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Abstract—We study the problem of controlling the interference  be interpreted as a generalization of thoselin [4] for digcre
created to an external observer by a communication processe channels. Moreover, our work is also connected o [5], which
We model the interference in terms of its type (empirical digri- studies the empirical distributions of capacity-achievodes,

bution), and we analyze the consequences of placing consimts . .
on the admissible type. Considering a single interfering ik, although our codes are characterized both by communication

we characterize the communication-interference capacityegion. properti_es (i-?-: vanishing error probab_ilitieﬂjd interferenc_e
Then, we look at a scenario where the interference is jointly constraints (i.e., convergence of the interference typarin
created by two users allowed to coordinate their actions por to  appropriate sense).

transmission. In this case, the trade-off involves commuiation We also consider a multiuser set-up in which the transmit-

and interference as well as coordination. We establish an a@ev- ¢ I dt dinate their acti to mitigate
able communication-interference region and show that effiency ers are allowed to coordinate their actions to mitigatgjoire

is significantly improved by coordination. effect of their interference and improve the overall efficig
This is closely related to the problem of coordination in
l. INTRODUCTION networks, which was studied in|[6]. Most relevant to our work

Communication is subject to undesirable and often unavoitie authors characterized (empirical) coordination immter
able interference that degrades the performance of neigigho of the type of the sequences of actions and established the
transceivers and impairs the operation of nearby elearofiindamental limits for a variety of network topologies. We
devices. From an information-theoretic point of view, nfée-  show that this framework for coordination is very useful whe
ence has traditionally been studied using the interferehaa- different transmitters are subject to a common interfezenc
nel, which models the mutual effects between two user paasnstraint.
that communicate simultaneously. This channel abstnmactio In the remainder of this section we introduce the basic
captures the fundamental tradeoff between the commuaitatmathematical concepts and establish the notation. We densi
rates of the two pairs. In spite of decades of efforts, otine single user case in Sectioh Il and a multiple user case in
understanding of this tradeoff is only partial or restritte Sectiorll. Finally, we conclude our work in SectibnlIV.
some special cases (seé [1, Chapter 6] for a basic summa/Q/)
In addition, the model is less appropriate for the cases avher’
the impairment is created to a different type of device that i We consider exclusively random variables with finite al-
not necessarily communicating. An alternative view of intePhabets. We denote them and their realizations using upper
ference that goes beyond communication-impairment effe€@se and lower case letters, respectively (eX§.and x).
was proposed i [2]. The authors modeled the communicatioff¢ use bold face for vectors and specify their lengths using
induced disturbances in terms of the undesired informati§HPerindices (e.gz™). We use calligraphic letters (e.d, or

rate and investigated the limits on the communication rafe to denote sets. Given a sgt we denote its complement
imposed by a constraint on the disturbance. They charaetkri by 7°.

explicitly the rate-disturbance region for the single diibance pefinition 1 (Total Variation) Let Pxy andQx.y be two
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case and gave partial results for other cases. probability distributions defined o’ x ). The total variation
In this work, we take a similar approach although our modgknyeen them is defined as

for the interference is quite different. Instead of endayihe 1

interference with an informational meaning, we charazeeri [ Px,y — Qx,v[lwv = 3 > IPxy (,y) — Qx v (x,y)].

it in terms of its type (i.e., empirical distribution). Thus z,y

we study which communication rates are compatible with O

constraints placed on the type of the interference creatélded
communication process. Our results are therefore relattuet
study of channels with constraints on the channel inputs,(e.
see [1, Sec. 3.3] and references therein) and on the channel 1 &

outputs [3, Sec. 29]. Our motivation is similar to that [in,[4] Tn yr (,y) = n Z]l {(zi,y:) = (z,y)}

where output constraints were used as a model for the externa i=1

power restrictions encountered, for example, in cognitacdio  for all (z,y) € X x ), wherel {-} is the indicator function.
systems. As we shall see, our results for the single user can %

Definition 2 (Type). Let ™ € X™ andy™ € Y". The type
of the tuple(z™, y™) is defined as
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Definition 3 (Typical sequence)Let ™ € X™ ande > 0. L e

