concerns, our work is far from modeling realistic
scenarios. This work modestly aims at providing a theoretical
framework to understand the fundamental limits of single
information flow in finite-buffer line networks and investigate
the trade-offs between throughput, packet delay and buffer
size.

The problem of computing capacity1 and designing efficient
coding schemes for lossy wired and wireless networks has
been widely studied [1]–[4]. However, the study of capacity
of networks with finite buffer sizes has been limited. This can
be attributed solely to the fact that the analysis of finite buffer
systems are generally more challenging. With the advent of
network coding [4], [5] as an elegant and effective tool for

1Throughout this work, we use capacity to mean the supremum ofall rates
of information flow achievable by any coding scheme.

attaining optimum network performance, the interest in the
study of finite buffer networks has been increased.

The problem of studying throughput and delay of networks
with finite buffers has also been studied in queueing theory.
These problems can be seen to be similar, since the packets
can be viewed as customers and the delay due to packet loss
in the link as the arbitrary service time. Also, the phenomenon
of packet overflow in the network can be modeled by a type
II blocking (commonly known asblocking after service) in
stochastic networks. However, there is a subtle differencein
the packet-customer analogy when the network has nodes that
can send packets over multiple paths to the destination. When
such is the case, the node can choose to duplicate packets on
both the paths, an event that cannot be captured directly in the
customer-server based queueing model. However, that is not
the case in line networks. Therefore, the problem of finding
buffer occupancy distribution and consequently throughput
and delay in certain networks is then seen to be identical
to determining certain arrival/departure processes in an open
stochastic network of a given topology [6]–[9]. Such relevant
works in the field of queueing theory consider a continuous-
time model for arrival and departure of packets in the network.

In [10], Lun et al. consider the discrete-time analogue of
the arrival process by lumping time into epochs (wherein each
node can transmit and receive a packet) to analyze the capacity
of a simple two-hop lossy network. In our previous work [11],
we derived bounds on the throughput of line networks, which
were unable to provide good approximations for packet delay
and buffer occupancy statistics. While our approach employs
a model of network similar to that in [10], [11], we extend
their results not only to derive estimates for the capacity
of line networks of any hop-length and intermediate node
buffer size, but also to derive quantitative estimates for packet
delay distribution. Our contributions to this area of research
is summarized below.

1. We extend a Markov-chain based modeling to present an
iterative estimate for the buffer occupancy distribution at
intermediate nodes.

2. Using the estimate, we derive expressions for throughput
and packet delay distribution that are seen to be fairly
accurate in predicting the actual system behavior.

This work is organized as follows. First, we present the
formal definition of the problem and the network model in
Section II. Next, we introduce our analysis for finite-buffer
line networks in Section III and then investigate packet delay
in Section IV. We compare our analytical results with actual
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simulations in Section V and in Section VI we briefly discuss
trade-offs between throughput, delay and memory. Finally,
Section VII concludes the paper.

II. PROBLEM STATEMENT AND NETWORK MODEL

As illustrated in Figure 1, a line network is a directed graph
of h hops withV = {v0, v1, . . . , vh} and

−→
E = {(vi, vi+1) :

i = 0, . . . , h − 1} for some integerh ≥ 2. In the figure, the
intermediate nodes are shown by black ovals. The links are
assumed to be unidirectional, memoryless and lossy. We letεi
denote the packet erasure probability over the link(vi, vi+1).
The erasures model only the quality of links (e.g., presenceof
noise, interference) and do not represent packet drops due to
finite buffers. A lossless hop-by-hop acknowledgement setup
is in place to indicate the successful receipt of a packet2.
Moreover, the packet processes on different links are assumed
to be independent. Each nodevi ∈ V has a buffer ofmi

packets with each packet having a fixed size ofS bytes. Note
that the buffer size can vary with the node index. Lastly, the
source and destination nodes are assumed to have sufficient
memory to store any amount of data.

The system is analyzed using a discrete-time model, where
each node can transmit at most one packet over a link per
epoch. We let{Xi(l)}Z≥0

to be the random process denoting
the erasure occurrences on the link(vi−1, vi) at timel. We set
Xi(l) = 0 if a packet is erased on(vi−1, vi) at epochl and
Xi(l) = 1 otherwise.
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Fig. 1. An illustration of the line network.

