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Abstract

New lower bounds on the total variation distance between thedistribution of a sum of independent Bernoulli random
variables and the Poisson random variable (with the same mean) are derived via the Chen-Stein method. The new bounds rely
on a non-trivial modification of the analysis by Barbour and Hall (1984) which surprisingly gives a significant improvement.
A use of the new lower bounds is addressed.
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I. INTRODUCTION

Convergence to the Poisson distribution, for the number of occurrences of possibly dependent events, naturally
arises in various applications. Following the work of Poisson, there has been considerable interest in how well the
Poisson distribution approximates the binomial distribution.

The basic idea which serves for the starting point of the so called Chen-Stein method for the Poisson approximation
is the following (see Chen (1975)). Let{Xi}ni=1 be independent Bernoulli random variables withE(Xi) = pi. Let
W ,

∑n
i=1 Xi andVi ,

∑
j 6=iXj for every i ∈ {1, . . . , n}, andZ ∼ Po(λ) with meanλ ,

∑n
i=1 pi. It is easy to

show that
E[λf(Z + 1)− Zf(Z)] = 0 (1)

holds for an arbitrary bounded functionf : N0 → R whereN0 , {0, 1, . . .}. Furthermore (see, e.g., Chapter 2 in
Ross and Peköz (2007))

E
[
λf(W + 1)−Wf(W )

]
=

n∑

j=1

p2j E
[
f(Vj + 2)− f(Vj + 1)

]
(2)

which then serves to provide rigorous bounds on the difference between the distributions ofW andZ, by the Chen-
Stein method for Poisson approximations. This method, and more generally the so calledStein method, serves as a
powerful tool for the derivation of rigorous bounds for various distributional approximations. Nice expositions of
this method are provided by, e.g., Arratia et al. (1990), Ross and Peköz (2007) and Ross (2011). Furthermore, some
interesting links between the Chen-Stein method and information-theoretic functionals in the context of Poisson
and compound Poisson approximations are provided by Barbour et al. (2010).

Throughout this letter, the term ‘distribution’ refers to adiscrete probability mass function of an integer-valued
random variable. In the following, we introduce some known results that are related to the presentation of the new
results.

Definition 1: Let P andQ be two probability measures defined on a setX . Then, the total variation distance
betweenP andQ is defined by

dTV(P,Q) , sup
BorelA⊆X

(
P (A)−Q(A)

)
(3)

where the supremum is taken w.r.t. all the Borel subsetsA of X . If X is a countable set then (3) is simplified to

dTV(P,Q) =
1

2

∑

x∈X
|P (x)−Q(x)| = ||P −Q||1

2
(4)

so the total variation distance is equal to half of theL1-distance between the two probability distributions.
Among old and interesting results that are related to the Poisson approximation, Le Cam’s inequality (see Le Cam

(1960)) provides an upper bound on the total variation distance between the distribution of the sumW =
∑n

i=1Xi

of n independent Bernoulli random variables{Xi}ni=1, whereXi ∼ Bern(pi), and a Poisson distribution Po(λ)
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with meanλ =
∑n

i=1 pi. This inequality states thatdTV
(
PW ,Po(λ)

)
≤ ∑n

i=1 p
2
i so if, e.g.,Xi ∼ Bern

(
λ
n

)
for

every i ∈ {1, . . . , n} (referring to the case whereW is binomially distributed) then this upper bound is equal to
λ2

n , decaying to zero asn → ∞. The following theorem combines Theorems 1 and 2 of Barbour and Hall (1984),
and its proof relies on the Chen-Stein method:

Theorem 1:Let W =
∑n

i=1Xi be a sum ofn independent Bernoulli random variables withE(Xi) = pi for
i ∈ {1, . . . , n}, andE(W ) = λ. Then, the total variation distance between the probability distribution ofW and
the Poisson distribution with meanλ satisfies

1

32

(
1 ∧ 1

λ

) n∑

i=1

p2i ≤ dTV(PW ,Po(λ)) ≤
(
1− e−λ

λ

) n∑

i=1

p2i (5)

wherea ∧ b , min{a, b} for everya, b ∈ R.
As a consequence of Theorem 1, it follows that the ratio between the upper and lower bounds in (5) is not larger

than 32, irrespectively of the values of{pi}. The factor 1
32 in the lower bound was claimed to be improvable to