We say that the sequenag' is (e-)typical with respect to a X
distribution Py if | Tp» — Px||rv < €. We denote by7:™ (Px ) M - Prax

the set of all such sequences. O |

Most of our results involve the following notion of con-
vergence of sequences of probability distributions. Caersi Fig. 1. Scenario for single-user communication with ireeghce constraint.
a sequence (indexed by) of random vectorsX™ with
X™ ~ Pxn» for some sequence of distributio3x~, and ) ) ) )
the corresponding sequence of tygBg.. Consider also a IS €asily proven using standard time-sharing arguments. Th
sequence of deterministic distributio6$™ . We say thaf'x» dependency on the marginals also follows from well-known

converges in probability in total variation 6™ if arguments (see e.g../[1, Lemma 5.1]).
lim Pr(||Tx~ — G(")Hw > €)= 0 Theorem 6. The communication-interference capacity region
n—oo n C of the DMCPy, 7| x is the set of rate-interference type tuples

for all ¢ > 0. We denote this using the shorthand notation (R, Gz) such that

|Tx» —G™|, — 0 in probability. R < max I(X;Y)
PxeP
(The specialization of this notion of convergence to thesca, here
of fixed G' or to deterministic sequences is straightforward.)
Il. SINGLE USER Pi {PX : Y PxPyx = GZ} . (3)
Consider the scenario depicted in Figuke 1. This correspond m
to a discrete memoryless channel (DMC) with one injut O

a:\?hMOtou;pl:jtéf af‘d Z -thg outputy” |sdthte obser\cljan(_)n Observe that this result agrees with our basic understgndin
a fe intende reczlver, wh corr?sptc))n sto a_lrnhun r:eswe f communication and coordination. In particular, the cya
Interterence create to an externa_ JObserver. 1he chasne )'(pression is reminiscent of that for the point-to-poirdrchel
governed by a conditional probability mass function (pm

A ™ der-decod . the ch | ut the maximization is over the restricted etof input
v,z|x- Ihe encoder-aecoder pair can use the channe é)lgtributionsPX that induce the desired interference ty@g.
communicating a random messalje as long as the interfer-

We will refer to the setP defined in [[B) as th@re-imageof

encez" has a certain shape, measured in terms of its ty&ez_ It is simple to show that the pre-image of a given is
T.~(2). For this purpose, they use a code. a closed and convex set

Definition 4 (Code) An (n,2"f)-code for the scenario in  The result in Theoreril6 is different from those involving

Figure[1 consists of: constraints on the channel output in [3, Sec. 29] and [4]. For
. a message se¥! 2 {1,..., [2"F]}, example, satisfying an interference power constraint dmés
« an encoding functiom™ : M — X, directly imply convergence of the type of the interference i
. a decoding functioni : Y™ — MU {e}. the sense defined above. In contrast, convergence of the type

ensures that the power constraint is satisfied. However, our
O - . . .
characterization of the interference in terms of its typeso
We assume that the message is uniformly distributed ovest extend to continuous alphabets.
the message set. In the remainder of this section we will prove Theorgn 6.
For this purpose, we first introduce the following auxiliary

Definition 5 (Achievability). W that th icati
efinition 5 (Achievability). We say that the communica ion_uits (LemmaBIZ=10).

rate R is achievable with interference type, if there exists

a sequence ofrn, 2"f)-codes such that Lemma 7. The interference typ&y- induced by a sequence
. - _ of (n,2"%)-codes can only converge in probability to distri-
nlggo Pr(M # M) =0, (1) butionsG z with non-empty pre-image, that i®, £ (. O
|ITz» — Gz||lww — 0 in probability (2)

