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Abstract

New lower bounds on the total variation distance betweendibtibution of a sum of independent Bernoulli random
variables and the Poisson random variable (with the sam&aea derived via the Chen-Stein method. The new bounds rely
on a non-trivial modification of the analysis by Barbour anallH{1984) which surprisingly gives a significant improveme
A use of the new lower bounds is addressed.
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. INTRODUCTION

Convergence to the Poisson distribution, for the numbercoticences of possibly dependent events, naturally
arises in various applications. Following the work of Porgsthere has been considerable interest in how well the
Poisson distribution approximates the binomial distiitut

The basic idea which serves for the starting point of the #ec¢&hen-Stein method for the Poisson approximation
is the following (see Chen (1975)). LéX;}" ; be independent Bernoulli random variables withX;) = p;. Let
W23, X;andV; £ 35, X; for everyi € {1,...,n}, andZ ~ Po()\) with mean\ £ Y77, p;. It is easy to
show that

EM(Z+1) = 2f(2)] =0 1)

holds for an arbitrary bounded functigh: Ny — R whereN, = {0, 1,...}. Furthermore (see, e.g., Chapter 2 in
Ross and Pekdz (2007))

E[Nf(W +1) — Zpy F(Vi+2) = f(V;+1)] )

which then serves to provide rigorous bounds on the differdretween the distributions & andZ, by the Chen-
Stein method for Poisson approximations. This method, aockrgenerally the so calleSitein methodserves as a
powerful tool for the derivation of rigorous bounds for vars distributional approximations. Nice expositions of
this method are provided by, e.g., Arratia et al. (1990),9=asd Pekdz (2007) and Ross (2011). Furthermore, some
interesting links between the Chen-Stein method and irdition-theoretic functionals in the context of Poisson
and compound Poisson approximations are provided by Barstoal. (2010).

Throughout this letter, the term ‘distribution’ refers tadescrete probability mass function of an integer-valued
random variable. In the following, we introduce some knowsults that are related to the presentation of the new
results.

Definition 1: Let P and ) be two probability measures defined on a &etThen, the total variation distance
betweenP and(@ is defined by

drv(P,Q) £ sup (P(A) - Q(A)) ©)
Borel ACX
where the supremum is taken w.r.t. all the Borel subgetsf X. If X' is a countable set thehl(3) is simplified to
1P — Q[
drv(P,Q) = ;’P Qz)| = — 4)

so the total variation distance is equal to half of hedistance between the two probability distributions.
Among old and interesting results that are related to thed@ai approximation, Le Cam’s inequality (see Le Cam

(1960)) provides an upper bound on the total variation distebetween the distribution of the suin = >"" | X;

of n independent Bernoulli random variabl¢X;}" ,, where X; ~ Bern(p;), and a Poisson distribution P9
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with meanX = 3°7 | p;. This inequality states thatry (P, Po(\)) < 3%, p? so if, e.g.,X; ~ Bern(2) for
everyi € {1,...,n} (referring to the case whed is binomially distributed) then this upper bound is equal to
2* decaying to zero as — co. The following theorem combines Theorems 1 and 2 of Barbadrtall (1984),
and its proof relies on the Chen-Stein method:

Theorem l:Let W = """ | X; be a sum ofn independent Bernoulli random variables wiltiX;) = p; for
i € {l,...,n}, andE(W) = \. Then, the total variation distance between the probghdistribution of W and
the Poisson distribution with meaxn satisfies

3% (145) S0 < dre(Pw,Poy)) < <1
=1

wherea A b £ min{a, b} for everya,b € R.

As a consequence of Theoréin 1, it follows that the ratio betwtbe upper and lower bounds id (5) is not larger
than 32, irrespectively of the values ¢f;}. The factor in the lower bound was claimed to be improvable to

W|th no explicit proof (see Remark 3.2.2 in Barbour et al.92p. This shows that, for independent Bernoulli
random variables, these bounds are essentially tighth&umtore, note that the upper bound [ih (5) improves Le
Cam’s inequality; for large values df, this improvement is by approximately a factork).f

This letter presents new lower bounds on the total variatimtance between the distribution of a sum of
independent Bernoulli random variables and the Poissodorarnvariable (with the same mean). The derivation
of these new bounds generalizes and improves the analydaitibour and Hall (1984), based on the Chen-Stein
method for the Poisson approximation. This letter conduloke outlining a use of the new lower bounds for the
analysis in Sason (2012), followed by a comparison of the beunds to previously reported bounds.

