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Abstract—Numerous applications demand communication
schemes that minimize the transmission delay while achieving
a given level of reliability. An extreme case is high-frequency
trading whereby saving a fraction of millisecond over a route
between Chicago and New York can be a game-changer. While
such communications are often carried by fiber, microwave links
can reduce transmission delays over large distances due to
more direct routes and faster wave propagation. In order to
bridge large distances, information is sent over a multihoprelay
network.

Motivated by these applications, this papers present an
information-theoretic approach to the design of optimal multihop
microwave networks that minimizes end-to-end transmission
delay. To characterize the delay introduced by coding, we derive
error exponents achievable in multihop networks. We formulate
and solve an optimization problem that determines optimal
selection of amplify-and-forward and decode-and-forwardrelays.
We present the optimal solution for several examples of networks.
We prove that in high SNR the optimum transmission scheme is
for all relays to perform amplify-and-forward. We then anal yze
the impact of deploying noisy feedback.

I. I NTRODUCTION

Operating close to the channel capacity requires encoding
with large codelengths in order to guarantee diminishing
probability of error. In turn, large codelengths introducede-
coding delay at the receiver. If data is sent over a multihop
network, this delay can multiply over multiple hops, thereby
increasing the end-to-end latency. On the other hand, numerous
applications, instead of striving to operate at the maximum
rate, demand communications with the minimum latency. An
extreme case is high-frequency trading in which profits depend
on computer-based algorithmic trades that are made as fast as
possible. In these settings, in order to bridge large distances,
information is sent over a multihop relay network (see Fig. 1).
At the same time, saving a fraction of millisecond over, for
example, a route between Chicago and New York, can be
a game-changer. According to [1], 1 ms of reduced delay
translates into $100 million profit per year. On the Chicago-
New York route, fiber can deliver data in 6.6 ms. On the other
hand, the latest microwave network can deliver data in 4.1 ms
[2]. The gain in the microwave transmission comes from faster
wave propagation in the air when compared to the fiber, and
from shorter routes. In this paper, we are concerned with such
low-latency communications.

End-to-end transmission delay drastically varies with the
choice of the cooperative scheme used by a relay. In particular,
a relay performing decode-and-forward (DF) will introducea
delay of the order of the size of the block,n, that it needs

Fig. 1. Multihop network. Relays are labeled as 1,. . . ,H

to receive prior to decoding, re-encoding and forwarding a
message. In contrast, an amplify-and-forward (AF) relay can
forward on per-symbol basis, thus introducing a roughlyn
times smaller delay. However, the simplicity of AF comes at
the expense of amplifying and propagating the noise thereby
reducing the effective received signal-to-noise ratio with every
subsequent AF hop. The reduced SNR reduces the transmis-
sion rate and ultimately, after a sequence of AF hops, results
in a higher delay when compared to DF.

In microwave low-latency networks, common practice is to
perform DF or AF at a node uniquely on the basis of its
received SNR. A relay with a received SNR above a certain
threshold performs AF, otherwise, it performs DF. Typically,
this criterion performs DF at a relay after a several AF hops
or after one long hop.

Our goal is to design a multihop microwave network to
minimize the end-to-end delay. Towards that goal, we address
several practical questions: 1) Is the common practice of
assigning AF/DF relays based on received SNR optimal? 2) If
not, when should DF relays be used given that they introduce
larger delays? 3) Does this selection depend on the SNR
regime the network operates in? 4) Can the delay be reduced
by deployment of noisy feedback?