Proof: First, observe that convergence in probability

under the distribution induced by the codes. % IT Gl — 0
» = U Zlwv

The communication-interference capacity regiénof the
DMC Py, 7 x is the closure of the set of all rate-interferencmplies that
type tuples(R, Gz) that are achievable. E T — C -0
Our main result for the channel model in Figdre 1 is a {7z 2w}
complete characterization of the communication-interiee because the total variation is bounded. In turn, this meaats t
capacity region (Theorerh] 6). This region is convex and

depends only on the marginal,|x and Py x. Convexity E{Tz} — Gz



by a simple application of Jensen’s inequality. Now, notg thThen

E{Tzn} = ZE{TX",Z”} ”QZ - Tz"HTv = ||C?Z - QZ + QZ - Tz"”Tv
v > ”QZ - QZ”T\/ - ”QZ - TanTV
:ZE{TX"}PZIX > 2¢ — €.
= F(E{Tx~}), Thusz" ¢ 7" (Qz) and T (Q2) N T (Q7) = 0. m

where f : X — Z is a continuous function anfl{Tx~} is Lemma 10. Let G; be fixed and have pre-image. If a
a bounded sequence of probability distributionsBnThus, sequence ofn, 2"%)-codes induces an interference typg-
by the Bolzano-Weierstrass theoref [7, Theorem 3.6], tach that
sequencdE{Tx~} has a convergent subsequence, which we B . .
denote byP}C"). That is, [ Tz» — Gz||lvv — 0 in probability, 4

then the expectation of the type of the codewdrds'x~ }

_n) A
Py’ = Px, satisfies
where Py is the corresponding limit (i.e., a probability dis- IE{Tx~} — p N =0 (5)
tribution on X). By convergencdi{Tz~} — Gz and by
continuity of the functionf, we establish that for some sequencB)((") with PX") € P for all n. O
lim f(E{Tx~})= lim f(P{") Proof: First, note thatP # ( by virtue of Lemmallr.
e e Moreover, if P is equal to the whole simplex of probability
= f(Px) distributions on¥ (i.e., P¢ = 0) the proof is trivial. We prove
=Gg. the lemma for the case # 0, P¢ # () in two step(s.) i) First, we
. show that implies thakim,, ,. Pr(X™ ¢ T¢"(P)) =0
This means thaPx (z) € P. Therefore,P # 0. [ ] () imp Mn-soo Pr(X™ ¢ ®)

for any e > 0, where

Lemma 8. Let Gz be given and have pre-image such that g(n) (P) 2 {z"
P ;é () and P¢ # (. Consider the sets €

£ [Px :||Px — Px|lw > € for all Px € P},

: | Ten — Px|lrv < € for somePx € P}.

(The sett is a straightforward generalization of the typical
set7.™.) i) Then, we show that this implie§l(5).

sola,. Pyix Py = Gy for somePy € P. b i) We prove the first step by contradiction. Assume thht (4) is
g { i Z 2 XX d X satisfied by some sequence(ef 2"%)-codes with distribution
Px~ for which there existy > 0 ande, > 0 such that

defined for any fixed > 0 such thatP, # §. Let
0 <limsupPr(X" ¢ ‘.Tg:) (P)).

d* = mf ”GZ — GzHTV n—00
Czed. Note that for every, such that0 < €, < ¢, we have that
Then, we have that* > 0. O B, C P, and this implies thaPr(X" ¢ T(P)) <

Proof: Assume that/* = 0. Note thatP. is a compact set Pr(X” ¢ ‘T(n) (P)). For our purposes, it will be more
and thatG ; is a continuous function OPX Thereforeg, isa convenient to write our expressions in terms of
compact set, too. Note also thaE'; — Gz ||+ is a continuous
function of Gz. Thus, by Weigrifrass’ e3(||trem§ value theorem Pe. = {PX HPX = Pxllv 2 ¢ forall Px € P}.
[7, Theorem 4.16], there must exist soiig € G. (and hence With this notation, the sefz” ¢ T (P)} is equivalent to
somePx € P.) such that {a" : Tyn € P.,}. Observe thaP,, # ( for sufficiently small

G — ézl\w —o. € becagsé’ix C P¢andpPc is_a set with non-empty interior.
Thus, without loss of generality, we assume tRat # (.