This work forms a continuation of the line of work in BarboundaChen (2005)—Kontoyiannis et al. (2005)
where the Chen-Stein method was studied in the context oPtisson and compound Poisson approximations,
and it was linked to an information-theoretic context by lBam et al. (2010), Kontoyiannis et al. (2005), and
Sason (2012).

2 n
) S0 5)
=1

[I. IMPROVED LOWERBOUNDS ON THETOTAL VARIATION DISTANCE

In the following, we introduce an improved lower bound on toéal variation distance and then provide a
loosened version of this bound that is expressed in closeu. fo

Theorem 2:In the setting of Theoreinl 1, the total variation distancevieen the probability distribution off’
and the Poisson distribution with meansatisfies the inequality

n A\ 7
N S5 < dny(Pur. PO() < (1 ) S (6)
i=1 i=1

where 1-— h)\(al (e%) 9))
1IN su < = 7
l( ) P 29)\(0417042,9) ( )

ay,as € R,
(6%} S )\ + %7
0>0
and AN+ (2 -2+ A3 —(1—az+))3
ha(ai, az,0) =
O
lag — | (2X + |3 — 2as]) exp (—%) o
+ o (8)
r4 = max{xz,0}, i £ ( 2, VzeR 9)
aa (a1, az,0) max{ ( lag — aﬂ) A +max{w U }',
‘(26 : lag — a2|> A— mm{w(ul)}‘ } (10)
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z(u) £ (co + cru + cau?) exp(—u?), VYueR (11)
{u;} & {u eR: 2c0u® + 2¢1u? — 2(cg —co)u — 1 = 0} (12)
Co £ (042 — 041)()\ — ag) (13)
1 2 VON\+ g — 2a0) (14)
ca 2 —0A\ (15)

Proof: See Sectiof IV-A. The derivation relies on the Chen-Steithoe for the Poisson approximation, and
it improves (significantly) the constant in the lower bourfdTbeorem 2 of Barbour and Hall (1984). [ |
Remark 1: The upper and lower bounds on the total variation distanc@)rscale like}"" | p?, similarly to
the known bounds in Theorelmh 1, but they offer a significantrowpment in their tightness (see Sectioh V).

Remark 2: The cardinality of the sefu;} in (12) is equal to 3 (see Section TV-A).

Remark 3: The optimization that is required for the computation/of in (7)) w.r.t. the three parametens, as €
R andd € R* is performed numerically.

In the following, we introduce a looser lower bound on thalteariation distance as compared to the lower bound
in Theoren 2, but its advantage is that it is expressed inedidsrm. Both lower bounds improve (significantly)
the lower bound in Theorem 2 of Barbour and Hall (1984). TH¥ang lower bound follows from Theorein 2
via the special choice ofy; = as = A that is included in the optimization set fdt; on the right-hand side
of (). Following this sub-optimal choice, the lower boumdthe next corollary is obtained by a derivation of a
closed-form expression for the third free paraméter R (in fact, this was our first step towards the derivation
of an improved lower bound on the total variation distance).

Corollary 1: Under the assumptions in Theoré&mn 2, then

Ki(\) gpg < drv(Pw,Pa})) < <1 —)\e"\> gpg (16)
where
K £ % : 9_ E 2(5—;2% | )
0é3+§+§-\/(3/\+7)[(3+2e—1/2)k+7]. (18)
Proof: See Section TV-B. [ |
[1l. OuTLOOK