In this paper, we answer the above questions. To character-
ize the delay introduced by coding, we derive error exponents
achievable in a multihop network. The error exponent char-
acterizes the tradeoff between the code block size (and hence
the delay) and the reliability [3]. Given the desired reliability
and using the error exponent, we obtain the lower bound
on the delay in the considered multihop network. We then
formulate and solve an optimization problem that determines
optimal selection of amplify-and-forward and decode-and-
forward relays. We demonstrate that an approach in which
the selection of AF and DF scheme at a relay is solely based
on the received SNR is suboptimal. We present the optimal
DF/AF selections for several examples of networks. We prove
that in high SNR the optimum transmission scheme is for
all relays to perform amplify-and-forward. We show that in a
symmetric network, all decode-and-forward nodes should be
separated by an equal number of amplify-and-forward relays.
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We then analyze benefits of deploying noisy feedback. Our
consideration of feedback is motivated by the well known
fact that feedback can improve the error exponents, in some
scenarios drastically [4]. The error exponents for the point-to-
point channel with active noisy feedback for binary signaling
were analyzed in [5]. We extend some of these results to
the multihop relay network. We first investigate the impact
feedback has on the error exponent and thus delay in the
single-relay channel. We then extend the analysis to the
multihop network.

Related Work
For discrete multihop networks with DF relays reliabil-

ity bounds were analyzed in [6]. Minimizing the delay in
Gaussian multihop networks with DF relays was presented
in [7]. Error exponents in multihop network with AF relays
were analyzed in [8]. Minimizing latency over a microwave
networks with DF and AF nodes by considering channel
capacity was considered in [9].

The paper is organized as follows. In Section II we define
and solve the optimization problem that determines the optimal
selection of DF and AF relays. Section III analyzes the impact
of feedback. Section IV concludes the paper and discusses
future work. In the paper, the proofs of theorems are outlined.
Detailed proofs are available in [10].

II. M ULTIHOP NETWORK

We consider a single source-destination multihop wireless
network in which data from the source to the destination is
transmitted viaH relays (see Fig. 1). Each node is equipped
with a single antenna. Following practical constraints, we
assume that all transmissions are orthogonal and that each
node communicates only with its neighbor, as indicated in
Fig. 1. We consider a Gaussian channel where a transmitted
signal is corrupted by the additive, white Gaussian noise. The
received signal at the nodek is given by

yk = hk−1xk−1 + zk k = 1, . . . , H (1)

where the transmit signal at the source is denotedx0. The
channel gain from a nodek − 1 to nodek is denotedhk−1.
Noise zk has zero mean and varianceσ2

k. Similarly, the
received signal at the destination is

yD = hHxH + zD (2)

where zD is zero mean with varianceσ2
D. To simplify the

presentation we assume in this section thatσ2
k = σ2 for all

k = 1, . . . , H andk = D. The power constraint at nodek is
given by

E[X2
k ] ≤ Pk. (3)

The source sendsB bits information intended for the desti-
nation nodeD using a codeword of lengthn0, by sending
a messageW from the message setW = {1, . . . , 2B}. The
encoding function at the source is given byXn0

0 = f(W ). A
general encoding function at each relayk at timei is given by
Xk,i = fk,i(Y

i−1
k ). Each relay in the network performs either

decode-and-forward or amplify-and-forward. The decode-and-
forward scheme does not require block Markov encoding [11]
because each receiving node receives signal only from one
other node. LetK ≤ H denote the number of DF relays. The
kth DF relay performs decodinĝWk = gk(Y

nk−1

k ) whereŴk

denotes the message estimate at that node andnk−1 denotes
codelength used by(k − 1)th DF node. After decoding, the
kth relay sends a codeword of lengthnk: Xnk

k = fk(Ŵk). On
the other hand, a relayk performing AF, at each time instant
i transmits

xk(i) = βkyk(i− 1) (4)

whereβk denotes the amplification gain. From (4) and due to
the power constraint at the relay (3),βk satisfies:

β2
k ≤

Pk

h2
k−1Pk−1 + σ2

. (5)

The decoding function at the destination is given byŴ =
g(Y nK

D ) wherenK denotes the codelength used at theKth
DF relay in the network. The average error probability of the
code isP (nK)

e = P [W 6= Ŵ (Y nK

D )].
Our goal is to minimize the delay in sending messages

between the source and the destination while guaranteeing a
required level of reliabilityδe at the destination, i.e.,

P (nK)
e ≤ δe. (6)

We consider a problem in which the network is already in
place, i.e, the relays are already positioned in the network.
Therefore, the number of hopsH and channel gains are given.
The considered multihop network is typically a microwave
network with a high capacity line-of-sight channel at each hop.
The channel variations are much slower compared to a cellular
network and thus a transmitter typically has the channel
state information. Our goal is to determine a cooperative
strategy such that the end-to-end delay is minimized while
guaranteeing a required level of reliability (6). In order to
minimize the delay, we next review the error exponents and
the delay associated with decode-and-forward and amplify-
and-forward cooperative schemes.