1
14 with no explicit proof (see Remark 3.2.2 in Barbour et al. (1992)). This shows that, for independent Bernoulli
random variables, these bounds are essentially tight. Furthermore, note that the upper bound in (5) improves Le
Cam’s inequality; for large values ofλ, this improvement is by approximately a factor of1

λ .
This letter presents new lower bounds on the total variationdistance between the distribution of a sum of

independent Bernoulli random variables and the Poisson random variable (with the same mean). The derivation
of these new bounds generalizes and improves the analysis byBarbour and Hall (1984), based on the Chen-Stein
method for the Poisson approximation. This letter concludes by outlining a use of the new lower bounds for the
analysis in Sason (2012), followed by a comparison of the newbounds to previously reported bounds.

This work forms a continuation of the line of work in Barbour and Chen (2005)–Kontoyiannis et al. (2005)
where the Chen-Stein method was studied in the context of thePoisson and compound Poisson approximations,
and it was linked to an information-theoretic context by Barbour et al. (2010), Kontoyiannis et al. (2005), and
Sason (2012).

II. I MPROVED LOWER BOUNDS ON THETOTAL VARIATION DISTANCE

In the following, we introduce an improved lower bound on thetotal variation distance and then provide a
loosened version of this bound that is expressed in closed form.

Theorem 2:In the setting of Theorem 1, the total variation distance between the probability distribution ofW
and the Poisson distribution with meanλ satisfies the inequality

K1(λ)

n∑

i=1

p2i ≤ dTV(PW ,Po(λ)) ≤
(
1− e−λ

λ

) n∑

i=1

p2i (6)

where
K1(λ) , sup

α1, α2 ∈ R,

α2 ≤ λ+ 3

2
,

θ > 0

(
1− hλ(α1, α2, θ)

2 gλ(α1, α2, θ)

)
(7)

and
hλ(α1, α2, θ) ,

3λ+ (2− α2 + λ)3 − (1− α2 + λ)3

θλ

+
|α1 − α2|

(
2λ+ |3− 2α2|

)
exp

(
− (1−α2)2+

θλ

)

θλ
(8)

x+ , max{x, 0}, x2+ ,
(
x+)

2, ∀x ∈ R (9)

gλ(α1, α2, θ) , max

{∣∣∣∣∣

(
1 +

√
2

θλe
· |α1 − α2|

)
λ+max

ui

{
x(ui)

}
∣∣∣∣∣ ,

∣∣∣∣∣

(
2e−

3

2 +

√
2

θλe
· |α1 − α2|

)
λ−min

ui

{
x(ui)

}
∣∣∣∣∣

}
(10)
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x(u) , (c0 + c1u+ c2u
2) exp(−u2), ∀u ∈ R (11)

{ui} ,

{
u ∈ R : 2c2u

3 + 2c1u
2 − 2(c2 − c0)u− c1 = 0

}
(12)

c0 , (α2 − α1)(λ− α2) (13)

c1 ,
√
θλ (λ+ α1 − 2α2) (14)

c2 , −θλ. (15)

Proof: See Section IV-A. The derivation relies on the Chen-Stein method for the Poisson approximation, and
it improves (significantly) the constant in the lower bound of Theorem 2 of Barbour and Hall (1984).

Remark 1:The upper and lower bounds on the total variation distance in(6) scale like
∑n

i=1 p
2
i , similarly to

the known bounds in Theorem 1, but they offer a significant improvement in their tightness (see Section V).

Remark 2:The cardinality of the set{ui} in (12) is equal to 3 (see Section IV-A).

Remark 3:The optimization that is required for the computation ofK1 in (7) w.r.t. the three parametersα1, α2 ∈
R andθ ∈ R

+ is performed numerically.

In the following, we introduce a looser lower bound on the total variation distance as compared to the lower bound
in Theorem 2, but its advantage is that it is expressed in closed form. Both lower bounds improve (significantly)
the lower bound in Theorem 2 of Barbour and Hall (1984). The following lower bound follows from Theorem 2
via the special choice ofα1 = α2 = λ that is included in the optimization set forK1 on the right-hand side
of (7). Following this sub-optimal choice, the lower bound in the next corollary is obtained by a derivation of a
closed-form expression for the third free parameterθ ∈ R

+ (in fact, this was our first step towards the derivation
of an improved lower bound on the total variation distance).

