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Abstract—In this work, we study the effects of finite buffers attaining optimum network performance, the interest in the
on the throughput and delay of line networks with erasure study of finite buffer networks has been increased.

links. We identify the calculation of performance parametes .
such as throughput and delay to be equivalent to determining The problem of studying throughput and delay of networks

the stationary distribution of an irreducible Markov chain . we With finite buffers has also been studied in queueing theory.
note that the number of states in the Markov chain grows These problems can be seen to be similar, since the packets
exponentially in the size of the buffers with the exponent saling  can be viewed as customers and the delay due to packet loss
linearly with the number of hops in a line network. We then i, the |ink as the arbitrary service time. Also, the phenoaren

propose a simplified iterative scheme to approximately idetify -
the steady-state distribution of the chain by decoupling tle of packet overflow in the network can be modeled by a type

chain to smaller chains. The approximate solution is then usd blocking (commonly known asblock_ing after ser_vic)s?n

to understand the effect of buffer sizes on throughput and stochastic networks. However, there is a subtle differénce
distribution of packet delay. Further, we classify nodes baed the packet-customer analogy when the network has nodes that
on congestion that yields an intelligent scheme for memory can send packets over multiple paths to the destinationnwhe

allocation using the proposed framework. Finally, by simuations . .
we confirm that our framework yields an accurate prediction o such is the case, the node can choose to duplicate packets on

the variation of the throughput and delay distribution. both the paths, an event that cannot be captured directhyein t
customer-server based queueing model. However, that is not

l. INTRODUCTION the case in line networks. Therefore, the problem of finding

In networks, packets that have to be routed from one nodeht%]cfer occupancy distribution and consequently throughpu

: . ad delay in certain networks is then seen to be identical
the other may have to be relayed through a series of intermedi - . . .
) . {0, determining certain arrival/departure processes in [@no
ate nodes. Also, each node in the network may receive packets . .
: . ; stochastic network of a given topolody [6]-[9]. Such relgva
via many data streams that are being routed simultaneous : , ; NS )
. . 4 L works in the field of queueing theory consider a continuous-
from their source nodes to their respective destinationsuth . . .
- . time model for arrival and departure of packets in the nekwor
conditions, the packets may have to be stored at interneediat . : ,
In [10], Lun et al. consider the discrete-time analogue of

nodes for transmission at a later time. If buffers are urigoh; ol by | T h hereirh
the intermediate nodes need not have to reject or drop pacleF arrival process by lumping time into epochs (whereirheac

that arrive. For practical reasons, buffers are limitedize.s node can transmit and receive a packet) to anglyze the ¢ppaci
Although a large buffer size is preferred to minimize pack&f a simple two-hop lossy network. In our previous wdrkI[11],

drops, large buffers have an adverse effect on the mean Yffyderived bounds on the throughpu_t of _Iine networks, which
variance in packet delay. Additionally, as second-ordfercts, Were unable to provide good approximations for packet delay

using larger buffer sizes at intermediate nodes would ha@@d buffer occupancy statistics. While our approach engploy

practical problems such as on-chip board space and inctea emodel of network similar to that iri [10]. [11], we extend

memory-access latency. Though our work is motivated par e||_r results nl(()t ofnly to hden\I/e einmactje; for thg_ capaccljty
by such concerns, our work is far from modeling realisti ine networks of any hop-length and intermediate node

scenarios. This work modestly aims at providing a thecaticUffer size, buF also to derlve_ quantitative estimates ket

framework to understand the fundamental limits of Singlge'ay d|str!but|on. Our contributions to this area of resha

information flow in finite-buffer line networks and inveditg is summarized below.

the trade-offs between throughput, packet delay and buffet. We extend a Markov-chain based modeling to present an

size. iterative estimate for the buffer occupancy distribution a
The problem of computing capaditgnd designing efficient intermediate nodes.

coding schemes for lossy wired and wireless networks hag. Using the estimate, we derive expressions for throughput

been widely studied [1]=[4]. However, the study of capacity and packet delay distribution that are seen to be fairly

of networks with finite buffer sizes has been limited. Thisca  accurate in predicting the actual system behavior.

be attributed solely to the fact that the analysis of finitéfdou This work is organized as follows. First, we present the

systems are generally more challenging. With th_e advent f%frmal definition of the problem and the network model in
network coding (4], [b] as an elegant and effective tool fOéection["_rl. Next, we introduce our analysis for finite-buffe

