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Abstract—We present a linked-cluster technique for calculating
the distance of a quantum LDPC code. It offers an advantage over
existing deterministic techniques for codes with small relative
distances (which includes all known families of quantum LDPC
codes), and over the probabilistic technique for codes with
sufficiently high rates.

I. INTRODUCTION

A practical implementation of a quantum computer will rely
on quantum error correction (QEC) [1]–[3] due to the fragility
of quantum states. There is a strong belief that surface (toric)
codes [4], [5] can offer the fastest route to scalable quantum
computation due to the error threshold around 1% and the
locality of required gates [6]–[9]. Unfortunately, in the nearest
future, the surface codes (in fact, any two-dimensional codes
with local stabilizer generators [10]) can only lead to proof of
the principle realizations as they encode a limited number of
qubits (k), making any implementation of a useable quantum
computer large (e.g., 2.2 × 108 physical qubits are required
for a useful realization of Shor’s algorithm [11]).

Lifting the restriction of locality but preserving the condi-
tion that the stabilizer generators should only involve a limited
number of qubits, one gets the quantum LDPC codes, or, more
precisely, quantum sparse-graph codes [12], [13]. Unlike the
surface codes, these more general quantum LDPC codes can
have a finite rate. On the other hand, while there are no known
upper bounds on the parameters of such codes, in practice, all
families of quantum LDPC codes where the upper limit on
the distance is known, have the distance scaling as a square
root of the block length [14]–[17]. Nevertheless, such codes
(in fact, any family of quantum or classical LDPC codes with
limited weights of the columns and rows of the parity check
matrix, and distance scaling as a power or a logarithm of the
block length n) have a finite error probability threshold, both
in the standard setting where syndrome is measured exactly,
and with the syndrome measurement errors [18].

Given that non-local two-qubit gates are relatively inexpen-
sive with floating gates [19], superconducting and trapped-ion
qubits, as well as more exotic schemes with teleportation [20]–
[25], a quantum computer relying on quantum LDPC codes is
quite feasible. An example of a universal set of gates based
on dynamical decoupling pulses for an arbitrary number of
qubits with Ising couplings forming a bipartite graph (e.g.,

the Tanner graph corresponding to a quantum LDPC code)
has been recently suggested by one of us [26].

Compared to general quantum codes, with a quantum LDPC
code, each quantum measurement involves fewer qubits, mea-
surements can be done in parallel, and also the classical
processing could potentially be enormously simplified (note,
however, that belief-propagation and related decoding algo-
rithms that work so well for classical LDPC codes [27], [28]
may falter in the quantum case [29]). Compared to surface
codes, more general LDPC codes have higher rates, which
translates in a large reduction of the total number of qubits
necessary to build a useful quantum computer. Note that while
our analytical threshold estimate in Ref. [18] is quite low, there
are examples of quantum LDPC codes demonstrated to beat
the bounded distance decoding limit [30]. Overall, it is quite
plausible that the operation of quantum computers of the future
will rely on (non-local) quantum LDPC codes.

The very general proof [18] of the existence of a finite error
probability threshold for quantum and classical LDPC codes
with asymptotically zero relative distance is based on a simple
observation that errors for such codes are likely to form small
clusters affecting disjoint sets of stabilizer generators (parity
check matrix rows). While the total weight of an error could
be huge, the error can be surely detected if the size of each
cluster is smaller than the code distance. Thus, in the case
of the error detection, the threshold problem is related to the
cluster size distribution for site percolation on a graph related
to the Tanner graph of the code.

In this work, we apply the idea of error clustering with
LDPC codes to design a numerical algorithm for finding a
distance of such a code. The basic principle is formulated in
Theorem 1: to find the distance of a code, one only needs to
check error configurations corresponding to connected error
clusters. For any error weight w � n, the number of such
clusters is exponentially smaller than that of generic errors
of the same weight. We consider the complexity of several
well-known classical algorithms for finding code distance in
application to quantum error correcting code. We conclude
that the clustering algorithm beats deterministic techniques at
sufficiently small relative distances (asymptotically at large n,
all known families of quantum LDPC codes have zero relative
distance), and the probabilistic technique for high-rate codes
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with small relative distances.