Corollary 1: Under the assumptions in Theorem 2, then

K̃1(λ)

n∑

i=1

p2i ≤ dTV(PW ,Po(λ)) ≤
(
1− e−λ

λ

) n∑

i=1

p2i (16)

where

K̃1(λ) ,
e

2λ

1− 1
θ

(
3 + 7

λ

)

θ + 2e−1/2
(17)

θ , 3 +
7

λ
+

1

λ
·
√

(3λ+ 7)
[
(3 + 2e−1/2)λ+ 7

]
. (18)

Proof: See Section IV-B.

III. O UTLOOK

We conclude our discussion in this letter by outlining a use of the new lower bounds in this work: the use of the
new lower bound on the total variation distance for the Poisson approximation of a sum of independent Bernoulli
random variables is exemplified by Sason (2012). This work introduces new entropy bounds for discrete random
variables via maximal coupling, providing bounds on the difference between the entropies of two discrete random
variables in terms of the local and total variation distances between their probability mass functions. The new lower
bound on the total variation distance for the Poisson approximation from this work was involved in the calculation of
some improved bounds on the difference between the entropy of a sum of independent Bernoulli random variables
and the entropy of a Poisson random variable of the same mean.A possible application of the latter problem is
related to getting bounds on the sum-rate capacity of a noiselessK-user binary adder multiple-access channel (see
Sason (2012)).
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IV. PROOFS OF THENEW BOUNDS

A. Proof of Theorem 2

The proof of Theorem 2 starts similarly to the proof of Theorem 2 of Barbour and Hall (1984). However, it
significantly deviates from the original analysis in order to derive an improved lower bound on the total variation
distance.

Let {Xi}ni=1 be independent Bernoulli random variables withE(Xi) = pi. Let W ,
∑n

i=1 Xi, Vi ,
∑

j 6=iXj

for every i ∈ {1, . . . , n}, andZ ∼ Po(λ) with meanλ ,
∑n

i=1 pi. From the basic equation of the Chen-Stein
method, equation (1) holds for an arbitrary bounded function f : N0 → R. Furthermore, it follows from the proof
of Theorem 2 of Barbour and Hall (1984) that

dTV(PW , Po(λ)) ≥

n∑

j=1

{
p2j E

[
f(Vj + 2)− f(Vj + 1)

]}

2 supk∈N0

∣∣λf(k + 1)− kf(k)
∣∣ (19)

which holds, in general, for an arbitrary bounded functionf : N0 → R.

At this point, we deviate from the proof of Theorem 2 of Barbour and Hall (1984) by generalizing and refining
(in a non-trivial way) the original analysis. The general problem with the current lower bound in (19) is that it is
not calculable in closed form for a givenf , so one needs to choose a proper functionf and derive a closed-form
expression for a lower bound on the right-hand side of (19). To this end, let

f(k) , (k − α1) exp

(
−(k − α2)

2

θλ

)
, ∀ k ∈ N0 (20)

whereα1, α2 ∈ R andθ ∈ R
+ are fixed constants (note thatθ in (20) needs to be positive forf to be a bounded

function). In order to derive a lower bound on the total variation distance, we calculate a lower bound on the
numerator and an upper bound on the denominator of the right-hand side of (19) for the functionf in (20).
Referring to the numerator of the right-hand side of (19) with f in (20), for everyj ∈ {1, . . . , n},

f(Vj + 2)− f(Vj + 1)

=

∫ Vj+2−α2

Vj+1−α2

d

du

(
(u+ α2 − α1) exp

(
−u2

θλ

))
du

=

∫ Vj+2−α2

Vj+1−α2

(
1− 2u(u+ α2 − α1)

θλ

)
exp
(
−u2

θλ

)
du

=

∫ Vj+2−α2

Vj+1−α2

(
1− 2u2

θλ

)
exp
(
−u2

θλ

)
du− 2(α2 − α1)

θλ

∫ Vj+2−α2

Vj+1−α2

u exp
(
−u2

θλ

)
du

=

∫ Vj+2−α2

Vj+1−α2

(
1− 2u2

θλ

)
exp
(
−u2

θλ

)
du

−(α2 − α1)

[
exp

(
−(Vj + 2− α2)

2

θλ

)
− exp

(
−(Vj + 1− α2)

2

θλ

)]
. (21)