1Throughout this work, we use capacity to mean the supremuatl cétes !ine netlworks in Sectiop il and then in_VEStigate pagke'aylel
of information flow achievable by any coding scheme. in SectionIV. We compare our analytical results with actual
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simulations in SectioV and in Sectibn]VI we briefly discuskas a finite buffer ofn = 10 packets. Figur€l2 presents the
trade-offs between throughput, delay and memory. Finalfgimulated) capacity for the continuous model and the time-

Section VI concludes the paper. discretized models for various epoch durations. It is matic
that as the epoch duration is made smaller, the discrete-tim
Il. PROBLEM STATEMENT AND NETWORK MODEL model becomes more accurate in predicting the capacitg. Thi

Was verified to be the case for all line networks with Poisson

As illustrated in Figur€ll, a line network is a directed graphl . -1c and service times

of h hops withV = {vp,v1,...,vn} andﬁ = {(vi, vi41) :
i=0,...,h — 1} for some integefr > 2. In the figure, the
intermediate nodes are shown by black ovals. The links &
assumed to be unidirectional, memoryless and lossy. Wg lel
denote the packet erasure probability over the linkv;11).
The erasures model only the quality of links (e.g., preseriice
noise, interference) and do not represent packet dropsalue
finite buffers. A lossless hop-by-hop acknowledgementpset
is in place to indicate the successful receipt of a pécke
Moreover, the packet processes on different links are asgdun . . . . a ;
to be independent. Each node € V has a buffer ofm; 2 ¢ Blffer size (in packets) “
packets with each packet having a fixed sizeSdfytes. Note Fig. 2. An illustration of the precision of the discrete-inmodel.
that the buffer size can vary with the node index. Lastly, the

source and destination nodes are assumed to have sufficientastly, we use the following notationg:(t) denotes the
memory to store any amount of data. geometric distribution with mean inter-arrival timee R.
The system is analyzed using a discrete-time model, wheyg) denotes the indicator function f@&-. For anyz € R,
each node can transmit at most one packet over a link ge& 1 — z. Lastly, ® denotes the convolution operator.
epoch. We le{ X;(I)}z., to be the random process denoting
the erasure occurrences on the link_,v,;) at timel. We set
X;(l) = 0 if a packet is erased ofv;_1,v;) at epochl and
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Il. FINITE-BUFFERANALYSIS

X,(1) = 1 otherwise. Here, we develop our framgwork for analyzing finite—buffer
erasure networks. In the sections that follow, these teghes
Vo gy V1 gy V2 Vh—1 g5 Un will be used to study various the performance indicators. We
© b e = proceed as follows.
m ng mh_l% 1) Rate-optimal Scheme®ne of the most important per-
formance parameters of a network is its throughput and the

problem of identifying capacity is directly related to the
problem of finding schemes that aege-optimal In our model

The unicast capacity between a pair of nodes is defined%Iine network, a scheme that perform_s the following in the
be the supremum of all achievable rates of transmission Hme order can be seen to be rate-optimal.
information packets (in packets per epoch) between a pair of- If the buffer of a node is not empty at a particular epoch,
nodes. The supremum is calculated over all possible means then it must transmit at least one of the packets.
used for packet generation and buffer update at intermediat2- A node deletes the packet transmitted at an epoch if it
nodes. Note that the source node can generate innovative receives an acknowledgement from the next hop.
packets during each epoch. For instance, in the particake ¢ 3- A nhode accepts an arriving packet if it has space in its
of the line network of FigurEl1, we would like to identify the ~ buffer. It then sends an ACK to the previous node.
unicast capacity between, andvy,. In the absence of feedback, rate-optimality can be achibyed
Before we proceed to the modeling, we briefly motivatemploying random linear combinations based network coding
the assumed discrete-time model with an example. Consideer a large finite field as is described in[10],][11].
a continuous-time model with the discrete-time model for 2) Markov Chain Modeling of the Buffer States at Inter-
varying times of epoch for a simple continuous-time twomediate Nodesin order to model the network with lossless
hop line network with a Poisson packet generation procefgedback, we need to track the number of packets that each
at the source with parameter; = 10 pkts/sec. The service node possesses at every instant of time. We do so by using
time at the intermediate node is also Poisson with parametie¢ rules of buffer update under the optimal scheme. Let
A2 = 10 pkts/sec, and the links connecting the source to thgl) = (n(l),...,n,_1(l)) be the vector whosé" compo-
intermediate node and the intermediate node to the destinathent denotes the number of packets tiiantermediate node
are both packet-erasure channels with erasure probesilifpossesses at time The variation of state at th&" can be
g1 = g2 = 0.1. Finally, suppose that the intermediate nodgacked using auxiliary random variabl&g(!) defined by

Fig. 1. An illustration of the line network.