II. BACKGROUND.

A. Error-correcting codes

A q-ary linear code C with parameters [n, k, d]q is a k-
dimensional subspace of the vector space Fnq of all q-ary
strings of length n. Code distance d is the minimal Hamming
weight (number of non-zero elements) of a non-zero string
in the code. A linear code is uniquely specified by the parity
check matrix H , namely C = {c ∈ Fnq |Hc = 0}, where
operations are done according to the Fq algebra.

A quantum [[n, k, d]] (qubit) stabilizer code Q is a 2k-
dimensional subspace of the n-qubit Hilbert space H⊗n2 , a
common +1 eigenspace of all operators in an Abelian stabi-
lizer group S ⊂Pn, −11 6∈ S , where the n-qubit Pauli group
Pn is generated by tensor products of the X and Z single-
qubit Pauli operators. The stabilizer is typically specified in
terms of its generators, S = 〈S1, . . . , Sn−k〉; measuring the
generators Si produces the syndrome vector. The weight of a
Pauli operator is the number of qubits it affects. The distance
d of a quantum code is the minimum weight of an operator
U which commutes with all operators from the stabilizer S ,
but is not a part of the stabilizer, U 6∈ S . A code of distance
d can detect any error of weight up to d − 1, and correct up
to bd/2c.

A Pauli operator U ≡ imXvZu, where v,u ∈ {0, 1}⊗n
and Xv = Xv1

1 Xv2
2 . . . Xvn

n , Zu = Zu1
1 Zu2

2 . . . Zun
n , can be

mapped, up to a phase, to a quaternary vector, e ≡ u + ωv,
where ω2 ≡ ω ≡ ω + 1. A product of two quantum operators
corresponds to a sum (mod 2) of the corresponding vectors.
Two Pauli operators commute if and only if the trace inner
product e1 ∗e2 ≡ e1 ·e2+e1 ·e2 of the corresponding vectors
is zero, where e ≡ u+ ωv.

With this map, generators of a stabilizer group are mapped
to rows of a parity check matrix H of an additive (forming
a group with respect to addition but not necessarily over the
full set of F4 operations) code over F4, with the condition
that the trace inner product of any two rows vanishes [31].
The vectors generated by rows of H correspond to stabilizer
generators which act trivially on the code; these vectors form
the degeneracy group and are omitted from the distance
calculation. For a more narrow set of CSS codes the parity
check matrix is a direct sum H = Gx ⊕ ωGz , and the
commutativity condition simplifies to GxGTz = 0.

An LDPC code, quantum or classical, is a code with a sparce
parity check matrix. For a regular (j, l) LDPC code, every
column and every row of H have weights j and l respectively,
while for a (j, l)-limited LDPC code these weigths are limited
from above by j and l.

The huge advantage of classical LDPC codes is that they
can be decoded in linear time using belief propagation (BP)
and related iterative methods [27], [28]. Unfortunately, this
is not necessarily the case for quantum LDPC codes: Tanner
graphs for quantum codes have many short loops of length 4,
which cause a dramatic deterioration of the convergence of the
BP algorithm [29]. This problem can be circumvented with

specially designed quantum codes [17], [30], but a general
solution is not known. One alternative which has polynomial
complexity is n, approaching linear for very small error rates,
is the cluster-based decoding suggested in Ref. [18].

III. GENERIC NUMERICAL TECHNIQUES FOR DISTANCE
CALCULATION

The problem of numerically calculating the distance of a
linear code (finding the minimum-weight codeword in the
code) is related to the decoding problem: find the most
likely (minimum-weight in the case of the q-ary symmetric
channel) error which gives the same syndrome as the received
codeword. The number of required steps N usually scales
exponentially with the blocklength n, N ∝ qFn; we char-
acterize the complexity by the exponent F . For example, for
a linear q-ary code with k information qubits, there are qk

distinct codewods, going over each of the codewords has the
complexity exponent F = R, where R = k/n is the code rate.
When used for decoding, one can instead store the list of all
qn−k syndromes and coset leaders, which corresponds to the
complexity F = 1−R.