The unicast capacity between a pair of nodes is defined to
be the supremum of all achievable rates of transmission of
information packets (in packets per epoch) between a pair of
nodes. The supremum is calculated over all possible means
used for packet generation and buffer update at intermediate
nodes. Note that the source node can generate innovative
packets during each epoch. For instance, in the particular case
of the line network of Figure 1, we would like to identify the
unicast capacity betweenv0 andvh.

Before we proceed to the modeling, we briefly motivate
the assumed discrete-time model with an example. Consider
a continuous-time model with the discrete-time model for
varying times of epoch for a simple continuous-time two-
hop line network with a Poisson packet generation process
at the source with parameterλ1 = 10 pkts/sec. The service
time at the intermediate node is also Poisson with parameter
λ2 = 10 pkts/sec, and the links connecting the source to the
intermediate node and the intermediate node to the destination
are both packet-erasure channels with erasure probabilities
ε1 = ε2 = 0.1. Finally, suppose that the intermediate node

2This assumption is made to simplify modeling. In the absenceof perfect
ACK, one can use random linear coding over a large finite field to achieve
the same desired throughput.

has a finite buffer ofm = 10 packets. Figure 2 presents the
(simulated) capacity for the continuous model and the time-
discretized models for various epoch durations. It is noticed
that as the epoch duration is made smaller, the discrete-time
model becomes more accurate in predicting the capacity. This
was verified to be the case for all line networks with Poisson
arrivals and service times.
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Fig. 2. An illustration of the precision of the discrete-time model.

Lastly, we use the following notations.G(t) denotes the
geometric distribution with mean inter-arrival timet ∈ R.
σ(·) denotes the indicator function forZ>0. For anyx ∈ R,
x , 1− x. Lastly,⊗ denotes the convolution operator.

III. F INITE-BUFFER ANALYSIS

Here, we develop our framework for analyzing finite-buffer
erasure networks. In the sections that follow, these techniques
will be used to study various the performance indicators. We
proceed as follows.

1) Rate-optimal Schemes:One of the most important per-
formance parameters of a network is its throughput and the
problem of identifying capacity is directly related to the
problem of finding schemes that arerate-optimal. In our model
of line network, a scheme that performs the following in the
same order can be seen to be rate-optimal.

1. If the buffer of a node is not empty at a particular epoch,
then it must transmit at least one of the packets.

2. A node deletes the packet transmitted at an epoch if it
receives an acknowledgement from the next hop.

3. A node accepts an arriving packet if it has space in its
buffer. It then sends an ACK to the previous node.

In the absence of feedback, rate-optimality can be achievedby
employing random linear combinations based network coding
over a large finite field as is described in [10], [11].

2) Markov Chain Modeling of the Buffer States at Inter-
mediate Nodes:In order to model the network with lossless
feedback, we need to track the number of packets that each
node possesses at every instant of time. We do so by using
the rules of buffer update under the optimal scheme. Let
n(l) = (n1(l), . . . , nh−1(l)) be the vector whoseith compo-
nent denotes the number of packets theith intermediate node
possesses at timel. The variation of state at thelth can be
tracked using auxiliary random variablesYi(l) defined by

Yi(l)=

{

σ(ni−1(l))Xi(l) i = h
Xi(l)σ(mi − ni(l) + Yi+1(l)) i = 1
σ(ni−1(l))Xi(l)σ(mi − ni(l) + Yi+1(l)) 1 < i < h
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The above definition is such thatYi(l) = 1 only if all the
following conditions are met.

1. Nodevi−1 has a packet to transmit tovi.
2. The link (vi−1, vi) does not erase the packet at thelth

epoch,i.e., Xi(l) = 1.
3. Nodevi has space after it has updated its buffer for any

changes due to its transmission at that epoch.