The error exponent is defined by [3]

Er = − lim
n→∞

sup
1

n
P ∗(n)
e (7)

whereP ∗(n)
e denotes the infimum of the error probability over

all (R, n) codes. In a Gaussian point-to-point channel with a
received signal-to-noise ratio denoted as SNR, by choosingthe
Gaussian inputs the error exponent (7) evaluates to

Er ≥ max
ρ∈[0,1]

[

ρ log(1 +
SNR
1 + ρ

)− ρR

]

. (8)

In order to satisfy a reliability constraint (6), the delay intro-
duced by transmission of a codeword of lengthnpp can be
calculated from (7) and (8) to be

npp ≥
ρB − log δe

log(1 + SNR
1+ρ

)
(9)



whereρ ∈ [0, 1] should be chosen so thatnpp is minimized.
Consider a multihop network withK relays all performing

decode-and-forward. Because at each hop the information is
decoded, each relay introduces a delay given by (9) and the
total delay obtained from (9) is, [7]

DDF ≥

K+1
∑

k=1

ρkB − log δk

log(1 + SNRk

1+ρk

)
(10)

where δk denotes the required level of reliability at relay
k, SNRk is received SNR at relayk and we denoted the
destination node asK + 1.

We consider the amplify-and-forward cooperative strategy
next. When allK relays perform amplify-and-forward, it is
straightforward to derive from (1), (2), (4) and (5) that the
received signal at the destination can be written as

yD(i) = he,Kx0(i−K) + ze,K(i) (11)

where

he,K = h0

K
∏

i=1

βihi

ze,K(i) =

K
∑

k=1





K
∏

j=k

βjhj



 zk(i−K + k − 1) + zD(i).

(12)

We denote the received SNR in the equivalent channel (11) as
γ(K):

γ(K) = SNR0

∏K
i=1(βihi)

2

∑K
k=1

∏K
i=k(βihi)2 + 1

(13)

where SNR0 = h2
0P0/σ

2. We observe that the output (11) is
the same as in a point-to-point channel with received SNR
γ(K). From (9), it then follows that the delay introduced by
K AF relays is given by

DAF ≥
ρB − log δe

ρ log(1 + γ(K)
1+ρ

)
. (14)

whereδe denotes required end-to-end reliability.
We observe from (10) that each DF relay introduces a delay

npp given by (9). This is due to the fact that a DF node has
to wait to receive the whole codeword prior to forwarding.
In contrast, an AF node can forward on symbol-per-symbol,
reducing a network of a cascade of AF nodes to a point-to-
point channel (11), albeit with reduced SNR. Each AF node
reduces the received SNR by amplifying the noise thereby
reducing the transmission rate and ultimately increasing the
delay. In fact, below a certain value ofγ(K), an AF node
will cause a larger delay than a DF node.

To determine the optimum number and positions of AF and
DF relays that minimize the end-to-end delay in the considered
multihop network, we next define a following optimization
problem. LetNDF denote the number of DF nodes in the
network including the source. LetKi ∈ {0, . . . , H} denote
the number of AF relays in between(i − 1)th and ith DF
relay and letpi denote the index (position) of theith DF

relay. Then,p1 = 0. The delay introduced between(i − 1)th
and ith DF relay is given by (14) forK = Ki. We formulate
the optimization problem as:

D∗ = min
NDF ,Ki

NDF
∑

i=1

ρiB − log δe
NDF

ρi log(1 +
γ(pi,Ki)
1+ρi

)

s.t.
NDF
∑

i=1

Ki +NDF = H + 1 (15)

where

γ(pi,Ki) =
SNRpi

∏pi+Ki

j=pi+1(βjhj)
2

∑pi+Ki

k=pi+1(
∏pi+Ki

j=k βjhj)2 + 1
(16)

and SNRpi
= h2

iPi/σ
2. The reliability constraint at each

hop is chosen such that, by union bound, the end-to-end
reliability constraint is satisfied. The solutions to this problem
can efficiently be found by dynamic programming [12]. We
present solution for examples of networks later in this section.