A. Sliding window technique

This decoding technique has been proposed in Ref. [32],
and generalized in Ref. [33]. A related technique has also
been independently invented in Refs. [34], [35]. For a q-ary
code with relative distance δ ≡ d/n, the complexity exponent
is FA = RHq(δ), where Hq(x) = x logq(q − 1)− x logq x−
(1−x) logq(1−x) is the q-ary entropy function; for a code with
the rate R ≡ k/n on the Gilbert-Varshamov bound, R = 1−
Hq(δ), this gives the complexity exponent F (GV )

A = R(1−R),
reaching the maximum of 1/4 at R = 1/2.

The idea is to use only k + o(n) consecutive positions
to recover any codeword of a q-ary linear [n, k] code. For
example, any k consecutive positions suffice in a cyclic code.
Similarly, it is easy to verify that in most (random) k × n
generator matrices G any s = k + 2

⌊
logq n

⌋
consecutive

columns form a submatrix Gs of a maximum rank k. Thus, s
(error free) consecutive bits suffice to recover a codeword in
most random [n, k] codes.

To find a codeword c of a minimum weight w, we choose a
sliding window I(i, s) that begins in a position i = 0, . . . , n−1
and has length s. Our goal is to find the window that has the
average Hamming weight, v ≡ bws/nc. (Note that a sliding
window can change its weight only by one when it moves from
any position i to i + 1; thus at least one of the n windows
will have weight v.) For each i and for each w = 1, 2, . . ., we
encode all possible

L = (q − 1)v
(
s
v

)
(1)

vectors of length s and weight v. We stop the procedure
once we find an encoded codeword of weight w. The overall
procedure has complexity of the order Ln2 � qFAn, where
FA = RHq(δ).

Unfortunately, the performance suffers when the technique
is applied to a quantum code. Indeed, the additive quaternary



code corresponding to an [[n, k]] stabilizer code operates in
a space with 4n symbols with only 2r = 4r/2 distinct
syndromes, where r ≡ n−k is the redundancy of the quantum
code; the effective rate is thus1 R′ = (n−r/2)/n = (1+R)/2.
The same effective rate is obtained if we take a CSS code
with rankGx = rankGz = (n − k)/2, as there are k′ =
n− (n−k)/2 = (n+k)/2 information bits for both codes. In
addition to an increased number of the information symbols,
each obtained vector of small weight has to be tested on linear
dependence with the rows of the parity check matrix H . In
addition to the considered mapping, one can also map an
additive [[n, k, d]] code to a binary code with block length 3n
and weight of each codeword doubled; such mapping typically
gives a larger complexity and will not be considered here [31],
[36].

For a generic stabilizer code with relative distance δ, the
binary complexity exponent of the sliding-window technique is
F = 2R′H4(δ). Similarly, for a CSS code, the sliding-window
technique gives the complexity exponent FAq = 2R′H2(δ).
Both results produce the same complexity exponent

F
(GV )
Aq = (1−R2)/2

on the quantum GV bound, namely R = 1 − 2H4(δ) for
generic quantum codes [37], and R = 1 − 2H2(δ) for CSS
codes [38]. The dependence F

(GV )
Aq (R) is shown in Fig. 1

with a solid red line. Note that for codes with small relative
distance δ, the complexity exponent is logarithmic in δ, e.g.,
FAq ∼ δ(1 +R) log2(e/δ) in the case of a CSS code.
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Fig. 1. Comparison of the binary complexity exponents for the four classical
decoding techniques applied to quantum codes at the quantum GV bound,
see Sec. III. Note that for high-rate codes, R→ 1, the curves for the sliding
window and the random window techniques have logarithmically-divergent
slopes, while the slopes for the two other techniques remain finite. In this limit
of R→ 1 the punctured bipartition technique gives the best performance.