That is, Gz = G. However, this would imply thaPx € P, Now, we define the following finite cove®., of the set
which is a contradiction. Thus, we must haie> 0. m P.. Givene. such that) < e. < ¢, the setQ., is afinite
set of distributions oY’ such that for everyPx € 73 there

Lemma 9. Lete > 0 and consider two arbitrary pmf§ z and exists somePy € Q.. with

O defined onZ with typical sets7™ (Q ) and 7™ (Q ),

respectively. If the total variation between the pmfs iatis |Px — Px|lw < €.
HQZ Qz||TV > 2e then the two typical sets are disjoint. ThatS _ -

h ts b th t
is, 7' (Q )07; (Qz) = 0. 0 uch a cover exists because the %&t is compact. In

fact, there exist more than one set with these properties. Fo
Proof: Let 2" € 7;(" (Qz), that is, convenience, we choose one (any) such set with the smallest
possible cardinality. Thus, any distribution B., can be
1Qz — Tanlv <€ approximated by an element in the finite §&t with an error



in terms of the total variation not exceediag Fix an arbitrary for every =™ such that7T,~ € Q; and whered,, (n) £

. . 2
ordering of the elements i@, £ (12L21)" The termd,, (n) goes tod with n and is fixed
Q.. ={Qx1,Qx2,... QX"QEC‘L given the coverQ... Thus,
and let Z Pxn(z") Z Pgzn xn(z"x")
~ ~ ~ ~ " Ten €Q; n (n)
Qi £{Px € Pe, : [|Qx,i — Px|w < ec} ’ © = g7 (G2)
) . I ~ ~ > (1= de.,e(n)) Z Pxcn (™).
fori e {1,...,|Q.|}. To avoid the possibility thaPx € Q; -y

and Px € Q, for 7 # 7, we define the following disjoint sets | . .
X € <5 i gas Using this, we rewrite[(6) as

Q1 £ 0y, 0.,
a2anJe, > PrE)z Y 3 Pee@)1-be )
T 1 J z"¢7—(n)(G ) 1=1 ®&":Ten€Q;
=1 € z

>(1=0ec(n)) Y. Pxn(z").

for i € {2,...,|Q..|}. Observe thatJ;Q; = P... Thus, for
2" ¢ (P)

eachz™ ¢ ‘IEZ) (P) its typeT,~ satisfiesT,» € Q, for exactly

onei € {1,...,[Q.|}. Using this covering into disjoints sets,Therefore, for any) < ¢ < %* we have
we write
19 lirILILSogp Z Pzn(2") > hmsup — ZPX"
> Pxe@)=30 >, Pxe(@") 2 ¢ T (G2) ac"effr(:)(m
angTM (P) i=1 @™ Ten€Q; >4

Now, for arbitrarye > 0, write > 0.

o7 This contradicts our initial hypothesis th8k~ induces a type
P n P n P n n
Z z Z X Z znxn (2]2") Tz~ that satisfies[{4). Thus, we must havwe,, , ., Pr(X" ¢

zngﬁ(n)(GZ) zn¢7<">(c ) T (P)) = 0 for any e > 0.
> > Pxo(") Y. Pzoxe(z"|z") ii) Now, we show that this implie$15). To this end, we write
zng¢ T (P) 2 ¢ T (Gz)

- Z Pxn(z™) Z Pzn xn(2"|x") ||E{TXn|X" e TM(P)} Pr(X™ € T (P))

x":Tyn €Q1 z"%Te(")(GZ) )
n o +E{Txn|X"¢ T (P)} Pr(X"¢ T (P)) — PYV ||
+ Z PX" (.’I} ) Z Pznlxn (Z |.’1} ) " 'n.) " (n) (77,)
x":Ten €Q2 zngTJ”)(GZ) < ||E{TX”|X € “T (P)}PI‘(X € ‘Te (P)) - PX HTV
. @  +IETx X" TP PUX" ¢ TP ()

Consider theit” term in [8). First, note that each of thefor arbitrarye > 0. Note tr(1a)t for any two sequence$ and
sequences” in thesum belongs to the typical SE& (Qx.4)- Z" that belong to the sex."™ (P), the convex combination of
Now defineQz; = Y., PzxQx, and consider the settheir typesTy. andT;~ satisfies

(QZJ) of sequences™ that are typical according tQ z ;. (AT + (1 — N)Tgn — Pxl|lw < €