2This assumption is made to simplify modeling. In the absesfcgerfect o(ni—1(1))Xi(1) i=h
ACK, one can use random linear coding over a large finite fieldthieve Y (1) = ¢ Xi(l)o(mi — ni(l) + Yiya (1)) i=1
the same desired throughput. o(ni—1(1))X:(Do(m; —ni(D) + Yiea (1)) 1<i<h



The above definition is such thaf(l) = 1 only if all the is the same fok = 1,...,m;. This allows us to track

following conditions are met. just the blocking probability and not the joint statistics.
1. Nodewv;_; has a packet to transmit tq. A3. At any epoch, given the occupancy of a particular node,
2. The link (v;_1,v;) does not erase the packet at tife the arrival process is independent of the blocking process.

epoch,i.e, X;(l) = 1.
3. Nodew; has space after it has updated its buffer for any

[e% «
changes due to its transmission at that epoch. ®/\ TV N /\@
Y \\/
5 )

[ ]
The dynamics of buffer states can then by seen to be O\B/ \B/ AN
a—

Q) o [0

3 B
n(l+1) = () +Y;()=Yir (), i=1,....,h—1. (1) _ 0 a—p a-B B
t ¢ ¢ ) L ) Fig. 3. The chain for the node; obtained by the assumptions A1-A3.
Note that sincéy (1) = (Y1(I), ..., Y(l)) is a function ofn(l) . .
andX(1) = (X:(1),..., Xn(l)), n(l+ 1) depends only on its T|r|1ese assumritl?ns s;oread the eﬁe?t of li)qlock:jng eijqudallytﬁve
previous staten(!) and the channel conditiorX (/) at the/™ all non-zero states ot occupancy at each node. Under these

. assumptions, when we are given that the arrival rate of gacke
h. H , thiai(/ f Markov chain. . o
Ietrzzcrea diel};if\e\(l:vlfezetehat thﬁs)ileriiohgis’:‘qSl?m ir 1(;\/5;;': as seen by; is r; packets/epoch, and that the probability of
. o . ¥Pi=1 \T " blocking by v; 1 is py;. 4, the d ics of the state ch
Further, this chain igrreducible, aperiodic, positive-recurrent &OC NG DY Vir1 1S Poiry, TE dynamics of e State change

andergodic[12] and therefore has a unique steady-state pro S the nodev; is given by the chain in Figurgl 3 with the
ability p>°. By ergodicity, we can obtain temporal averages
by statistical averages. We then see that the computation of o
(throughput) capacity is equivalent to the computationhaf t B
likelihood of the event that;, = 1. o
3) Approximated MC for an intermediate nodé&he ex- For this chain in Flg[B, the Steady-state distribution can b
ponential growth in the size of the chain and the presengé@mputed to be
of boundaries (due to finite buffers), exact calculation o t

arameters set to

ri(€it1 + Eit1Dbiq)
(1= ri)Pb;1Bit1 - ()
ri

—ag =T k=0
steady-state probabilities (and hence the throughpugrhes . (S gD
very cumbersome even for networks of reasonable buffr[n: = k] = @(k|ri,€iv1,Pbiy1) = agak!
B E#0

sizes and hop-lengths. The exact chain for the dynamics
of the system is such that a state update at a node has a
strong dependence on the states of both its previous-hop dfg blocking probability that the node_, perceives from
its next-hop neighbors. Additionally, the process of packée nodev;, assuming that; sees an arrival rate of, from
transmission over intermediate edge can be shown to be: and a blocking probability ofy, ,, caused by f, can
non-memoryless. These facts add to the intractability ef tithen be calculated as follows.

exact computation of _the_ distribution. However, it i; pbkf:,i (it +Eir1Pbis 1) P(MilTiy €i1, Do) i<h—1 3)
to decouple the chain into several Markov chains with 2i= gir10(mg|rs, €541, 0) i=h—1

single finite-boundary under some simplifying assumptions . )
To have an approximate decoupled model, we need to identﬁﬂf“"a”y' the arrival rate at on each edge can be seen to be

the transition probabilities of the decoupled chains, whi €lated to the occupancy of the previous node and the channel
possible only if we know the arrival and departure processg&@sure probability in the following fashion.