We conclude our discussion in this letter by outlining a usthe new lower bounds in this work: the use of the
new lower bound on the total variation distance for the Rwisspproximation of a sum of independent Bernoulli
random variables is exemplified by Sason (2012). This wotloiluces new entropy bounds for discrete random
variables via maximal coupling, providing bounds on thdedénce between the entropies of two discrete random
variables in terms of the local and total variation distanoetween their probability mass functions. The new lower
bound on the total variation distance for the Poisson appraton from this work was involved in the calculation of
some improved bounds on the difference between the entropysom of independent Bernoulli random variables
and the entropy of a Poisson random variable of the same mdeanssible application of the latter problem is
related to getting bounds on the sum-rate capacity of a lesis& -user binary adder multiple-access channel (see
Sason (2012)).
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IV. PROOFS OF THENEW BOUNDS

A. Proof of Theorerh]2

The proof of Theorem]2 starts similarly to the proof of Theor2 of Barbour and Hall (1984). However, it
significantly deviates from the original analysis in orderderive an improved lower bound on the total variation
distance.

Let {X;} , be independent Bernoulli random variables WithX;) = p;. Let W £ 3" | X;, V; £ > i X
for everyi € {1,...,n}, andZ ~ Po)\) with meanX = >_" | p;,. From the basic equation of the Chen-Stein
method, equatiori{1) holds for an arbitrary bounded fumcfio Ny — R. Furthermore, it follows from the proof
of Theorem 2 of Barbour and Hall (1984) that

> {PELFV; +2) - £+ 1]}

j=1

(B, P 2 T TG+ 1) = RF ()

(19)

which holds, in general, for an arbitrary bounded functjonN; — R.

At this point, we deviate from the proof of Theorem 2 of Barbaand Hall (1984) by generalizing and refining
(in a non-trivial way) the original analysis. The generabidem with the current lower bound in_(19) is that it is
not calculable in closed form for a givefy so one needs to choose a proper functfoand derive a closed-form
expression for a lower bound on the right-hand side_of (16)thls end, let

(k — a2)2

flk) = (k—ay) exp(— o

), Vk e Ny (20)

wherea;,as € R andf € RT are fixed constants (note thétin (20) needs to be positive fgf to be a bounded
function). In order to derive a lower bound on the total vidoia distance, we calculate a lower bound on the
numerator and an upper bound on the denominator of the higiht+ side of [(19) for the functiorf in (20).
Referring to the numerator of the right-hand side[ofl (19hwftin (20), for everyj € {1,...,n},

fVi+2) = f(V;+1)

= /v;+1_a2 Tu <(u+a2 —aq) exp<—5)> du
Vi+2—ay
B /\/}4-1—042

Vi+2—ao 2u2> u2 2(&2 _ 041) Vi+2—ao u?
= 1—— | exp|——— du—i/ uexp|l—-——=)du
/V;+1—a2 < O ( 9)\> O Vi+l—as ( 9)\)
)

2

2u(u + ag — aq) u
1-— o )exp<—5> du

Vit2-az 2u? U
— 122 _Z
foovor (255 o) o
Vi 42— az)? Vi+1—a)?
(s — [exp<_%> _ exp<_%>} _ 21)

We rely in the following on the inequality

(1-2z)e*>1-3z, Va>0.
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Applying it to the integral on the right-hand side 6f [21) ggvthat
fVi+2) = f(Vj+1)

I o B A e e e )]

Vitl—ao
(200’ (V41 ay)
3\
(Vi +2 — ap)? (Vi +1— ag)?
—‘@2—@1‘ eXp<—T — exp ) (22)

In order to proceed, note that:if;, x5 > 0 then (on the basis of the mean-value theorem of calculus)
e — e
= |e™¢(z1 —x2)| for somec € [y, z1]
< emmin{zas} ) g

which, by applying it to the second term on the right-hand s (22), gives that for every € {1,...,n}

SRUEE A P

min{(vj + 2 - 042)2, (VJ + 1— a2)2} (VJ + 2 — a2)2 - (VJ + 1-— a2)2
<exp | — 3\ : o . (23)
SinceV; =3, .; X; > 0 then
min{ (V; +2 - a2)?, (v +1 - a2)?}
0 if a9 > 1
> ,
o (1 — 042)2 if ag <1

= (1-a2)? (24)

where
z4 2 max{z,0}, 2% £ (w+)2, VzeR.