The next theorem present a solution to (15) in high SNR.
It shows that in the high SNR regime, the minimum delay is
obtained when all relays perform AF.

Theorem 1: Let Pk = sP̂k for all k = 0, . . . , H . Then

lim
s→∞

DAF (s)

DDF (s)
=

1

NDF

. (17)

Proof: (Outline) In high SNR, the SNR afterK stages of
AF relays, (13), reduces to

γ(K) =

(

K
∑

k=0

1

SNRk

)−1

(18)

where we used the notation SNRk = h2
kPk/σ

2. The rest of
the proof follows from evaluating the delay associated with
AF relays (14) and with DF relays (10).

Remark 1: The intuition for this solution comes from the
fact that AF introduces a smaller delay than DF for the price
of reduced SNR for each AF hop. In high SNR, however, the
SNR loss is negligible and therefore multihop AF is optimal.

We next consider a symmetric network with equal power
and channel gains. We consider a subproblem of (15) wherein
we optimizeKi, i = 1, . . . , NDF for fixed NDF . To give an
insight to the optimum solution, we relax the constraint that
Ki is an integer. We have the following result.

Lemma 1: For a symmetric network withNDF decode-
and-forward nodes, the optimum solution satisfies for all
i = 1, . . . , NDF

K∗

i =
H

NDF

. (19)

Proof: (Outline) The proof follows by forming the La-
grangian for the optimization problem (15) and by deriving
the optimality conditions.
Therefore the optimal positions of AF and DF nodes are such
that all AF nodes are positioned at the equal distance.

For a network with a single relay, Figure 2 shows the
delay associated with DF and AF, as a function of channel
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Fig. 2. Delay in a two-hop network.

Fig. 3. Optimal selection of AF and DF relays in a 4-hop network. Transmit
powers are chosen equal at all nodes. Channel gains are shownfor each hop.

gains. Channel gains to and from the relay are chosen equal.
We observe that, for smaller values of channel gains, DF at
the relay is optimal. After a certain threshold, AF becomes
optimal.

Figures 3-5 show a solution of optimization problem (15)
for three examples of 4-hop networks. In all three examples
the transmit powers at nodes are chosen equal. We observe that
the optimal relay selection in Fig. 3 differs from the common
practice solution whereby only relay3 would perform DF.
We observe that in the optimum solution, relay2 chooses to
perform DF to compensate for weak links further down in the
transmission chain. In contrast, if relay2 would make decision
solely based on its received SNR, it would choose to perform
AF. Another example in which the optimal selection differs
from the common practice is shown in 4. Fig. 5 shows that
for large values of channel gains the optimal solution is AF
for all relays, in agreement with Theorem 1.

III. D ELAY IN NETWORKS WITH FEEDBACK

To examine the impact of feedback, we first analyze the
network with a single relay. We assume that from each
receiving node i.e., the relay and the destination, there isa
feedback link (see Fig. 6). The feedback links are orthogonal
to the forward links. The forward channel output at the relay
is given by (1) and at the destination by (2), forH = 1. Since
there is only one relay, we denote the source and relay inputs
as xS and xR respectively. We use similar notation also for
the outputs and the noise at each receiver. The input-output
relationship is then given by:

yR = hSxS + zR

yD = hRxR + zD. (20)

Fig. 4. Optimal selection of AF and DF relays in a 4-hop network. Channel
gains are shown for each hop.