From Lemma[B we know that, givea,, there exists a )
fixed d* > 0 such that|Gz — Qzllw > d* for all Qz. for somePx € P and any\ € [0,1]. Thus, since

(e € {1,...,]9c.|})- Thus, for anye such that0 < € < %, E{Tx~|X" € T (P)} Pr(X" € T (P))
applying Lemmal we see that(”)(GZ) N ﬁ(”)(Qz,i) =0. o
Using this, we write is a convex combination of types of sequenceSih (P), we
Z Z have that
PX" (:I}") Pzn xXn (z"|:vn) n
frea, e [B{Tx | X" € T (P)} Pr(X" € T (P)) = Pyl < ¢
> Z Pxn(x™) Z Pz xn(2"|2"). for someP)({") € P. Regarding the second term [d (7), we see
Ten €Q; zneﬁ(n)(Qz,i) that
Moreover, by the conditional typicality lemmall[8, [E{Tx~|X" & T (P)}Pr(X" ¢TI (P))n
Lemma 2.12], we know that =Pr(X" ¢ Tﬁ") (PO B{Tx~| X" ¢ ‘J‘En)('p)}nw
S Pauxe(a") 21— 6., . (n) <Pr(X" ¢ T (P))

z"GTE(n)(QZ,i) <6



-3

where the inequality is satisfied for sufficiently large Ml% Encoder 11— Pyix, Ml
Combining the two bounds, we see that —

IE{Txn} — P{ |l < 2e.

M. Pzix, x, — 2"

Finally, we complete the proof by letting— 0. ]

We note that it is also possible to prove the preceding lemma
by using the technl_ques inl[5] (in particuldr] [5, Theoremy 4] " Encodej P, i,
adapted to our notion of convergence. X3 Y3

We are now ready to prove Theoréin 6. ] _ o o o

Proof of Theoreni]6: The achievability result follows E(ljgﬁstZr.aimSScenarlo for coordination of communications withemference

easily from Shannon’s coding theorem. For the conversdtresu '

consider a sequence ¢f, 2")-codes that achieve the rate-

interference type paiftR,Gz). The sequence, together withor, equivalently,

the uniform distribution on the messages, induces the joint (n)

distribution Pxq vo(2,y) = Px " (x) Py x (y|z).

®) Since the mutual information is a continuous function of the
input distribution, this convergence implies that any ssuqe

nR\_ i
with Pyn x» = [[ Py|x and Pz x» = [] Pz x. Observe of (n, 2"")-codes must satisfy

—|M|PX"\MPY"\X"PZH\XnPAfﬂyn,

that in [8), we have restricted our attention to distribogio R < limsup I(X;Y)| o
Py z1x = Py|xPzx. As discussed before, this entails no n—oo x
loss of generality. < max I(X;Y).

X

First, by the standard arguments based on Fano’s inequality ) _ - _ o
(e.g., see[1, eq. (3.3)]), a vanishing error probabilitg.(i1)) N conclusion, achievability of the paiiR, Gz) implies that
implies that (R,Gz) eC. m

IIl. MULTIPLE USERS

Consider the scenario depicted in Figlire 2. Two transrsitter
want to communicate with their respective receivers thihoug

NE

nR<Y» I(Xy;Y,) + ne,

1

q

n 1 .
=ny_ (X YqlQ = g) +nen a channel governed by a conditional product pmf
=1 Py, v, z1x1,x: = Pvi1x, Pro)x. Pz x0 X, - (10)
=nl(Xg; Y n .
nl(Xq;Yq|Q) + ne The marginalsPy,|x, and Py,|x, model orthogonal commu-
<nl(QXq;Yq) +nen nication channels between pairs of encoders and decoders,
=nl(Xg;Yg) + ne, (9) whereasPyx, x, models the joint disturbance that the two

where ) is a random variable uniformly distributed Ontransmis_sions create to the observer. That s, a_lth_ough the
{1,...,n} and independent of X", Y™, Z"), ande, > 0 user pairs do not hampe_r each other's transmission, they
with ¢, — 0 asn — oo. The last equality in[(9) is create mt_erference at a third external qode, the obsereer.
justified by the fact that the DMC establishes the Markov|t1h<';1\:om_r0I thls mterfergn(_:e, the _two tran;mltters have .as:ma
Q — X, — Y. Dividing by n, we obtain unidirectional rate-limited noiseless link from the first the
@ @ second encoder. They can use this resource to coordinate the

R <I(Xq;Yg)+en. transmissions and shape the type of the interferneéz).