We rely in the following on the inequality

(1− 2x) e−x ≥ 1− 3x, ∀x ≥ 0.
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Applying it to the integral on the right-hand side of (21) gives that

f(Vj + 2)− f(Vj + 1)

≥
∫ Vj+2−α2

Vj+1−α2

(
1− 3u2

θλ

)
du− (α2 − α1)

[
exp

(
−(Vj + 2− α2)

2

θλ

)
− exp

(
−(Vj + 1− α2)

2

θλ

)]

≥ 1−
(
Vj + 2− α2

)3 −
(
Vj + 1− α2

)3

θλ

−
∣∣α2 − α1

∣∣ ·
∣∣∣∣exp

(
−(Vj + 2− α2)

2

θλ

)
− exp

(
−(Vj + 1− α2)

2

θλ

)∣∣∣∣ . (22)

In order to proceed, note that ifx1, x2 ≥ 0 then (on the basis of the mean-value theorem of calculus)

|e−x2 − e−x1 |
=
∣∣e−c (x1 − x2)

∣∣ for some c ∈ [x1, x2]

≤ e−min{x1,x2} |x1 − x2|
which, by applying it to the second term on the right-hand side of (22), gives that for everyj ∈ {1, . . . , n}

∣∣∣∣exp
(
−(Vj + 2− α2)

2

θλ

)
− exp

(
−(Vj + 1− α2)

2

θλ

)∣∣∣∣

≤ exp


−

min
{
(Vj + 2− α2)

2, (Vj + 1− α2)
2
}

θλ


 ·

(
(Vj + 2− α2)

2 − (Vj + 1− α2)
2

θλ

)
. (23)

SinceVj =
∑

i 6=j Xi ≥ 0 then

min
{
(Vj + 2− α2)

2, (Vj + 1− α2)
2
}

≥
{

0 if α2 ≥ 1

(1− α2)
2 if α2 < 1

=
(
1− α2

)2
+

(24)

where
x+ , max{x, 0}, x2+ ,

(
x+
)2
, ∀x ∈ R.

Hence, the combination of the two inequalities in (23)–(24)gives that
∣∣∣∣exp

(
−(Vj + 2− α2)

2

θλ

)
− exp

(
−(Vj + 1− α2)

2

θλ

)∣∣∣∣

≤ exp

(
−(1− α2)

2
+

θλ

)
·
(∣∣(Vj + 2− α2)

2 − (Vj + 1− α2)
2
∣∣

θλ

)

= exp

(
−(1− α2)

2
+

θλ

)
· |2Vj + 3− 2α2|

θλ

≤ exp

(
−(1− α2)

2
+

θλ

)
· 2Vj + |3− 2α2|

θλ
(25)

and therefore, a combination of the inequalities in (22) and(25) gives that

f(Vj + 2)− f(Vj + 1)

≥ 1−
(
Vj + 2− α2

)3 −
(
Vj + 1− α2

)3

θλ

−
∣∣α2 − α1

∣∣ · exp
(
−(1− α2)

2
+

θλ

)
· 2Vj + |3− 2α2|

θλ
. (26)
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Let Uj , Vj − λ; then

f(Vj + 2)− f(Vj + 1)

≥ 1−
(
Uj + λ+ 2− α2

)3 −
(
Uj + λ+ 1− α2

)3

θλ

−
∣∣α2 − α1

∣∣ · exp
(
−(1− α2)

2
+

θλ

)
· 2Uj + 2λ+ |3− 2α2|

θλ

= 1−
3U2

j + 3
(
3− 2α2 + 2λ

)
Uj + (2− α2 + λ)3 − (1− α2 + λ)3

θλ

−
∣∣α2 − α1

∣∣ · exp
(
−(1− α2)

2
+

θλ

)
· 2Uj + 2λ+ |3− 2α2|

θλ
. (27)

In order to derive a lower bound on the numerator of the right-hand side of (19), for the functionf in (20), we
need to calculate the expected value of the right-hand side of (27). To this end, the first and second moments of
Uj are calculated as follows:

E(Uj)

= E(Vj)− λ

=
∑

i 6=j

pi −
n∑

i=1

pi

= −pj (28)

and

E(U2
j )

= Var(Uj) +
(
E(Uj)