Hence, the combination of the two inequalities[in] (2B8}-(8des that
: —os)2 , 2
exp(— (V] +2 ag) ) B exp(— (V] +1 ag) ) ‘

o o
< exp @%) | (\(Vj +2—a2>29—A<vj +1_a2)2|>
— exp <_ (1 —9§é2)3> 2v; +93A— 2as]
< exp (_ (1 ;iz)i) 2V + (|93A— 20| -

and therefore, a combination of the inequalities[inl (22) @) gives that
F(V;+2) — f(V; + 1)
1 Wr2—an) (G410’
- O\

(1—a2)3\ 2V, +[3— 20|
|a2 041|-6Xp< o . ox .

(26)
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Let U; 2 V; — A; then
fVi+2) = f(V;+1)
N _(Uj—l—)\—l—Q—OéQ)g—(Uj—l—)\—l—l—ag)g
= )
s — ] - ex (- 205 + 2\ + 3 — 209
2] e N N
_3Uj2—|—3(3—2a2—|—2/\)Uj—|—(2—0z2+/\)3—(1—a2+)\)3
)
s — ] - ex (- 205 + 2\ + 3 — 209
2] e N N ‘

In order to derive a lower bound on the numerator of the ridmid side of[(19), for the functioi in (20), we
need to calculate the expected value of the right-hand €id@7). To this end, the first and second moments of
U; are calculated as follows:

(27)

E(U;)
=E(V;) — A
= sz' - sz'
i#j i=1
= —pj (28)
and
E(U?)

= Var(U;) + (E(U;))”

= Var(V;) + p3

@ > pi(l—pi) + 9]

i
“> ot e
i# it
=A—p;— Y pi+p} (29)

i#]
where equality (a) holds since the binary random variablég;” ; are independent and MaX;) = p;(1 —p;). By
taking expectations on both sides bf](27), one obtains fiB8) &nd [(2P) that

E[f(V;+2) = f(V; +1)]

3<A — D= 2z P +p§) +3(3 =202 +2X) (—pj) + 2— a2+ A)? — (1 —ag +A)?

>1-

O\
(1 — 042)3_ —2]?]' + 2\ + ‘3 - 2042’
oz o] exp { —=E ) 3

BA+ (2= as + N)° — (1= a2 + 0 = [3p;(1 = pj) + 35,97 +3(3 — 202 +2))p;|
o

_<\a2 — | (2 —eipj +13- 2a2!)> - exp <—%>

—1—

) A+ (2—az+ AP —(1—az+A)3 = (9—6az + 6))p;
= )
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_(‘ag—a1|(2;\)\+ |3—2a2|)> e (_%) | (30)

Therefore, from[(30), the following lower bound on the rigiand side of[{19) holds

n

Z{p?E[f(Vj_‘_m_f(Vj—l-l)]}Z <3(3_2@2+2)\ )Z ;

A+ (2 -+ A3 —(1—ag+A)? +|O‘1_0‘2|(2>\+|3—2a2|)exp< (1— 042)+>
1 Zp

2. (31)

o

Note that ifas < X + % which is a condition that is involved in the maximization @), then the first term on
the right-hand side of (31) can be removed, and the resuliwgr bound on the numerator of the right-hand side
of (19) takes the form

n

S {PE[F(1;+2) = F(+ 1] | = (1= (1,02, )ij (32)

J=1

where the functiorh, is introduced in[(B).
We turn now to deriving an upper bound on the denominator efripht-hand side of (19). Therefore, we need
to derive a closed-form upper bound mpkeNo\)\f(kJr 1) —k:f(k)| with the functionf in (20). For everyk € Ny,

Af(k+1) =k f(k) = X[f(k+1) = f(k)] + (X = k) f(k). (33)
In the following, we derive bounds on each of the two termstanright-hand side of (33), and we start with the

first term. Let )

t(u) = (u+ az — 1) exp <—Z—)\> , VueR
then f (k) = t(k — aq) for everyk € Ny, and by the mean-value theorem of calculus,
fk+1) = f(k)
:t(k’—l—l—OéQ)—t(k?—OéQ)
=t'(cy) for somecy, € [k — a9,k + 1 — ag)

B 2c;, ci 2(a1 — ag)eg, C%
= < 0)\) exp <_ﬁ> + <79)\ exp (—oy | - (34)
Referring to the first term on the right-hand side [0f] (34), let

p(u) £ (1 —2u)e™™, Yu>0

then the global maximum and minimum pfover the non-negative real line are obtaineduat 0 andu = %

respectively, and therefore
—2¢ 2 <p(u) <1, Vu>D0.