The dynamics of buffer states can then by seen to be

ni(l+1) = ni(l)+Yi(l)−Yi+1(l), i = 1, . . . , h−1. (1)

Note that sinceY(l) = (Y1(l), . . . , Yh(l)) is a function ofn(l)
andX(l) = (X1(l), . . . , Xh(l)), n(l+ 1) depends only on its
previous staten(l) and the channel conditionsX(l) at thelth

epoch. Hence, we see that{n(l)}l∈Z≥0
forms a Markov chain.

It is readily checked that this chain has
∏h−1

i=1
(mi+1) states.

Further, this chain isirreducible, aperiodic, positive-recurrent,
andergodic[12] and therefore has a unique steady-state prob-
ability p∞. By ergodicity, we can obtain temporal averages
by statistical averages. We then see that the computation of
(throughput) capacity is equivalent to the computation of the
likelihood of the event thatYh = 1.

3) Approximated MC for an intermediate node:The ex-
ponential growth in the size of the chain and the presence
of boundaries (due to finite buffers), exact calculation of the
steady-state probabilities (and hence the throughput) becomes
very cumbersome even for networks of reasonable buffer
sizes and hop-lengths. The exact chain for the dynamics
of the system is such that a state update at a node has a
strong dependence on the states of both its previous-hop and
its next-hop neighbors. Additionally, the process of packet
transmission over intermediate edge can be shown to be
non-memoryless. These facts add to the intractability of the
exact computation of the distribution. However, it is possible
to decouple the chain into several Markov chains with a
single finite-boundary under some simplifying assumptions.
To have an approximate decoupled model, we need to identify
the transition probabilities of the decoupled chains, which is
possible only if we know the arrival and departure processes
on each edge. The rate of information on any edge is directly
related to the fraction of time the sending node is non-empty
and the fraction of time a successfully delivered packet will
get blocked (and this happens if the receiving node is full
at the time of packet arrival). Hence, to have a model for
a node, we need to have the approximate buffer occupancy
distributions for neighboring nodes. This hints naturallyat an
iterative approach to the problem. In this section, we develop
an iterative estimation method that considers the effect of
blocking with some simplifying assumptions. To develop an
iterative technique, we assume the following.

A1. The packets are ejected from nodes in a memoryless
fashion. Equivalently, we assume thatPr[(ni−1(t) >

0) ∧ (Xi(t) = 1)|ni(t) = k] does not vary with the
occupancyk of the ith node. This allows us to track just
the information rate and not the exact statistics.

A2. The blocking event occurs independent of the state of a
node,i.e., Pr[(Yi+1(l) = 0)∧(Xi+1(l) = 1)|(ni(t) = k)]

is the same fork = 1, . . . ,mi. This allows us to track
just the blocking probability and not the joint statistics.

A3. At any epoch, given the occupancy of a particular node,
the arrival process is independent of the blocking process.
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Fig. 3. The chain for the nodevi obtained by the assumptions A1-A3.

These assumptions spread the effect of blocking equally over
all non-zero states of occupancy at each node. Under these
assumptions, when we are given that the arrival rate of packets
as seen byvi is ri packets/epoch, and that the probability of
blocking by vi+1 is pbi+1, the dynamics of the state change
for the nodevi is given by the chain in Figure 3 with the
parameters set to

α = ri(εi+1 + εi+1pbi+1)
β = (1− ri)pbi+1εi+1

α0 = ri

. (2)

For this chain in Fig. 3, the steady-state distribution can be
computed to be

Pr[ni = k] = ϕ(k|ri, εi+1, pbi+1) ,
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The blocking probability that the nodevi−1 perceives from
the nodevi, assuming thatvi sees an arrival rate ofri from
vi−1 and a blocking probability ofpbi+1 caused byvi+1

3, can
then be calculated as follows.

pbi=

{

(εi+1+εi+1pbi+1)ϕ(mi|ri, εi+1, pbi+1) i<h−1
εi+1ϕ(mi|ri, εi+1, 0) i=h−1

(3)

Similarly, the arrival rate at on each edge can be seen to be
related to the occupancy of the previous node and the channel
erasure probability in the following fashion.

ri+1 =

{

εi(1 − ϕ(0|ri, εi+1, pbi+1)) 1 < i < h− 1
εi(1 − ϕ(0|ri, εi+1, 0)) i = h− 1

(4)

Given two vectorsr = (r1, . . . , rh) ∈ [0, 1]h and pb =
(pb1, . . . , pbh) ∈ [0, 1]h, we term(r,pb) as an approximate
solution to the chain, if they satisfy the equations (3), and(4)
in addition to havingr1 = ε1 and pbh = 0. The following
theorem guarantees both the uniqueness and the method of
identifying the approximate solution to the chain.