)2

= Var(Vj) + p2j
(a)
=
∑

i 6=j

pi(1− pi) + p2j

=
∑

i 6=j

pi −
∑

i 6=j

p2i + p2j

= λ− pj −
∑

i 6=j

p2i + p2j . (29)

where equality (a) holds since the binary random variables{Xi}ni=1 are independent and Var(Xi) = pi(1− pi). By
taking expectations on both sides of (27), one obtains from (28) and (29) that

E
[
f(Vj + 2)− f(Vj + 1)

]

≥ 1−
3
(
λ− pj −

∑
i 6=j p

2
i + p2j

)
+ 3
(
3− 2α2 + 2λ

)(
−pj

)
+ (2− α2 + λ)3 − (1− α2 + λ)3

θλ

−
∣∣α2 − α1

∣∣ · exp
(
−(1− α2)

2
+

θλ

)
·
(−2pj + 2λ+ |3− 2α2|

θλ

)

= 1−
3λ+ (2− α2 + λ)3 − (1 − α2 + λ)3 −

[
3pj(1− pj) + 3

∑
i 6=j p

2
i + 3

(
3− 2α2 + 2λ

)
pj

]

θλ

−
(∣∣α2 − α1

∣∣ (2λ− 2pj + |3− 2α2|
)

θλ

)
· exp

(
−(1− α2)

2
+

θλ

)

≥ 1− 3λ+ (2− α2 + λ)3 − (1 − α2 + λ)3 −
(
9− 6α2 + 6λ

)
pj

θλ
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−
(∣∣α2 − α1

∣∣ (2λ+ |3− 2α2|
)

θλ

)
· exp

(
−(1− α2)

2
+

θλ

)
. (30)

Therefore, from (30), the following lower bound on the right-hand side of (19) holds

n∑

j=1

{
p2j E

[
f(Vj + 2)− f(Vj + 1)

]}
≥
(
3
(
3− 2α2 + 2λ

)

θλ

)
n∑

j=1

p3j

+


1−

3λ+ (2− α2 + λ)3 − (1− α2 + λ)3 + |α1 − α2|
(
2λ+ |3− 2α2|

)
exp

(
− (1−α2)2+

θλ

)

θλ




n∑

j=1

p2j . (31)

Note that ifα2 ≤ λ + 3
2 , which is a condition that is involved in the maximization of(7), then the first term on

the right-hand side of (31) can be removed, and the resultinglower bound on the numerator of the right-hand side
of (19) takes the form

n∑

j=1

{
p2j E

[
f(Vj + 2)− f(Vj + 1)

]}
≥
(
1− hλ(α1, α2, θ)

) n∑

j=1

p2j (32)

where the functionhλ is introduced in (8).
We turn now to deriving an upper bound on the denominator of the right-hand side of (19). Therefore, we need

to derive a closed-form upper bound onsupk∈N0

∣∣λ f(k+1)−k f(k)
∣∣ with the functionf in (20). For everyk ∈ N0,

λ f(k + 1)− k f(k) = λ
[
f(k + 1) − f(k)

]
+ (λ− k) f(k). (33)

In the following, we derive bounds on each of the two terms on the right-hand side of (33), and we start with the
first term. Let

t(u) , (u+ α2 − α1) exp

(
−u2

θλ

)
, ∀u ∈ R

thenf(k) = t(k − α2) for everyk ∈ N0, and by the mean-value theorem of calculus,

f(k + 1)− f(k)

= t(k + 1− α2)− t(k − α2)

= t′(ck) for someck ∈ [k − α2, k + 1− α2]

=

(
1− 2c2k

θλ

)
exp

(
− c2k
θλ

)
+

(
2(α1 − α2)ck

θλ

)
exp

(
− c2k
θλ

)
. (34)

Referring to the first term on the right-hand side of (34), let

p(u) , (1− 2u)e−u, ∀u ≥ 0

then the global maximum and minimum ofp over the non-negative real line are obtained atu = 0 and u = 3
2 ,

respectively, and therefore
−2e−

3

2 ≤ p(u) ≤ 1, ∀u ≥ 0.