B. Random window technique [39]–[42]

Given a q-ary linear (n, k) code, we randomly choose
s = k + τ positions with positive number τ = o(k). For any

1This construction is analogous to pseudogenerators introduced in Ref. [36].

codeword, we wish to find an s-set of small weight t. Given
an error pattern (or a codeword) of weight w, we only need
to estimate the number of random trials Tt(n, s, w) needed
to find such set with a high probability. This number is well
known (up to a factor of order n) [43] and it is upper-bounded
by

T0(n, s, w) �
(
n
w

)
/
(
n−s
w

)
. (2)

To determine the distance of a code, we choose w = 1, 2, . . ..
Then we perform nT0(n, s, w) trials of choosing s random
positions.

Note that a randomly chosen k×s submatrix Gs of a random
generator matrix G has full rank k with a high probability
1− q−τ (also, most matrices G have all possible submatrices
Gk of rank k−n1/2 or more). If the current s-set includes any
information k-subset, we only consider s vectors (0...010...0)
of weight t = 1. We then re-encode them into the codewords of
length n. Otherwise, we discard an s-set and proceed further.
We stop the algorithm, once we obtain a codeword of weight
w. The overall complexity has the order of n4T0(n, s, w),
and it is independent of q, in contrast to the sliding-window
technique. This corresponds to the binary complexity exponent
FB = H2(δ) − (1 − R)H2(δ/(1 − R)). For binary random
linear codes meeting the GV bound, the complexity exponent
is easily verified to be

F
(GV )
B = (1−R) (1−H2 (δ/(1−R)) ,

where H2(·) is the binary entropy and δ ≡ H−1
2 (1 − R) is

the relative GV distance w/n. In particular, F ≈ 0.11 for the
rate R = 1/2. For small w ≤ (n − k)1/2, we can also use a
simpler estimate

T0(n, s, w) �
(

n

n− s

)w
� (1−R)−w

that has the exponent linear in code distance w.
Just as the sliding window technique, this technique relies

on recoding (re-encoding). Thus, the quantum complexity can
be obtained by substituting the effective rate R′ = (1+R)/2.
In particular, for a generic stabilizer code meeting the quantum
GV bound, we have the binary complexity exponent as shown
in Fig. 1 with the green dashed line; it reaches the maximum
of Fmax ≈ 0.22 at R = 0, i.e., for small-rate codes.

C. Bipartition technique [44]

The idea is to use a sliding (“left”) window of length sl =
bn/2c starting in any position i. For any vector of weight w,
at least one position i will produce a window of weight vl =
bw/2c. The remaining (right) window of length sr = dn/2e
will have the weight vr = dw/2e. We calculate the syndromes
of all vectors el and er of weights vl and vr on the left and
right windows, respectively, and try to find a pair of vectors
{el, er} that produce identical syndromes, and therefore form
a codeword. Clearly, each set {el} and {er} have exponential
size of order L = (q − 1)w/2

(
n/2
w/2

)
. Finding two elements el,

er with equal syndromes can be performed, e.g., by sorting
the elements of the combined set, or, to save on memory,



sorting the elements of the left set and using binary search for
each of the syndromes from the right set. This has a similar
complexity of order L log2 L. Thus, finding a code vector of
weight w = δn requires complexity of order

qFCn, FC = Hq(δ)/2.

For random binary codes which meet the GV bound, we have
exponent F (GV )

C = (1 − R)/2. For code rate R = 1/2,
this gives F (GV )

C = F
(GV )
A = 1/4. For higher code rates,

the bipartition technique gives exponent F (GV )
C < F

(GV )
A . It

can also be verified that F (GV )
C < F

(GV )
B for code rates R

approaching 1. In addition, bipartition technique is guaranteed
to work with any linear code, as opposed to two previous
techniques provably valid for random codes.