Observe that our model makes no assumption on how
the two transmitters interfere with the observer, beyoral th
structure in [(ID) (i.e., memoryless interference at symbol

This mutual information is evaluated fdx, y,, which can
be written as

Px, v, (2,y) = Px,(x)Py|x (y|z) level). By choosing appropriately?z x, x,, we can model a
= E {Tx~ ()} Py x (y]2). scenarios ranging from symbol-level synchronization toiea
level synchronization, among others.
The first equality comes from the Markov cha@- X, —Yo.  We now introduce the necessary definitions and state our

The second equality is Property 2 [ [6, Section VII.B.2]. main results for this scenario.
Now, condition [[2) on the type of the interference for a
sequence ofn, 2"%)-codes that achieves the pdiR, G;), Definition 11 (Code) An (n, 2"/, 2712, 2nf%)-code for the
combined with Lemm&0, implies that the expectation of tHi$€enario in Figurél2 consists of:
type of the input to the chann&l {Tx»} must converge to a e« three sets of messages:

sequencga)((n) with P)((n) € P for all n. That is, M, 2 {1 [2757) for j € {1,2)
E{TX" (l’)} Py|X(y|x) — P)((") (CC)PY|X(3J|‘T) Mc L {1’ o |_2nRCJ}7



« two encoding functions
w? . Ml — X]:n, ° )
xy My x Mo — X3,

« a coordination functior: : M; — M., . i
« and two decoding functionsy; : V' — M; U {e} for
je{1,2}. ° ° ° °

% Fig. 3. Constellation with 6 symbols in ExamplEZ13. The constraint on the

We assume that the message KML.MQ) is U’?iform'}’ Eéﬁ:fzrnecr:)c;erast tahtetr?gsséa%eer tri)rrsgludes transmission okigimcle symbols by
distributed over the set1; x Ms. The notion of achievability
and the definition of the communication-interference cépac
region C are straightforward extensions of those introduced Without coordination, one of the two users is restricted to
in the single user case. As for that case, the communicati¢i§e only the subset of red-diamond symbols. Assume that
interference Capacity regioﬁ is convex. However’ Observethe restriction iS placed on the Second user. Th|S yleldS the

that the factorization in{10) entails a loss of generality. ~ rate pair(R;, Rs) = (4,2). In contrast, if Encodet uses the
Consider the following set: coordination link to declare whether it will use a blacketir

or a red-diamond symbol, Encod@rcan opportunistically
(R1, Rz, Re,Qz) s.t.3 PuPx,juPx,u St. choose its constellation to boost its communication rate. F
By <I(Xy;1), n example, if Encodet makes use of all6 symbols with equal
R £ Ry < [[(X3;Ys) = I(U; X2)]™, frequency, then EncodeX is forced to use the red-diamond
R. > I1(U; Xu), symbols (i.e., transmit [bpcu]) 75% of the times. However, in
u%:,mz PuPx,uPx,jvPzix x. = @z the remaining25%, it can use any of the black-circle symbols
(i.e., log, 12 [bpcu]). This yields
where[z]* £ max(x,0). Let conv(R) denote the convex hull 3 1
of R. Our main result for the channel model in Figlide 2 is Ro= -2+ 1 log, 12 =~ 2.4 [bpcu]

) . L 4
the following partial characterization.
gp Thus, we havéR;, R2) = (4,2.4). Observe that the constraint

Theorem 12. The communication-interference capacity regioplaced by the observer does not preclude Encaddérom
C satisfies using any of the symbols in Figurg]l3 when Encodeisends
a red-diamond symbol. However, Decodemneeds to know
conv(R) C C. _ )
whether the transmitted symbol correspond? tor 4 bits. By
O restricting its input to belong to the set of black-circleyols,