Let u = c2k
θλ ; then it follows that the first term on the right-hand side of (34) satisfies the inequality

− 2e−
3

2 ≤
(
1− 2c2k

θλ

)
exp
(
− c2k
θλ

)
≤ 1. (35)

Furthermore, referring to the second term on the right-handside of (34), let

q(u) , ue−u2

, ∀u ∈ R

then the global maximum and minimum ofq over the real line are obtained atu = +
√
2
2 andu = −

√
2
2 , respectively,

and therefore

−1

2

√
2

e
≤ q(u) ≤ +

1

2

√
2

e
, ∀u ∈ R.
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Let this timeu =
√

ck
θλ ; then it follows that the second term on the right-hand side of (34) satisfies

∣∣∣∣
(
2(α1 − α2)ck

θλ

)
· exp

(
− c2k
θλ

)∣∣∣∣ ≤
√

2

θλe
· |α1 − α2|. (36)

Hence, on combining the equality in (34) with the two inequalities in (35) and (36), it follows that the first term
on the right-hand side of (33) satisfies

−
(
2λe−

3

2 +

√
2λ

θe
· |α1 − α2|

)
≤ λ

[
f(k + 1)− f(k)

]
≤ λ+

√
2λ

θe
· |α1 − α2| , ∀ k ∈ N0. (37)

We continue the analysis by a derivation of bounds on the second term of the right-hand side of (33). For the
function f in (20), it is equal to

(λ− k) f(k)

= (λ− k)(k − α1) exp

(
−(k − α2)

2

θλ

)

=
[
(λ− α2) + (α2 − k)

] [
(k − α2) + (α2 − α1)

]
exp

(
−(k − α2)

2

θλ

)

=
[
(λ− α2)(k − α2) + (α2 − α1)(λ− α2)− (k − α2)

2 + (α1 − α2)(k − α2)
]
exp

(
−(k − α2)

2

θλ

)

=
[√

θλ (λ− α2) vk − θλ v2k −
√
θλ (α2 − α1) vk + (α2 − α1)(λ− α2)

]
e−v2

k , vk ,
k − α2√

θλ
∀ k ∈ N0

= (c0 + c1vk + c2v
2
k) e

−v2
k (38)

where the coefficientsc0, c1 andc2 are introduced in Eqs. (13)–(15), respectively. In order toderive bounds on the
left-hand side of (38), let us find the global maximum and minimum of the functionx in (11):

x(u) , (c0 + c1u+ c2u
2)e−u2 ∀u ∈ R.

Note thatlimu→±∞ x(u) = 0 andx is differentiable over the real line, so the global maximum and minimum of
x are attained at finite points and their corresponding valuesare finite. By setting the derivative ofx to zero, we
have that the candidates for the global maximum and minimum of x over the real line are the real zeros{ui} of
the cubic polynomial equation in (12). Note that by their definition in (12), the values of{ui} are independentof
the value ofk ∈ N0, and also the size of the set{ui} is equal to 3 (see Remark 2). Hence, it follows from (38)
that

min
i∈{1,2,3}

{x(ui)} ≤ (λ− k) f(k) ≤ max
i∈{1,2,3}

{x(ui)} , ∀ k ∈ N0 (39)

where these bounds on the second term on the right-hand side of (33) are independent of the value ofk ∈ N0.
In order to get bounds on the left-hand side of (33), note thatfrom the bounds on the first and second terms on

the right-hand side of (33) (see (37) and (39), respectively) then for everyk ∈ N0

min
i∈{1,2,3}

{x(ui)} −
(
2λe−

3

2 +

√
2λ

θe
· |α1 − α2|

)

≤ λ f(k + 1)− k f(k)

≤ max
i∈{1,2,3}

{x(ui)}+ λ+

√
2λ

θe
· |α1 − α2| (40)

which yields that the following inequality is satisfied:

sup
k∈N0

|λ f(k + 1)− k f(k)| ≤ gλ(α1, α2, θ) (41)

where the functiongλ is introduced in (10). Finally, by combining the inequalities in Eqs. (19), (32) and (41), the
lower bound on the total variation distance in (6) follows. The existing upper bound on the total variation distance
in (6) was derived in Theorem 1 of Barbour and Hall (1984) (seeTheorem 1 here). This completes the proof of
Theorem 2.
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B. Proof of Corollary 1

Corollary 1 follows as a special case of Theorem 2 when the proposed functionf in (20) is chosen such that two
of its three free parameters (i.e.,α1 andα2) are determined sub-optimally, and its third parameter (θ) is determined
optimally in terms of the sub-optimal selection of the two other parameters. More explicitly, letα1 andα2 in (20)
be set to be equal toλ (i.e.,α1 = α2 = λ). From (13)–(15), this setting implies thatc0 = c1 = 0 andc2 = −θλ < 0
(sinceθ, λ > 0). The cubic polynomial equation in (12), which correspondsto this (possibly sub-optimal) setting
of α1 andα2, is