Theorem 1:Given a line network with link erasuresE =
(ε1, . . . , εh) and intermediate node buffer sizesM =
(m1, . . . ,mh−1), there is exactly one approximate solution
(r∗(E ,M),pb

∗(E ,M)) to the chain. Moreover, this solution
can be found iteratively.
While the proof of uniqueness is omitted for brevity, the
method of identifying the approximate solution follows a

3Note that the arrival rate at the nodev1 is r1 = ε1 and that the blocking
probability of vh is zero.
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simple iterative scheme. First,pb is set to0 and 4 is invoked to
estimater. This estimate is then used in 3 to updatepb, which
is then used to find the next estimate ofr. These iterations
repeated until the vectors converge. We omit the details of
proof of convergence for lack of space.

Finally, the unicast capacityC∗(E ,M) can be estimated
using the approximate solution from the following.

Corollary 1: The approx. solution(r∗(E ,M),pb
∗(E ,M))

satisfies the flow conservation relations
C∗(E ,M) = r∗1(1− pb

∗

1) = r∗i (1 − pb
∗

i ), i = 1, . . . , h.

IV. PACKET DELAY DISTRIBUTION

In this section, we use the approximate solution of Sec-
tion III-3 to obtain the estimates on the probability distribution
of the delay of an information packet. We define the packet
delay as the time taken from the instant when the source starts
sending the packet to the instant when the destination receives
it. In addition to the discussion in section III-1, we assumea
first-come first-servetreatment of packets at the intermediate
node buffers.

In order to compute the distribution of delay that a packet
experiences in the network, one can proceed in a hop-by-
hop fashion. Considering the last relay node, the additional
delay of an arriving packet (at timel) at nodevh−1 depends
on the occupancy of the nodevh−1 and the erasure channel
that follows it to the destination. Suppose at epochl, node
vh−1 hask ≤ mh−1 − 1 packets in addition to the arriving
packet. Then, the packet has to wait for the firstk packets to
leave before it can be serviced. Since each transmission takes
place independently, the distribution of delay is sum ofk + 1
independent geometric distribution with mean inter-arrival
time 1

1−εh
, which is denoted by⊗k+1

G( 1

1−εh
). Suppose that

the distribution of buffer occupancyat time of packet arrival
is given byπh−1(i), then the distribution of delay added by
vh−1 to the packet is

Dh−1 =

mh−1−1
∑

i=0

πh−1(i)⊗
i+1
G((1− έh)

−1). (5)

However, the situation is different for other intermediatedelays
because of the effect of blocking. The additional delay incurred
while being stored at the nodevj , 0 < j < h− 1, is given by

Dj =

mj−1
∑

i=0

πj(i)⊗
i+1
G((1− ´εj+1)

−1), (6)

where we used the following to consider blocking.

ε
′

i =

{

εi + θvi(mi)(1− εi) i = 1, 2, . . . , h− 1
εh i = h

, (7)

where θvi(k) is the steady state probability of that node
vi already hask packets when the packet is transmitted
successfully fromvi−1. πj(i) andθvi(k) are related by

πj(i) =

{

θvj (i)

1−θvj (mj )
i = 1, 2, . . . ,mj − 1

0 i = mj

. (8)

By assuming that the delays incurred by each node and its
adjoining outgoing link is independent of each other, we obtain
the total delay considering all hops to be

D = G((1− έ1)
−1)⊗D1 ⊗ · · · ⊗Dh−1. (9)

Hence, the delay distribution is known if the steady-state
distributions of buffer states (πj(·), j = 1, ..., h− 1) as seen
by arriving packets is known. However, it is a simple exercise
to derive these distributions from the results of Section III-3.