Before proving the theorem, we make the following tWgncoder? is conveying information about the message of
observations abouR: i) The random variabld/ plays the Encoderl_, namely that the current input consists of one of
role of the coordination message sent from Encoder 1 %e red-d|a}m0_nd symbols. . -

A coordination rate equal t&,. = 0.81 [bpa] is sufficient

Encoder 2. By setting/ = (J, we obtainR. = 0 and recover _ ' . .
to implement this protocol if Encoddruses a lossless source

the case where the users are not coordinated (Xe.and . ) . :
X, are independent). For most distributiof,y, y,, our E(;cei;ng algorithm to declare its intentions for a batch ofruhgsl

strategy strictly improves upon uncoordinated commuidoat
i) The coordination messagé couples the rate®; and R, Proof of Theorerfi 12Fix arbitrarye > 0 and leté(e) > 0
in two ways. First, the choices of input distributions hawe the some positive function such thate) — 0 ase — 0.
be compatible in the sense that they yield the dest®ed Choose a tupl€R;, R2, R.,Qz) € R and letRy > R,. Let
In addition, the rate for Encoder 2 has a penalty term th&; Py, Px,;s be the corresponding distribution.
reflects that the transmitted signals are correlated. Bhafd
carries information aboui’;. This is similar to the situation
in Gel'fand Pinsker coding, where the transmission is ayn * FOr €very mc € M., generate a sequence’(m.)
with the channel state and thus carries information abd@}.it according to[ [;_, Py (u).
These considerations are illustrated by the following eplem ~ * For everym, € M,, generate a codewordy (m,)

. o _ according to[ [, Px, (%1;).
Example 13. Consider the scenario in which each Qf the_two « For everym, € M, and everyl € {1, .., [Qn(RrRz)”’
e_ncoders can make use of the setl6fsymbols depicted in generate a codeword z%(l,ms) according  to
Figure[3 as inputs to the channel. Assume that the observer 1y» ,

. . R Hi:l PX2 (le)'

tolerates only low and mild levels of interference. This mea )
that the two encoders are not allowed to use the bladkcoding
circle symbols simultaneously. For simplicity, assume tha 1) To transmit the message;, Encoderl puts the code-
channelsPy,|x, and Py, x, are noiseless. word 7 (m1) into the channel.

Codebook generation



2) To generate the coordination message giwérim,), Therefore,
Encoder 1 searches for an indexn. such that
(u™(me), #7(m1)) € T (Py.x,). If more than one
suchm, exists, it chooses one at random among theow, lete’ = 7 and
candidates. If none exists, then it chooses = 1. . . . ()
Finally, it conveys the indexn. to Encoder2. Ezx1 ={U"(me), X1 (1)) ¢ T (Pux,) for all me e M.},
3) To transmit the message,, Encoder2 sea(rc)hes foran ¢,, 2 {(U™(M,), X5(1,1)) ¢ 7‘€§") (Pu.x,)
index ! such that(u”(m.), %, m2)) € T (Py x., ). B
If more than one(suc(hex)istsz, (it cho)(gses one( at 'ra2n)dom forallte{1,...,[2 e Rz)”}’
among the candidates. If none exists, then it chooséss = {(U"(M.), X7 (1), X5(L,1)) ¢ T\ (Pu.x,.x,)},
lh: 1. FlinaIIy, it puts the codewora? (I, m.) into the ¢, 2 {(U™(M,), X (1), X2(L,1),Z2"¢ TPy x, x,.2)k
channel.

Pr(Ez|(My, Ms) = (1,1)) < Pr(E).