The bipartition technique is also the only technique that can
be transferred to quantum codes without any performance loss.
For a generic quantum code and a CSS code corresponding
binary complexity exponents are FCq = H4(δ) and H2(δ),
respectively. On the quantum GV bound, this gives binary
exponent F (GV )

Cq = (1−R)/2 in both cases, see Fig. 1. Note
that this line is always below that for F (GV )

Aq , and for high-
rate codes the corresponding line is below that for the random
window technique, F (GV )

Bq .

D. Punctured bipartition technique [45]

Here we combine the sliding-window technique with bipar-
tition. Consider a relatively large sliding window of length

s = d2nR/(1 +R)e . (3)

Note that most random [n, k] codes include at least one
information set on any sliding s-window I(i, s) with initial
position i = 0, ..., n − 1. Thus, any such window forms a
punctured linear [s, k] code with a smaller redundancy s− k.
Also, any codeword of weight w has weight v = bws/nc on
some sliding window. For simplicity, let s and v be even. We
then use bipartition on each s-window and consider all vectors
el and er of weight v/2 on either half of length s/2. The corre-
sponding sets {el} and {er} have size Ls = (q−1)v/2

(
s/2
v/2

)
.

We then seek all matching pairs {el, er} that have the same
syndrome h. Each such pair {el, er} represents some code
vector of the punctured [s, k] code and is re-encoded to the
full length n. For each w = 1, 2, ..., we stop the procedure
once we find a re-encoded vector of weight w. Obviously,
this technique can lower the complexity to the order Ls.
Note, however, that many vectors el and er of length s/2
can simultaneously have the same syndrome h of size s− k.
Thus, our task is to encode all code vectors of weight v in a
random [s, k] code. It can be shown [45] that our choice of
parameter s limits the number of such codewords by the same
order Ls. Thus, we can find any codeword of weight w = δn
with a smaller complexity

qFCs = qFDn, FD = Hq(δ)R/(1 +R).

For codes meeting the GV bound, F (GV )
D = R(1 − R)/(1 +

R). Note however, that this combined technique cannot be
provably applied to any linear code, in contrast to a simpler
bipartition technique.

Somewhat similarly to regular case in Sec. III-C, the perfor-
mance of the bipartition in this technique is not affected when
we consider quantum codes. However, in the expression (3) for
the optimal block size, one needs to use the effective quantum
rate R′ = (1+R)/2. As a result, the complexity exponent for
regular stabilizer codes becomes

FDq =
2R′

1 +R′
H4(δ) =

2(1 +R)

3 +R
H4(δ); (4)

on the GV bound this gives

F
(GV )
Dq =

(1−R2)

3 +R
.

This technique is the best for high-rate quantum codes, R→ 1.

IV. LINKED-CLUSTER TECHNIQUE

Here we present a technique which is designed specifically
for very sparse quantum LDPC codes, as an alternative to the
belief propagation technique.

For a (j, `)-limited LDPC code, we represent all (qu)bits
as nodes of a graph G1 of degree at most z: two nodes
are connected by an edge iff there is a row in the parity
check matrix which has non-zero values at both positions. An
error with support in a subset E ⊆ V (G1) of the vertices
defines the subgraph G1(E) induced by E . Generally, we will
not make a distinction between a set of vertices and the
corresponding induced subgraph. In particular, a (connected)
cluster in E corresponds to a connected subgraph of G1(E).
Different clusters affect disjoint sets of rows of the parity
check matrix. This implies the following

Theorem 1. The support of a minimum-weight code word of
a q-ary code with the parity check matrix H forms a linked
cluster on G1.

Proof: Indeed, let us assume this is not so, and a
minimum-weight code word c is supported by two or more
disconnected parts. By construction, these affect different
rows of the parity check matrix and, therefore, the vectors
corresponding to subsets of non-zero symbols in c are in
the null-space of H, contrary to the assumption that c has
minimum weight.