2c2u
3 − 2c2u = 0

whose zeros areu = 0,±1. The functionx in (11) therefore takes the form

x(u) = c2u
2e−u2 ∀u ∈ R

so x(0) = 0 andx(±1) = c2
e < 0. This implies that

min
i∈{1,2,3}

x(ui) =
c2

e
, max

i∈{1,2,3}
x(ui) = 0,

and thereforehλ andgλ in (8) and (10), respectively, are simplified to

hλ(λ, λ, θ) =
3λ+ 7

θλ
, (42)

gλ(λ, λ, θ) = λ max
{
1, 2e−

3

2 + θe−1
}
. (43)

This sub-optimal setting ofα1 andα2 in (20) implies that the coefficientK1 in (7) is replaced with a loosened
version

K ′
1(λ) , sup

θ>0

(
1− hλ(λ, λ, θ)

2gλ(λ, λ, θ)

)
. (44)

Let θ ≥ e − 2√
e
; then (43) is simplified togλ(λ, λ, θ) = λ

(
2e−

3

2 + θe−1
)
. It therefore follows from (6), (7) and

(42)–(44) that

dTV
(
PW ,Po(λ)

)
≥ K̃1(λ)

n∑

i=1

p2i (45)

where

K̃1(λ) = sup
θ≥e− 2

√

e

(
1− 3λ+7

θλ

2λ
(
2e−

3

2 + θe−1
)
)

(46)

and, in general,K ′
1(λ) ≥ K̃1(λ) due to the above restricted constraint onθ (see (44) versus (46)). Differentiating

the function inside the supremum w.r.t.θ and setting its derivative to zero, one gets the following quadratic equation
in θ:

λ θ2 − 2(3λ + 7) θ − 2(3λ+ 7)e−1 = 0

whose positive solution is the optimized value ofθ in (18). Furthermore, it is clear that this value ofθ in (18) is
larger than, e.g., 3, so it satisfies the constraint in (46). This completes the proof of Corollary 1.

V. A COMPARISON OF THENEW BOUNDS WITH KNOWN RESULTS

The new lower bounds on the total variation distance in Theorem 2 and Corollary 1 scale like
∑n

i=1 p
2
i , similarly

to the known upper and lower bounds in Theorem 1 that originally appear in Theorems 1 and 2 of Barbour and Hall
(1984). However, the new lower bounds offer a significant improvement over the known lower bound in Theorem 1.
More explicitly, from Theorems 1 and 2 of Barbour and Hall (1984), the ratio between the upper and lower bounds
on the total variation distance (see (5)) is equal to 32 in thetwo extreme cases whereλ → 0 or λ → ∞. In the
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following, we calculate the ratio of the same upper bound andthe new lower bound in Corollary 1 at these two
extreme cases. In the limit whereλ → ∞, this ratio tends to

lim
λ→∞

(
1−e−λ

λ

) n∑

i=1

p2i

(
1− 3λ+7

λθ

2λ
(
2e−3/2+θ e−1

)
) n∑

i=1

p2i

(θ = θ(λ) is given in Eq. (18))

=
2

e
lim
λ→∞

θ
(
2e−1/2 + θ

)

θ −
(
3 + 7

λ

)

=
6

e

(
1 +

√
1 +

2

3
· e−1/2

)2

≈ 10.539 (47)

where the last equality follows from (18), sincelimλ→∞ θ = 3 +
√

3(3 + 2e−1/2). Furthermore, the limit of this
ratio whenλ → 0 is equal to

2 lim
λ→0

(
1− e−λ

λ

)
lim
λ→0

(
λ
(
2e−3/2 + θ e−1

)

1− 3λ+7
λθ

)

(a)
=

28

e
lim
λ→0

(
2e−1/2 + θ)

θ −
(
3 + 7

λ

)
)

(b)
=

56

e
≈ 20.601 (48)

where equalities (a) and (b) hold since, from (18), it follows thatlimλ→0(λθ) = 14. This implies that Corollary 1
improves the original lower bound on the total variation distance in Theorem 2 of Barbour and Hall (1984) by
a factor of 32