Fig. 5. Optimal selection of AF and DF relays in a 4-hop network. Channel
gains are shown for each hop. This network is in high SNR.

As before, the source and the relay satisfy respective power
constraintsE[X2

S ] ≤ PS andE[X2
R] ≤ PR.

Similarly to the forward channel, the feedback channel is:

ỹR = h̃Rx̃D + z̃R

ỹS = h̃S x̃R + z̃S (21)

and the power constraints are given byE[X̃2
R] ≤ P̃R and

E[X̃2
D] ≤ P̃D. Noises z̃R and z̃S have zero mean and

respective variancẽσ2
R and σ̃2

S .
To analyze the impact of feedback on the delay in this

channel, we extend the results of [5] that develops error
exponents for the point-to-point channel with active noisy
feedback. The analysis in [5] assumes binary signaling, and
in the reminder of the paper, we make the same assumption.
In particular, we assume that the encoder sends a single bit
that takes values0 or 1 equiprobably. We have the following
theorem.

Theorem 2: The error exponent achievable in the con-
sidered single-relay channel with active noisy feedback is
bounded by

EFB ≥
2PS

σ2
F

+
2P̃D

σ2
FB

(22)

where

σ2
F =

σ2
R

h2
S

+
σ2
D

(hShRβ)2
(23)

σ2
FB =

σ̃2
R

h̃2
R

+
σ̃2
S

(h̃S h̃Rβ̃)2

and the corresponding delay for the reliability levelδe is
bounded by

nFB ≥

(

2P

σ2
F

+
2P̃

σ2
FB

)−1

log
1

δe
. (24)

Proof: We consider the amplify-and-forward cooperative
strategy at the relay both on the forward and the backward
channel. The transmit signal at the relay at timei in the
forward channel is then given by (4) fork = R

xR(i) = βyR(i− 1) (25)

whereβ from (5) satisfies:

β2 ≤
PR

h2
sPS + σ2

R

. (26)



Fig. 6. Single relay channel with per-hop feedback. No direct link is assumed
between the source and the destination.

The received signal at the destination evaluates from (11) to
be

yD(i) = heqxS(i − 1) + zeq(i) (27)

where
heq = hRβhS (28)

and
zeq(i) = hRβzR(i − 1) + zD(i). (29)

Channel (27) is equivalent to the unit-gain channel given by

yD(i) = xS(i− 1) + zF (i) (30)

wherezF = zeq/heq. Using (28) and (29) we obtain that the
variance ofzF equalsσ2

F given by (23).
Similarly, the transmit signal at the relay in the reverse

channel is given by

x̃R(i) = β̃ỹR(i− 1) (31)

with amplification gain

β̃2 ≤
P̃R

h̃2
RP̃D + σ̃2

R

. (32)

The received feedback signal at the source is given by

ỹS(i) = h̃S β̃h̃Rx̃D(i − 1) + h̃S β̃z̃R(i − 1) + z̃S(i)

= h̃eqxD(i− 1) + z̃eq(i) (33)

where
h̃eq = h̃S β̃h̃R, (34)

and
z̃eq(i) = h̃S β̃z̃R(i − 1) + z̃S(i). (35)

Again, we can consider the equivalent unit-gain channel

ỹS(i) = xD(i − 1) + z̃FB(i) (36)

wherezFB = z̃eq/h̃eq has the varianceσ2
FB given by (23).

The equivalent channel model given by (30) and (36)
corresponds to a Gaussian point-to-point channel with a noisy
active feedback with noise variances given by (23), analyzed
in [5, Sec. VII]. The result in [5, Sec. VII] applies yielding
the error exponent given by (22).