Here M. and L are the random variables corresponding to
Decoding the coordination index and the index chosen by Encoder 2,

. Given the observationy?, Decoder1 searches for '€SPectively. We have that

a( l)mique index /m; such that (x (1), y}) € Pr(£20) < Pr(Ez1) + Pr(£22)

72" (Px, y,). If no suchsn; is found or if it is not L Pr(Epa O (ES, NES)) + Pr(Ea N ES

unique, the decoder declares an error. 12N (€21 NE2)) x(6z4 23)('12)
« Given the observationyy, Decoder 2 searches for _ _

a unique indexrm, such that (z7(l,7ms),y?) € BY the covering lemmal[l, Lemma 3.3pr(€z1) — 0 as

72(")(Px2,y2) for somei 1,..., |'2n(R2—R2)'|}. fno n — ooif R.> I(U;Xy)—d(¢). For the second term in
such 7, is found or if it is not unique, the decoder(12), note that the distribution oft/" (M.), X3(1,1)) is the
declares an error. same for all values of\/. and!; they are independent. Thus,
again by the covering lemm&r(£z2) — 0 asn — oo if
Analysis of the error probability Ry — Ry > I(U; X5) — 6(€).

We consider the error probability averaged over the ensem_—RegaEding the third term Till’n:(12), wne observe(;[)he following.
ble of codebooks. Le€ denote the error event and considef?VeN €71, we have thalU™ (M.), X (1)) € T (Pu,x, ).

a fixed n. Due to the symmetry in the generation of th§i(r2)”arly' given £%,, we have thafU™ (M.), X3(L, 1)) €
codebooks, we can assume thdi = M, = 1 without loss 7e¢ ~(Fu,x,). Thus, by the strong Markov Lemmal[6, The-

conditions of the lemma are satisfied becase— U — X5
Pr(€) = Pr(&|(My, M3) = (1,1)). form a Markov chain and the distribution &f} is permutation

To bound the error probability, consider the foIIowindnvgﬁgﬂ;,(afirdf;gﬁgslp tiglinw:;hﬁ;;e(\;\tew;{ave that” is
events: generated by passing atypical pair (X7, X%) through
E7 2 {|Tzr — Qzllw > €}, the channelPy x, x,. Thus, by the law of large numbers,
A A PI’(524 n 5%3) — 0 asn — 0.
& = {M; # 1} We now turn our attention to the teriw(&;|M; = 1) in

for i = {1,2}. The error probability satisfies (11). Consider the following events

Pr(€) < Pr(Ez|(My, Ms) = (1,1)) En 2 {(XT(1),YT) ¢ T (Px, vi)},
+Pr(& | My = 1) 4+ Pr(&|My = 1). 1) ‘2 2 (X7 (), YY) € T\ (Px, y,) for somern; # 1}.

We bound each of the three terms individually. For the firgye have that

term in [11), consider the event Pr(&|M; =1) < Pr(é11) + Pr(&12),

wherePr(€11) — 0 asn — 0 by the law of large numbers,
andPr(&12) = 0asn — 0if Ry < I(X1;Y1) — d(¢) by the
packing lemmal[l, Lemma 3.1].

and note that, by the basic properties of strong typicality,  Similarly, if Ry < I(X2;Y2)—d(€) thenPr(&; My = 1) —

EzoH{||Tunxp 1), x7(L.1), 27— Pz %1, x:Px 0P vP0llvv > 6

every (u”, =7, 3, 2") such that 0 asn — 0. Combining all the terms and letting— 0, we
obtain
1 Tur @ w20 = Pzix, xa Pxaju Prajo Pulln <6, Re > I(U; X1),
we have Ry < I(X1;Y7),

| Tan — Qzllw < €. Ry < [Ry — I(U; Xo)|* < [I(Xa2;Ya) — I(U; X2)| ¥,



as desired. The remaining tuples in the convex hull are
achieved by time sharing. [ ]

IV. CONCLUSION

We have proposed a generic model in terms of types (i.e.,
empirical distributions) for studying the effect of the ent
ference induced by a communication process. First, we have
considered the case of a single communication link and shown
the existence of a tradeoff between the rate of communitatio
and the type of the induced interference. To quantify this
tradeoff, we have introduced the notion of communication-
interference capacity region and we have explicitly chi@rac
ized it. Then, we have studied a multiple-user scenario with
unidirectional coordination of the transmitters. In thiase,
we have shown that the tradeoff involves the interferenpe ty
and the communication rate as well as the coordination rate.
We have established an inner bound to the communication-
interference capacity region as a partial characterigaifdhe
tradeoff.
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