10.539 ≈ 3.037 in the limit whereλ → ∞, and it also improves it by a factor of 3220.601 ≈ 1.553 if
λ → 0 while still having a closed-form expression for the lower bound in Corollary 1. The only reason for this
improvement is related to the optimal choice of the free parameterθ in (18), versus its sub-optimal choice in the
proof of Theorem 2 of Barbour and Hall (1984). This observation has motivated to further improve the lower
bound by introducing the two additional parametersα1, α2 ∈ R in Theorem 2; these parameters give two additional
degrees of freedom in the functionf in (20) (according to the proof in Section IV-B, these two parameters are set
to be equal toλ for the derivation of the loosened and simplified bound in Corollary 1). The improvement in the
lower bound of Theorem 2 (in comparison to Corollary 1) is especially dominant for low values ofλ, as is shown
in Figure 1. Note, however, that no improvement is obtained for high values ofλ (e.g., forλ ≥ 20, as is shown by
Figure 1 on noticing that the curves in this plot merge at large values ofλ).

The lower bound on the total variation distance in Theorem 2 implies the bound in Corollary 1 (see the proof in
Section IV-B). Corollary 1 further implies the lower bound on the total variation distance in Theorem 2 of Barbour
and Hall (1984) (see Theorem 1 here). The latter claim follows from the fact that the lower bound in (45) with the
coefficientK̃1(λ) in (46) was loosened in the proof of Theorem 2 of Barbour and Hall (1984) by a sub-optimal
selection of the parameterθ, which leads to a lower bound oñK1(λ) (the sub-optimal selection ofθ in the proof
of Theorem 2 of Barbour and Hall (1984) isθ = 21max

{
1, 1

λ

}
). On the other hand, the optimized value ofθ that

is used in (18) provides an exact closed-form expression forK̃1(λ) in (46), and it leads to the derivation of the
improved lower bound in Corollary 1.

Theorem 1.2 of Deheuvels and Pfeifer (1986) provides an asymptotic result for the total variation distance
between the distribution of the sumW of n independent Bernoulli random variables withE(Xi) = pi and the
Poisson distribution with meanλ =

∑n
i=1 pi. It shows that when

∑n
i=1 pi → ∞ andmax1≤i≤n pi → 0 asn → ∞

then

dTV(PW ,Po(λ)) ∼ 1√
2πe λ

n∑

i=1

p2i . (49)

This implies that the ratio of the upper bound on the total variation distance in Theorem 1 of Barbour and Hall
(1984) (see Theorems 1 here) and this asymptotic expressionis equal to

√
2πe ≈ 4.133. Therefore, the ratio between
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Fig. 1. The figure presents curves that correspond to ratios of upper and lower bounds on the total variation distance between the sum of
independent Bernoulli random variables and the Poisson distribution with the same meanλ. The upper bound on the total variation distance
for all these three curves is the bound given by Barbour and Hall (see Theorem 1 of Barbour and Hall (1984) or Theorem 1 here). The lower
bounds that the three curves refer to are the following. The curve at the bottom (i.e., the one which provides the lowest ratio for a fixedλ)
is the improved lower bound on the total variation distance that is introduced in Theorem 2. The curve slightly above it for small values of
λ corresponds to the looser lower bound obtained whenα1 andα2 in (7) are set to be equal (i.e.,α1 = α2 , α is their common value),
and so the optimization ofK1 for this curve is reduced to a two-parameter maximization ofK1 over the two free parametersα ∈ R and
θ ∈ R

+. Finally, the curve at the top of this figure corresponds to the further loosening of this lower bound whereα is set to be equal toλ;
this leads to a single-parameter maximization ofK1 (over the parameterθ ∈ R

+) whose optimization leads to the closed-form expression
for the lower bound in Corollary 1. For comparison, in order to assess the enhanced tightness of the new lower bounds, notethat the ratio
of the upper and lower bounds on the total variation distancefrom Theorems 1 and 2 of Barbour and Hall (1984) (or Theorem 1 here) is
roughly equal to 32 for all values ofλ.

the exact asymptotic value in (49) and the new lower bound in (6) is equal to10.539√
2πe

≈ 2.55. It therefore follows
that, in the limit whereλ → 0, the new lower bound on the total variation in (6) is smaller than the exact value by
no more than 1.69, and forλ ≫ 1, it is smaller than the exact asymptotic result by a factor of2.55.
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