on each edge. Thg rate of information on any edge is directly_ B = (0, i1, Phis)) 1<i<h—1 4
related to the fraction of time the sending node is non-empty i+l = zi(1 — @(0ri, €441,0)) i=h—1 (4)

and the fraction of time a successfully delivered packet wil

get blocked (and this happens if the receiving node is full Given two vectorse = (r1,...,7,) € [0,1]" and p, =

at the time of packet arrival). Hence, to have a model fdPo1;---:Pos) € [0, 1)*, we term(r, p,) as an approximate

a node, we need to have the approximate buffer occuparf@fution to the chain, if they satisfy the equatiois (3), id
distributions for neighboring nodes. This hints naturatyan in addition to havingr; = £; andp,;, = 0. The following
iterative approach to the problem. In this section, we develdpeorem guarantees both the uniqueness and the method of
an iterative estimation method that considers the effect §fentifying the approximate solution to the chain.

blocking with some simplifying assumptions. To develop an Theorem 1:Given a line network with link erasures =

iterative technique, we assume the following. (€1,...,en) and intermediate node buffer sizest =
mi,...,mp—1), there is exactly one approximate solution

P (E, M), pp*(E, M)) to the chain. Moreover, this solution
can be found iteratively.

While the proof of uniqueness is omitted for brevity, the
method of identifying the approximate solution follows a

i—1 ol
1+ (5 5

Al. The packets are ejected from nodes in a memoryle
fashion. Equivalently, we assume thBt[(n,_1(t) >
0) A (Xi(t) = 1)|n;(t) = k] does not vary with the
occupancyk of the i node. This allows us to track just
the information rate and not the exact statistics.

A2. The blocking event occurs independent of the state of &yqte that the arrival rate at the node is r1 = =1 and that the blocking
node,i.e, Pr[(Yi+1(1) = 0)A(X;41(1) = 1)|(n;(t) = k)]  probability of v, is zero.



simple iterative scheme. Firgly, is set to0 and4 is invokedto ~ Hence, the delay distribution is known if the steady-state
estimater. This estimate is then used[ih 3 to updptg which distributions of buffer statest((-), j = 1,...,h — 1) as seen
is then used to find the next estimate of These iterations by arriving packets is known. However, it is a simple exercis
repeated until the vectors converge. We omit the details tf derive these distributions from the results of Secfid+Sl!
proof of convergence for lack of space.

Finally, the unicast capacit¢*(£, M) can be estimated V. RESULTS ONFINITE-BUFFERANALYSIS
using the approximate solution from the following.

k We have so far presented some fundamental tools for finite-
Corollary 1: The approx. solutiofr* (£, M), pp,* (£, M))

-2 ; ) buffer analysis of line networks. In this section, we show
satlsfles the ﬂo"‘i conser*vanon* relat|orls , that they are very helpful to obtain accurate estimates ef th
Cr(EM)=ri(L=poi) =ri(L=pp), i=1,.... I performance parameters such as throughput, delay distribu

IV. PACKET DELAY DISTRIBUTION and buffer occupancy distribution for line networks.
: . . . To understand the variation of our capacity estimate of
In this section, we use the approximate solution of Seg— . : . . )
. . . iy . ectior1ll, in each of the figures, the simulation of the attu
tion[[-3]to obtain the estimates on the probability distriion L : " .

. . : c%\pacny is presented in addition to our analytical results
of the delay of an information packet. We define the pack ure[3 presents the variation of the capacity with the ho
delay as the time taken from the instant when the sourcesstart? P pacity P
sending the packet to the instant when the destinationvesei

<

it. In addition to the discussion in section Ill-1, we assume g A— T ]
first-come first-servéreatment of packets at the intermediat % Y SN AR SR O S S S S S =73
node buffers. L oo | T ESE :

In order to compute the distribution of delay that a pack ﬁ il
experiences in the network, one can proceed in a hop-t 3 "} ]
hop fashion. Considering the last relay node, the additior § N"“\*“«-—-H ........................... oeed
delay of an arriving packet (at tim@ at nodev,_; depends §

on the occupancy of the nodg_; and the erasure channel * Number ‘of hopsh *

that follows it to the destination. Suppose at epdcmode Fig. 4. Capacity of a line network withn = 5 vs. the number of hopa.

vp—1 hask < my_1; — 1 packets in addition to the arriving

packet. Then, the packet has to wait for the firgtackets to length for a network with each intermediate node having a
leave before it can be serviced. Since each transmissias taRuffer size of five packets. Moreover, the simulations are
place independently, the distribution of delay is sumkef 1  Performed when the probability of erasure on every link is se
independent geometric distribution with mean inter-ariv t© e_ither0.25 or0.5. Itis notice_d that the estimate captures the
time 1% which is denoted b@kﬂ—lG(%)' Suppose that variation of the actual capacity of the network within about
the distribution of buffer occupanat time of packet arrival 1.5% of error.