V. RESULTS ONFINITE-BUFFERANALYSIS

We have so far presented some fundamental tools for finite-
buffer analysis of line networks. In this section, we show
that they are very helpful to obtain accurate estimates of the
performance parameters such as throughput, delay distribution
and buffer occupancy distribution for line networks.

To understand the variation of our capacity estimate of
Section III, in each of the figures, the simulation of the actual
capacity is presented in addition to our analytical results.
Figure 4 presents the variation of the capacity with the hop
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Fig. 4. Capacity of a line network withm = 5 vs. the number of hopsh.

length for a network with each intermediate node having a
buffer size of five packets. Moreover, the simulations are
performed when the probability of erasure on every link is set
to either0.25 or 0.5. It is noticed that the estimate captures the
variation of the actual capacity of the network within about
1.5% of error.
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In order to study the effect of buffer size, we simulated
a line network of eight hops having the same erasures as
in the previous setting. Figure 5 presents the variation of
our results and the actual capacity as the buffer size of the
intermediate node is varied. It can be seen that as the buffer
size is increased, all curves approach the ideal min-cut capacity
of 1− ε.

Figure 6 presents the variation of delay distribution with
respect to the buffer size for an eight-hop line network with
the erasure probability on every link set to0.25. It can be
seen that both the mean and the variance of the distribution
increases with the increase in the buffer size. It is noted that
the analytic prediction of the delay is more conservative than
the actual simulation i.e., the analytic estimate of the variance
is higher than the actual simulated one.
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Fig. 6. Delay distribution in an 8 hop line network for varying buffer sizes.

VI. T HROUGHPUT ANDDELAY TRADE-OFFS

Based on our the computed buffer occupancy distributions,
we categorize the nodes into 3 types according to their buffer
occupancy. Nodes are of Type 1, 2 or 3 depending on whether
the rate of incoming rate of innovative packets is larger, same,
or smaller, respectively, than the possible rate of innovative
packets that can be sent on the outgoing edge. The typical oc-
cupancy distributions of such nodes are presented in Figure7.
The figure presents a classification of nodes from a four-hop
line network with ε1 = 0.2, ε2 = 0.5, ε3 = 0.5, ε4 = 0.2
when the three intermediate nodes have buffer sizesm = 10
andm = 30, respectively. Note that in this example, Nodevi is
of Type i. While Type 3 nodes are generally starved and Type
1 nodes are generally full, Type 2 nodes have a near uniform
distribution. Increasing the buffers of Type 1 or Type 3 nodes
does not affect their blocking probabilities or the generalshape
of the occupancy distribution. However, increasing the buffer
sizes of Type 2 nodes decreases the blocking probability of
such nodes. Note that while the classification of these nodes
is a trivial exercise, the means to identify/estimate the arrival
and departure rates is non-trivial.
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Fig. 7. Buffer occupancy distribution for different types of nodes

Figure 8 shows the effect of increasing buffer size of
nodes of a particular type on the throughput and delay in the
mentioned line network example. In order to observe the effect
of the chosen node of a particular type, the buffers of nodes
of other types are fixed at five packets and buffer size of the
desired node is varied. We conclude that by allocating memory
to Type 1 nodes yields minimal improvement in throughput
and a large increase in delay. However, the effect of increasing
the buffers of Type 3 nodes has almost no effect on both

parameters. However, allocating memory to Type 2 nodes can
affect the throughput sufficiently although with a moderate
increase in the expected delay.
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VII. C ONCLUSIONS

We presented an approximate markov-chain based model
for analyzing the dynamics of finite-buffer line networks.
The model provides an iterative procedure for computing the
distribution of buffer occupancy as a step in the estimationof
throughput capacity of such networks. The model was seen
to provide an accurate computation of throughput for varying
buffer sizes, hop-length and channel erasure probabilities. The
computed buffer occupancy distribution was then used to
study the distribution of packet delay in such networks. This
proposed model was used to identify the level of congestion
in intermediate nodes, yielding a rule for intelligent memory
allocation in such networks. The proposed scheme was seen
to near-precisely track the dynamics and variations of the
investigated performance metrics.
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