Letu = 6>\; then it follows that the first term on the right-hand side [Bdl) satisfies the inequality
2 2

e (- ) ool ) <1 =

Furthermore, referring to the second term on the right-reidd of (34), let
g(u) 2 ue™, VueR

then the global maximum and minimum @bver the real line are obtainedat= +§ andu = —@, respectively,

and therefore
1 /2 1 /2
——y /=< < 4=y /= \ R.
2\/?_q(u)_+2\/;’ ue
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Let this timeu = /7%, then it follows that the second term on the right-hand siti@8d) satisfies

2(aq — ag)cg c 2
— - = 7. I < . — .
‘ ( 5 ) exp< VIR lag — el (36)

Ore

Hence, on combining the equality ih {34) with the two inedgtied in (33) and[(3b6), it follows that the first term
on the right-hand side of (83) satisfies

- <2)\€_g +\/%' ]al —Ozg’) S)\[f(k—i-l)—f(k)] S)\—F\/% ]al —042’, VkGNQ. (37)

We continue the analysis by a derivation of bounds on therskterm of the right-hand side of (33). For the
function f in (20), it is equal to

(A—k) (k)

= A —k)(k — o) eXp<—%>
= [(A —a2) + (a2 = k)] [(k — ag) + (ag — a1)] exp<_%>

[(A —az)(k = a2) + (a2 — a1)(A — az) = (k — a2)® + (a1 — a2)(k — a2)] exp <_ £ ()‘2)2)

(2
= [\/ﬁ(/\— ) U — OAVE — VO (a2 — o) v + (g — o) (A — )] eV, v A k- az Vk € Ny
VX
= (co 4 crvp + covf) eV (38)

where the coefficientsy, ¢; andc, are introduced in Eqsl_(13)=(15), respectively. In ordedé¢dve bounds on the
left-hand side of[(38), let us find the global maximum and mimin of the functionz in (@I1):

z(u) 2 (co+ cru+cu?)e™  VueR.

Note thatlim,,+. z(u) = 0 andz is differentiable over the real line, so the global maximuna aninimum of

x are attained at finite points and their corresponding vaduesfinite. By setting the derivative of to zero, we
have that the candidates for the global maximum and minimtim over the real line are the real zerfs;} of
the cubic polynomial equation il (IL2). Note that by their digfin in (12), the values ofu;} areindependenof
the value oft € Ny, and also the size of the sét;} is equal to 3 (see Remalk 2). Hence, it follows frdml (38)
that

Zer{q}gg}{w(uz)}qk k)f(k)<ler{lﬂl?2>§3}{w(uz)} Vk € No (39)

where these bounds on the second term on the right-hand &{@8)oare independent of the value bfe Ny.
In order to get bounds on the left-hand side[of] (33), note filoath the bounds on the first and second terms on
the right-hand side of (33) (sele_{37) andl(39), respectjvibign for everyk € Ny

_s 2
Zer{lillélg}{x(ul) — (2)\6 SRV lag — a2\>

SAf(k+1) -k f(k)

< \ / _
< Zerﬁ%xg}{x u))}+ A+ g — ag| (40)
which yields that the following inequality is satisfied:
sup Af(k+1) =k f(k)] < galon, a2,0) (41)
€Ng

where the functiory, is introduced in[(I0). Finally, by combining the inequaiin Eqs.[(19),[(32) and (41), the
lower bound on the total variation distance[ih (6) followseTexisting upper bound on the total variation distance
in (€ was derived in Theorem 1 of Barbour and Hall (1984) ($beorenilL here). This completes the proof of
Theoren 2.
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B. Proof of Corollary1