Remark 2: We compare the delay (24) to the delay in the
point-to-point channel with the respective noise variances in

the forward and the feedback channelσ2
D,pp andσ̃2

S,pp, and the
respective channel gainshS,pp and h̃D,pp. The error exponent
of this channel, as determined in [5, Sec. VII], is given by
(22) with σ2

F = σ2
D,pp/h

2
S,pp and σ2

FB = σ̃2
S,pp/h̃

2
D,pp. By

comparing (22) for the relay with the point-to-point channel,
we obtain the sufficient conditions under which the delay in
the relay channel is smaller:

σ2
R

h2
S

+
σ2
D

(hShRβ)2
<

σ2
D,pp

h2
S,pp

(37)

σ̃2
R

h̃2
R

+
σ̃2
S

(h̃S h̃Rβ̃)2
<

σ̃2
Spp

h̃2
D,pp

.

Consider the case when all the noise variances and powers are
the same and the channel is in high SNR. Thenβ = 1/h2

S,
β̃ = 1/h̃2

R and conditions (37) reduce to

1

h2
S

+
1

h2
R

<
1

h2
S,pp

(38)

1

h̃2
R

+
1

h̃2
S

<
1

h̃2
D,pp

.

When the above conditions on the channel gains are satisfied,
the error exponent and the delay are improved by the help of
the relay.

Remark 3: We compare the delay (24) to the delay in the
considered relay channel when there is no feedback. As before,
the relay performs amplify-and-forward and the channel is
given by (27). The error probability with binary signaling for
this channel is given by

Pb = exp(−
h2
eqPS

2σ2
eq

n) (39)

whereheq is given by (28) andσ2
eq is the variance ofzeq given

by (29). The corresponding delay for the reliability levelδe is

n ≥
2σ2

eq

h2
eqPS

log
1

δe
. (40)

Delay (24) and (40) can be easily compared for case thatP =
P̃ and all noises have the same variance andσF ≥ σ̃FB in
(23). In this case, the delay with feedback is always smaller
than the delay in the no-feedback channel.

We can now extend the result of Thm. 2 to multihop network
with active noisy feedback between every transmitter/receiver
pair as shown in Fig. 7.

Theorem 3: The error exponent achievable in the multihop
relay network withK relays and with active noisy feedback
is bounded by

EFB ≥
2PS

σ2
F

+
2PFB

σ2
FB

(41)

where

σ2
F =

∑H
k=1

∏H
i=k(βihi)

2σ2
k + σ2

D

h2
0

∏H
i=k(βihi)2

(42)

σ2
FB =

∑H
k=1

∏H
j=k(β̃j h̃j−1)

2σ̃2
k + σ̃2

S

h̃2
0

∏H
k=1(β̃kh̃k)2

.



Fig. 7. Multihop network with feedback.

Proof: The proof follows the same steps as the proof of
Theorem 2.

Discussion

The above results show the improvement in terms of the
required codelengthn over the no-feedback case. However,
the analysis presented in the previous section does not capture
the propagation delay. In high-frequency trading applications
where data is sent over multiple hops and hundreds of kilome-
ters, the propagation delay is a dominant factor. Using feed-
back at every link is not appropriate as it would significantly
increase the propagation delay. Instead, the presented analysis
points that a feedback could potentially reduce the delay when
used sporadically, on certain hops.

IV. SUMMARY AND FUTURE WORK

We have presented an information-theoretic approach that,
based on error exponents, optimally determines a cooperative
strategy between DF and AF for every relay. We showed that
in high SNR the optimum transmission scheme is for all relays
to perform AF. We have then derived the error exponents in the
considered multihop network in the presence of noisy, active
feedback.

Our results demonstrate that the choice of the cooperative
scheme cannot be made solely based on the received SNR
at that relay, as is a common practice. Instead, this choice
depends on the channel conditions in the whole network.

In practice, in addition to the average power constraint,
the peak power constraint needs to be satisfied. This moti-
vates extending the presented analysis under the peak power
constraints. Achievable error exponents under the peak power
constraints for the point-to-point channel were derived in
[13]. Furthermore, the considered problem can be extended
to include slow fading analysis. In addition to decode-and-
forward and amplify-and-forward schemes analyzed in this
paper, these results can be extended also to compress-and-
forward [11]. Another open problem is investigating whether
a form of feedback, possibly used only at certain time instants
and at certain nodes, could improve the end-to-end delay.
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