Thus, in order to determine the distance of a code by an
exhaustive search, we do not have to list all error patterns;
instead, one can go over all linked clusters of increasing sizes.
We used the following variant of the breadth-first algorithm to
construct all linked cluster of a given size w:

Start with a position i = 0, 1, . . . , n−w, and add to the list
all neighboring positions to the right of i. At each subsequent
level of recursion, only go over the positions in the list to the
right of the position added on the previous level. Once a new
position is selected, add all new neighboring positions which
are to the right of the original starting point i. The recursion



should stop after the desired cluster size w is reached. This
way, the algorithm generates all clusters of size w, and no
repeated clusters are produced. In the case of a binary code,
each linked cluster of weight w directly corresponds to a
potential code word of same weight. In the case of a q-ary
code, one needs to check the rank of a matrix formed by the
corresponding columns of the parity check matrix.

The upper cup on the total number of the linked clusters of
size w for a given (j, `)-limited LDPC code can be obtained
from the cluster distribution for a regular tree . The degrees of
the graph G1 are limited from above by z ≡ (`− 1)j. Among
the degree-limited graphs, the z-regular tree has the largest
number of clusters (it does not have any loops). Namely, the
number of weight-w clusters containing a given vertex is [46]

Nw =
z

w − 1

(
(z − 1)w

w − 2

)
� z

(z − 2)2w
2(z−1)wH2(1/(z−1)),

(5)
where the asymptotic form is valid for large w. Note that the
loops present in the actual graph tend to reduce the exponent;
also, at w & n/(z − 1) there is further reduction in Nw due
to finite-size effect. Thus, we expect that for w . n/(z − 1),
the complexity exponent for the linked-cluster method can be
written as

FLC = δ(zeff −1)H2(1/(zeff −1)) � δ log2(e(zeff −1)), (6)

where zeff < z. For example, a number of generalized
hypergraph-product codes have been constructed in Ref. [16]
from different binary cyclic codes. Codes originating from the
same check polynomial correspond to graphs with the same
local structure as the graph G1 for the original hypergraph-
product codes [14]. Examples of the cluster-number scaling
with weight for several such codes are given in Fig. 2.

@@288,2,12DD
@@450,32,8DD
@@450,50,7DD
@@450,72,6DD

4 6 8 10 12
W

100

104

106

108

N

Fig. 2. Dependence of the number of clusters N on the corresponding
weight w for hypergraph-product codes obtained from cyclic codes with the
check polynomials of weights wh = 2, 3, 4, and 5. The corresponding parity-
check matrices are (wh, 2wh)-regular, and the graphs G1 have degrees z =
(l − 1)j = (2wh − 1)wh = 6, 15, 28, and 45. The fits to N = Ayw give
y ≡ e(zeff − 1) = 5.2, 18.8, 33.4, and 47.0, respectively.

While the performance of the cluster-based technique de-
teriorates rapidly with large z, and for larger distances, one

advantage evident from Eq. (6) is that the complexity exponent
is proportional to the relative distance δ. In comparison, any
other deterministic technique in Sec. III has the complexity
scaling as F ∝ δ log(1/δ) in this limit. Thus, the presented
linked-cluster technique has the best asymptotic performance
for all known quantum LDPC codes with limited-weight
stabilizer generators, where δ ∝ n−1/2. Compared with the
random window technique (which has the smallest complexity
exponent in a wide range of rates), FBq � δ log2(1/(1−R))
for small relative distances, also linear in δ, this technique is
expected to win at rates such that 1−R . (e zeff)

−1.

V. CONCLUSION

We suggested a cluster-based technique for finding the dis-
tance of very sparse quantum LDPC codes. It beats the existing
non-probabilistic algorithms for codes with sufficiently small
relative distances (all known families of quantum LDPC codes
have distance scaling as n1/2 or lower at large n). It also
beats the probabilistic random window technique for codes
with sufficiently high rates.
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