Corollary[1 follows as a special case of Theofdm 2 when thpgmed functiory in (20) is chosen such that two
of its three free parameters (i.ex; andas) are determined sub-optimally, and its third parametgiq determined
optimally in terms of the sub-optimal selection of the twheat parameters. More explicitly, let; andas in (20)
be set to be equal td (i.e., a1 = g = A). From [13)-(15), this setting implies that = ¢; = 0 andc, = —0X < 0
(sincef, A > 0). The cubic polynomial equation i (fL2), which correspotwlshis (possibly sub-optimal) setting
of a1 anday, is

262u3 —2c0u =0
whose zeros are = 0,+1. The functionz in (1) therefore takes the form
z(u) = cuie™ VueR

soz(0) =0 andz(+1) = 2 < 0. This implies that

c
min  z(u;) = 2 max x(u;) =0,
1€{1,2,3} e 1€{1,2,3}

and thereforer, andg, in (8) and [10), respectively, are simplified to

3N+T
hA()V )‘7 9) - 9}\ ) (42)
gA(A A, 0) = X max{1, 23 + e 1. (43)
This sub-optimal setting ofi; and «» in (20) implies that the coefficienk’; in (7)) is replaced with a loosened
version
1—hyx(A A 0))
K{(\) £ su <% . 44
1( ) €>18 29)\()‘7/\79) ( )

Letf > e — %; then [@3) is simplified ta, (A, A, 0) = A (272 + 8e~1). It therefore follows from[(6),[{7) and
(42)-[44) that

drv (Pw,PaX) > Ki(A) Y p} (45)
=1
where
Ki(\) = sup - (46)
f2e—2 2X(2e72 + fe 1)

and, in generalK’(\) > K1()\) due to the above restricted constraint(see [44) versug (46)). Differentiating
the function inside the supremum w.fAtand setting its derivative to zero, one gets the followingdratic equation
in 6:

N2 —2BA+7)0 — 23X+ T)e ' =0

whose positive solution is the optimized valuetbin (18). Furthermore, it is clear that this value ®in (18) is
larger than, e.g., 3, so it satisfies the constraintin (46)s Tompletes the proof of Corollaky 1.

V. A COMPARISON OF THENEW BOUNDS WITH KNOWN RESULTS

The new lower bounds on the total variation distance in T2 and Corollari/]1 scale liKg ", p?, similarly
to the known upper and lower bounds in Theotém 1 that orityirsgdpear in Theorems 1 and 2 of Barbour and Hall
(1984). However, the new lower bounds offer a significantrmmpment over the known lower bound in Theofem 1.
More explicitly, from Theorems 1 and 2 of Barbour and Hall§49 the ratio between the upper and lower bounds
on the total variation distance (séé (5)) is equal to 32 intie extreme cases wheve— 0 or A — oc. In the
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following, we calculate the ratio of the same upper bound twednew lower bound in Corollafyl 1 at these two
extreme cases. In the limit whepe— oo, this ratio tends to

n
l1—e 2
( B ) Zpi
lim =1 —
A—00 1 3A+7
) S
2\ (2e-3/240 e 1
( e +0e ) =1

2 . 0(26_1/2—1—9)

¢ Ao O — (31 1)

(0 =6()\) is given in Eq.[(IB)

2
2
= g <1 143 e—1/2> ~ 10.539 (47)

where the last equality follows froni (118), sintien) .. 0 = 3 + 1/3(3 + 2e~1/2). Furthermore, the limit of this

ratio when\ — 0 is equal to
. 1—e M\ . >\(2e_3/2 + 96_1)
2 (15 ) b (M

20
@ 28 . 2e~1/2 4 9)
=— lim | —F——=<
e x50\ 09— (3 + X)

2 77~ 20.601 (48)

where equalities (a) and (b) hold since, frdml(18), it fokotiatlim,_,o(\0) = 14. This implies that Corollary]1
improves the original lower bound on the total variationtatice in Theorem 2 of Barbour and Hall (1984) by
a factor of% ~ 3.037 in the limit whereA — oo, and it also improves it by a factor og(% ~ 1.553 if