is given bym;,_1(7), then the distribution of delay added by
vp—1 to the packet is

mp_1—1

Dpi= Y ma(i)@G((1-en)h). (5)
1=0

However, the situation is different for other intermedidéays
because of the effect of blocking. The additional delay iredi
while being stored at the nodg, 0 < j < h— 1, is given by

0.25(- -e-lter. Estm. € = 0.50)|]
; -«-lter. Estm. € = 0.50

11 12 13 14 15

——Sim. Cap. € = 0.25)]
o3[ —-Sim. Cap. £ = 0.50) (]

Capacity (packets/epoch)

L L
2 3 4

N PP T
Buffer sizem

b _ mil Wj(i)®i+1(]3((1 - gj;l)il)v ©) Fig. 5. Capacity of a line network with = 8 vs. the buffer sizen.
=0 In order to study the effect of buffer size, we simulated
where we used the following to consider blocking. a line network of eight hops having the same erasures as
) e+ 0u (m)(1—e) i=1,2... h—1 in the previous setting. Figurel 5 presents the variation of
& = { eh ! i=h » (M our results and the actual capacity as the buffer size of the

intermediate node is varied. It can be seen that as the buffer

where ., (k) is the steady state probability of that nod ize is increased, all curves approach the ideal min-cu#aigp

v; already hask packets when the packet is transmitte

) fl—e.
successfully fromy; ;. ”7 (¢) and@,, (k) are related by Figure[6 presents the variation of delay distribution with
. 0v; (9 i=1.2. .. .mi—1 respect to the buffer size for an eight-hop line network with
71"(7,)_ 1—6, (mj) » s 118 ( . .
i) = EA i = m, : the erasure probability on every link set 625. It can be

seen that both the mean and the variance of the distribution
ipi%reases with the increase in the buffer size. It is noted th
the analytic prediction of the delay is more conservatianth
the actual simulation i.e., the analytic estimate of theavare
D=GCG((1-¢)")®Di® - ®@Dj_1. (9) is higher than the actual simulated one.

By assuming that the delays incurred by each node and
adjoining outgoing link is independent of each other, weagbt
the total delay considering all hops to be



008 e e parameters. However, allocating memory to Type 2 nodes can
Teumanm |1 affect the throughput sufficiently although with a moderate
—— Simulation (m=10) . .
- - - Estimation (m=10) increase in the expected delay.
—— Simulation (m=15) .

- - - Estimation (m=15)
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Based on our the computed buffer occupancy distributior e 4 & 8 ® (inpaize.s) W . 18
we categorize the nodes into 3 types according_ to their buﬁﬁ 8. Throughput Vs. Average Delay for different type ofdas
occupancy. Nodes are of Type 1, 2 or 3 depending on whethet
the rate of incoming rate of innovative packets is largemea
or smaller, respectively, than the possible rate of inriveat VII. CONCLUSIONS
packets that can be sent on the outgoing edge. The typical ocWe presented an approximate markov-chain based model
cupancy distributions of such nodes are presented in Figurefor analyzing the dynamics of finite-buffer line networks.
The figure presents a classification of nodes from a four-h@pe model provides an iterative procedure for computing the
line network withe; = 0.2,e2 = 0.5,e3 = 0.5,e4 = 0.2 distribution of buffer occupancy as a step in the estimatibn
when the three intermediate nodes have buffer sizes 10 throughput capacity of such networks. The model was seen
andm = 30, respectively. Note that in this example, Nagdés to provide an accurate computation of throughput for vayyin
of Typei. While Type 3 nodes are generally starved and Typriffer sizes, hop-length and channel erasure probabiliibe
1 nodes are generally full, Type 2 nodes have a near unifoommputed buffer occupancy distribution was then used to
distribution. Increasing the buffers of Type 1 or Type 3 modestudy the distribution of packet delay in such networks.sThi
does not affect their blocking probabilities or the genstalpe proposed model was used to identify the level of congestion
of the occupancy distribution. However, increasing thefdiuf in intermediate nodes, yielding a rule for intelligent magno
sizes of Type 2 nodes decreases the blocking probability aifocation in such networks. The proposed scheme was seen
such nodes. Note that while the classification of these nodesnear-precisely track the dynamics and variations of the
is a trivial exercise, the means to identify/estimate thévalr investigated performance metrics.
and departure rates is non-trivial.
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