A — 0 while still having a closed-form expression for the lowehd in Corollary[1. The only reason for this
improvement is related to the optimal choice of the free patard in (18), versus its sub-optimal choice in the
proof of Theorem 2 of Barbour and Hall (1984). This obsenmthas motivated to further improve the lower
bound by introducing the two additional parametersas € R in TheoreniR; these parameters give two additional
degrees of freedom in the functighin (20) (according to the proof in Section 1V-B, these twograeters are set
to be equal to\ for the derivation of the loosened and simplified bound indllary [1). The improvement in the
lower bound of Theorer] 2 (in comparison to Corollary 1) isezsglly dominant for low values of, as is shown
in Figure[1. Note, however, that no improvement is obtair@chfgh values of\ (e.g., forA > 20, as is shown by
Figure[1 on noticing that the curves in this plot merge atdarglues of}).

The lower bound on the total variation distance in Thedrémglies the bound in Corollaryl 1 (see the proof in
Sectio IV-B). Corollanf 1L further implies the lower bound the total variation distance in Theorem 2 of Barbour
and Hall (1984) (see Theordm 1 here). The latter claim falésem the fact that the lower bound in_{45) with the
coefﬁcientf(l(/\) in (46) was loosened in the proof of Theorem 2 of Barbour antl 1884) by a sub-optimal
selection of the parametér which leads to a lower bound oﬁl(/\) (the sub-optimal selection @f in the proof
of Theorem 2 of Barbour and Hall (1984) s= 21 max{l, %}) On the other hand, the optimized valuefofhat
is used in[(IB) provides an exact closed-form expressiorﬁfqo\) in (46), and it leads to the derivation of the
improved lower bound in Corollary] 1.

Theorem 1.2 of Deheuvels and Pfeifer (1986) provides an pgytia result for the total variation distance
between the distribution of the sui of »n independent Bernoulli random variables will{.X;) = p; and the
Poisson distribution with meah = >"" | p;. It shows that wher) ", p; — oo andmax;<;<, p; — 0 asn — oo
then

drv(PiPoY) ~ ——— 31t (49)
=1

This implies that the ratio of the upper bound on the totalatemm distance in Theorem 1 of Barbour and Hall
(1984) (see Theorerh$ 1 here) and this asymptotic expreisstmual toy/2me ~ 4.133. Therefore, the ratio between
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Ratios of upper & lower bounds on total variation distance

10° 10~ 10° 10 10 10 10

Fig. 1. The figure presents curves that correspond to rafiopmer and lower bounds on the total variation distance éetwthe sum of
independent Bernoulli random variables and the Poissdritison with the same meah. The upper bound on the total variation distance
for all these three curves is the bound given by Barbour arti(sie Theorem 1 of Barbour and Hall (1984) or Theotém 1 hdre¢ lower
bounds that the three curves refer to are the following. Turgecat the bottom (i.e., the one which provides the lowets far a fixed )

is the improved lower bound on the total variation distarie ts introduced in Theorefd 2. The curve slightly above iitsimall values of

) corresponds to the looser lower bound obtained wherand oo in (@) are set to be equal (i.ex; = a2 £ « is their common value),
and so the optimization oi; for this curve is reduced to a two-parameter maximizatiorkgfover the two free parameters € R and

6 € R™. Finally, the curve at the top of this figure corresponds ®ftirther loosening of this lower bound wheteis set to be equal ta;
this leads to a single-parameter maximization/of (over the parametef € R™) whose optimization leads to the closed-form expression
for the lower bound in Corollaril1. For comparison, in orderassess the enhanced tightness of the new lower boundsthasoténe ratio

of the upper and lower bounds on the total variation distdrm® Theorems 1 and 2 of Barbour and Hall (1984) (or Thedrénerkhis
roughly equal to 32 for all values of.

the exact asymptotic value ii (49) and the new lower boun@)ng equal to% ~ 2.55. It therefore follows
that, in the limit where\ — 0, the new lower bound on the total variation i6) is smalleart the exact value by
no more than 1.69, and for > 1, it is smaller than the exact asymptotic result by a facto?.65b.
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